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ABSTRACT
Checkpoint with Forkhead-associated and Ring finger domains (CHFR) is a G2/M 

checkpoint and tumor-suppressor gene. Recent publications showed the correlation 
of CHFR promoter methylation with clinicopathological significance of non-small cell 
lung cancer (NSCLC), however, the results remain inconsistent. The aim of this study 
is to investigate the Clinicopathological significance of CHFR promoter methylation 
in NSCLC with a meta-analysis. A total of nine studies were included in the meta-
analysis that 816 patients were involved. Our data indicated that the frequency of 
CHFR promoter methylation was higher in NSCLC than in normal lung tissue, Odd 
Ratios (OR) was 9.92 with 95% corresponding confidence interval (CI) 2.17–45.23, 
p = 0.003. Further subgroup analysis revealed that CHFR promoter was more 
frequently methylated in squamous cell carcinoma (SCC) than in adenocarcinoma 
(ADC), OR was 4.46 with 95% CI 1.65–12.05, p = 0.003, suggesting the mechanism 
of SCC pathogenesis is different from ADC. Notably, CHFR promoter methylation was 
correlated with smoking behavior in NSCLC. In conclusion, CHFR could be a biomarker 
for diagnosis of NSCLC, and a promising drug target for development of gene therapy 
in SCC. CHFR promoter methylation is potentially associated with poor overall survival, 
additional studies need to be carried out for confirmation in future.

INTRODUCTION

Lung cancer is one of the most common 
malignancies and the leading cause of cancer-related 
mortality in the world. Lung cancer can be classified into 
two major histological groups, small cell lung cancer and 
non-small cell lung cancer (NSCLC). NSCLC accounts 
for more than 80% of all lung cancers, whereas 15–20% 
is small cell lung cancer [1, 2]. NSCLC can be divided 
into three subtypes of adenocarcinoma (ADC), squamous 
cell carcinoma (SCC) and large-cell carcinoma, within 
them, adenocarcinomas accounts for 40%, squamous 
cell carcinoma for 25–30%, and large-cell carcinoma for 
10–15% [3, 4]. Although lung cancer subtypes share some 
genetic variations such as inactivation of tumor suppressor 
gene TP53, each subtype harbors its own specific genetic 
variations such as c-MET in ADC, fibroblast growth factor 
receptor 1 (FGFR1) and FGFR3 in SCC. 

DNA methylation is a part of the epigenetic gene 
regulation complex and plays a critical role in carcinogenesis 
[5]. Recently, specific molecular alterations that drive tumor 
growth and provide targets for therapy have been defined 
in ADC, but there is increasing interest in the molecular 
landscape of SCC highlighting new potential therapeutic 
targets [6]. Checkpoint with Forkhead-associated and Ring 
finger domains (CHFR) is a G2/M checkpoint gene that 
has been identified by Scolnik and Halazonetis [7]. This 
protein contains a forkhead and a RING finger domain, 
and functions as an ubiquitin ligase that ubiquitinates target 
proteins to direct them to the proteasome for degradation or 
to alter their activity [8, 9]. The growing evidence supports 
its role as a tumor-suppressor protein and biomarker for 
chemotherapeutic response to microtubule-targeting drugs 
such as taxanes [9]. CHFR promoter hypermethylation has 
been observed in several tumors such as 30% in esophageal 
cancer [10], 20% in NSCLC [11] and 40% in colorectal 
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cancer (CRC) [12]. However, the frequency of CHFR 
hypermethylation in NSCLC was inconsistent, and its 
contribution to the development and progression of NSCLC 
are unclear due to the small power of individual study. 
Therefore we pooled nine studies and performed a meta-
analysis to evaluate the clinicopathologic significance of 
CHFR hypermethylation in NSCLC.

RESULTS

Identification of relevant studies and quality 
assessment

A total of nine studies were included in the meta-
analysis (Figure 1) and 816 participants from five 

countries were involved. The study characteristics was 
summarized in Table 1. Based on the quality evaluation 
with the Newcastle-Ottawa Quality Assessment Scale 
(NOQAS), the overall quality of nine studies was scored 
from six to eight which indicated good quality (data not 
shown). 

The frequency of CHFR promoter methylation 
in AC and SCC, and the association with the 
status of smoking 

Of the total 678 NSCLC patients from nine studies, 
aberrant CHFR promoter methylation was identified in 
106 patients, the frequency was 15.6%. Three studies 
reported the comparison of CHFR promoter methylation in 

Figure 1: Schematic flow diagram for selection of included studies.
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NSCLC and normal lung tissue, the pooled rate of CHFR 
promoter methylation was significantly higher in NSCLC 
than normal lung tissue, OR was 9.92, 95% CI 2.17–45.23, 
test for overall effect, Z = 2. 96, p = 0.003 (Figure 2). 
Three studies investigated CHFR promoter methylation 
in a total of 314 AC and 154 SCC respectively, CHFR 
promoter methylation in 34 out of 154 SCC (22.1%) and 
25 out of 314 AC (8.0%) were identified. The frequency 
of CHFR promoter methylation was significantly higher in 
SCC than AC, OR was 4.46, 95% CI 1.65–12.05, test for 
overall effect, Z = 2. 95, p = 0.003 (Figure 3). Two studies 
investigated the relationship between CHFR promoter 
methylation in NSCLC and the status of smoking, pooled 
data indicated that CHFR promoter was more frequently 
methylated in smoking NSCLC patients than in non-

smoking patients, OR was 3.67 with 95% CI 1.52–8.88, 
test for overall effect, Z = 2. 89, p = 0.004 (Figure 4).

The association between CHFR promoter 
methylation and NSCLC stages as well as 
prognosis

CHFR promoter methylation was not associated 
with NSCLC stages, the frequency of CHFR promoter 
methylation in stage III/IV NSCLC was not significantly 
increased compared to stage I/II NSCLC, OR was 0.26, 
95% CI 0.06–1.13, test for overall effect, Z = 1.79, p = 
0.007 (Figure 5). Two studies showed CHFR promoter 
methylation or low CHFR expression was correlated with 
poor prognosis, respectively. (Table 2). 

Figure 2: Forest plot for CHFR promoter methylation in NSCLC and normal lung tissue. The squares represent the weight 
of individual study in the meta-analysis, the line width indicates the corresponding 95% CI, The diamond represents the pooled OR, and 
the width of diamond indicates 95% CI.

Figure 3: Forest plot for CHFR promoter methylation in SCC and ADC. The squares represent the weight of individual study 
in the meta-analysis, the line width indicates the corresponding 95% CI, The diamond represents the pooled OR, and the width of diamond 
indicates 95% CI.

Table 1: Main characteristics of included studies
Author Year Country Sample size

(NSCLC)
Histology Stage (TNM) Grade Smoking status

Method
NCT ADC SCC I+II III+IV L H + -

Guo [22] 2015 USA 20/195 1/100 7/101 13/94 11/100 2/25 - - - - MSP

Pillai [42] 2013 Japan 1/32 - - - - - - - - - MSP

Koga [21] 2011 Japan 28/205 - 16/165 12/40 26/183 3/226 4/71 25/135 23/126 6/82 MSP

Salazar [43] 2011 Spain 32/91 - - - - - - - - - MSP

Takeshita [20] 2010 Japan 11/68 - 2/48 9/20 10/56 1/12 - - 11/48 0/21 MSP

De Jong [44] 2009 Belgium 2/10 0/18 - - - - - - - - MSP

Takeshita[45] 2008 Japan 3/20 - - - - - - - - - MSP

Corn [39] 2003 USA 2/20 0/20 - - - - - - - - MSP

Mizuno [11] 2002 Japan 7/37 - - - - - - - - - MSP

MSP: methylation-specific PCR, NCT: normal control tissue; AC: Adenocarcinoma; SCC: Squamous Cell Cancer; L: low grade; H: high grade; 
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Sensitivity analysis and publication bias

A sensitivity analysis was performed by removing 
one study at a time, the ORs were not significantly 
changed, indicating the stability of present meta-analysis 
(Supplementary Figure 1, Supplementary Figure 2, 
Supplementary Figure 3, Supplementary Figure 4). 
The funnel plots were largely symmetric (Figure 6), 
suggesting there was no publication biases existed in the 
meta-analysis of relationship between CHFR promoter 
methylation and clinicopathological characteristics. 

DISCUSSION

Scolnik and Halazonetis were the first to report the 
lack of CHFR gene in colorectal cancer and neuroblastoma 
cell lines, after then loss of CHFR expression has been 
observed in a variety of malignancies such as colorectal 
cancer [12–14], gastric cancer [15–18], esophageal cancer 
[10, 19] and NSCLC [20–22]. Previous evidence indicated 
CHFR was mostly inactivated by its promotor CpG island 
methylation [23]. CHFR promoter methylation has been 
observed in NSCLC, however, the frequency varied from 
3.1% to 35.1% due to small size of samples. We pooled 
nine studies together and calculated the frequency of 
CHFR promoter methylation in 678 NSCLC patients, it 
was 15.6%. Three studies evaluated the rate of CHFR 
promoter methylation in NSCLC and normal lung tissue, 
pooled OR suggested CHFR promoter methylation 
in NSCLC was ten times higher than in normal lung 
tissue. Previous evidence indicated that CHFR interacts 

with beta-tubulin and TCTP (Translationally Controlled 
Tumor-associated Protein) to stabilize microtubule [24]. 
Disruption of spindle cause CHFR deliberate from TCTP 
and spindle, this process results in the activation of signal 
pathway and delay cell cycle progression [25]. CHFR 
regulates the coordination of chromosome condensation 
and centrosome separation during prophase [7]. Thus, 
loss of CHFR causes errors in chromosome segregation 
that can lead to neoplasia [9]. Additional studies indicated 
that CHFR ubiquitinates and targets both polo-like-
kinase (PLK1) and Aurora A, leads to the inhibition of 
phosphorylation of cell division cycle 25 (Cdc25), which 
in turn control the Cdc2 kinase activity at G2 to M 
transition [26–30]. Ultimately, the cyclin B1-Cdk complex 
is not able to form and the cell cycle is arrested [29, 31]. 
Therefore, the cells with CHFR gene inactivated by 
promoter methylation cannot be arrested in the G2 phase 
and proceed to mitosis, and proliferation and abnormal 
differentiation leads to the development of NSCLC and 
its progression.

Further subgroup analysis revealed that CHFR 
promoter was more frequently methylated in SCC than 
ADC, OR was 4.46 with 95% CI 1.65–12.05, p = 0.003 
(Figure 3), suggesting that inactivation of CHFR gene was 
associated with the development of SCC. The molecular 
mechanism of pathogenesis is probably different between 
SCC and ADC. In addition, prior studies demonstrated that 
the loss of several suppressor genes such as Wnt inhibitory 
factor-1 (Wif1) [32], Phosphatase and tensin homolog 
deleted on chromosome 10 (PTEN) [33] and TP53 [34–
36] occurred more frequently in SSC than in ADC. P53 

Figure 4: Forest plot for CHFR promoter methylation in NSCLC patients with smoking and non-smoking behavior. 
The squares represent the weight of individual study in the meta-analysis, the line width indicates the corresponding 95% CI, The diamond 
represents the pooled OR, and the width of diamond indicates 95% CI.

Figure 5: Forest plot for CHFR promoter methylation in NSCLC stage III/IV and stage I/II. The squares represent the 
weight of individual study in the meta-analysis, the line width indicates the corresponding 95% CI, The diamond represents the pooled OR, 
and the width of diamond indicates 95% CI.
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mutations were the most common one in SCC, occurring at 
50% of cases, however there was no relationship between 
CHFR expression and p53 mutation [37], indicating CHFR 
may contribute the carcinogenesis of SCC independently. 
Interestingly, present data showed that CHFR promoter 
methylation was associated with smoking behavior which 
is a risk factor for the development of SSC [38]. Similarly, 
previous reports indicated that alterations of Wif1, PTEN 
and TP53 gene were associated with smoking behavior 
[32–35], suggesting that smoking behavior may lead to the 
squamous cell carcinogenesis by inducing the inactivation 
of those suppressor genes including CHFR gene. 

Unlike ADC, there are no target therapies used in 
treatment of SCC patients, therefore, CHFR could be a 

potential drug target for development of gene therapies 
in SCC via demethylation. Notably, in cancer cells with 
methylated CHFR, treatment with demethylation agent 
5-aza-2-deoxycytidine led to re-expression of CHFR, 
and partially restored the prophase checkpoint [39]. 
Moreover demethylation agents such as azacitidine 
(AZA) has been demonstrated in reversing the effects of 
hypermethylation in solid tumors [40]. Thus, CHFR could 
be a very promising drug target for personalized treatment 
in patients with SCC.

The frequency of CHFR promoter methylation was 
higher in stage I/II of NSCLC than in stage III/IV, showing 
that CHFR methylation occurred at early stage during the 
development of NSCLC. Additional analysis needs to 

Figure 6: Funnel plot for publication bias. (A) CHFR promoter methylation in NSCLC and normal lung tissue; (B) CHFR promoter 
methylation in SCC and ADC; (C) CHFR promoter methylation in NSCLC patients with smoking and non-smoking behavior; (D) CHFR 
promoter methylation in NSCLC stage III/IV and stage I/II. S.E., standard error; Area of the circle represents the weight of individual study.

Table 2: The association between CHFR status and overall survival (HR) in NSCLC patients

Author Sample Size CHFR HR P value Treatment

Koga [21] 208 Unmethylation vs. 
Methylation 3.44 (1.15–10.29) 0.0274 Surgery

Takeshita [45] 157 Nuclear stain High vs. 
Low 3.260 (1.189–8.938) 0.021 Surgery
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be carried out when more relevant studies are available. 
CHFR promoter methylation was potentially associated 
with the overall survival based on the two included 
studies, although further studies will be needed to broadly 
establish this association in NSCLC.

The limitations of this meta-analysis are as follows, 
first, present findings were based on individual unadjusted 
ORs, and further confirmation needs to be finished by other 
potential risk factors. The second, publication bias may 
exist, as positive results were more likely published. The 
third, there are some clinical and statistical heterogeneity 
between the included studies. The fourth, most included 
studies are from Japan, therefore, the finding of the meta-
analysis should be interpreted with caution.

In conclusion, CHFR promoter methylation is 
correlated with the risk of SSC development. CHFR 
could be a potential biomarker and drug target to develop 
personalized treatment for the patients with SCC. CHFR 
promoter methylation is associated with smoking behavior.

MATERIALS AND METHODS

Study identification

Searches were performed from the earliest available 
data to July 2017 in PubMed, EMBASE, Web of Science 
and google scholar. The search terms were “non-small 
cell lung cancer”, “NSCLC”, “methylation”, and “CHFR, 
or Checkpoint with Forkhead-associated and Ring finger 
domains”. There were 13 articles identified from PubMed, 
15 articles from Web Science, 10 articles from Embase. 
1940 articles were identified from Google scholar, first 
300 of them were reviewed since the rest of them are not 
related to the present study. The reference lists of Included 
studies were checked for any further relevant citations. 

The inclusion criteria consisted of the following: 1). 
Articles evaluated methylation of CHFR in NSCLC; 2). 
Articles studied the relationship between CHFR methylation 
and clinicopathological features in NSCLC. Exclusion 
criteria were studies using cell line and human xenografts, 
as well as using the same population and overlapping 
database. The flow chart of searches is shown in Figure 1.

Data extraction

Primary data were extracted by using a customized 
form which included first author, year of publication, 
geography location, methylation methods, histology 
categories of NSCLC, stages, grades and status of smoking. 
Two reviewers extracted the data independently, any 
disagreements were discussed until a consensus was reached.

Quality assessment

The methodological quality of included studies was 
evaluated using NOQAS. This scale was used to allocate 

a maximum of nine points, 0–4 points for selection, 0–2 
points for comparability, 0–3 points for outcomes. The 
NOS scores ranged from 0 to 9, and a score ≥ 7 indicates 
a good quality. All studies were rated by two reviewers 
independently, any disagreements were discussed until a 
consensus was reached.

Statistical analysis

The pooled ORs with its 95% confidence intervals 
were calculated. The heterogeneity among studies was 
determined by using the Cochran’s Q statistic and I2 
tests. When the I2 value was below 50%, fixed effect 
model was used, when the I2 value was 50% or greater, 
a random effect model was used. Publication bias was 
assessed by using a method reported by Egger et al. [41]. 
The meta-analysis was performed using Review Manager 
5.3 (Cochrane Collaboration, Software Update, Oxford, 
UK). P-value less than 0.05 was considered statistically 
significant. 
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