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ABSTRACT
Breast cancer is a heterogeneous group of diseases with diverse 

clinicopathological and molecular features. At present, chemo-resistance still poses 
a major obstacle to successful treatment of HER-2 negative breast cancer. Reliable 
biomarkers are urgently needed to accurately predict the therapeutic sensitivity and 
prognosis of such patients. In this study, we identified 3145 distant relapse–free 
survival (DRFS) associated genes in 310 patients with HER-2 negative breast cancer 
receiving taxane and anthracycline-based chemotherapy in the GSE25055 dataset 
using univariate survival analysis. Four genes (SRPK1, PCCA, PRLR and FBP1) were 
further selected by a robust likelihood-based survival model. A risk score model 
was then constructed with the regression coefficients of the four signature genes. 
Patients in the training set were successfully divided into high- and low-risk groups 
with significant differences in DRFS between the two groups. The predictive value was 
further validated in GSE25065 dataset and similar results were observed. Moreover, 
the 4-gene signature was proved to have superior prognostic power compared with 
several clinical signatures such as tumor size, lymph node invasion, TNM stage and 
PAM50 signature. Our findings indicated that the 4-gene signature was a robust 
prognostic marker with a good prospect of clinical application for HER-2 negative 
breast cancer patients receiving taxane-anthracycline combination therapy.

INTRODUCTION

Breast cancer is one of the most common cancers 
and the second leading cause of mortality for women 
worldwide [1]. Almost one of eight to ten women will 
suffer breast cancer during their lifetime [2]. Incidence rate 
of breast cancer has been on the increase for several years 
and the average onset age is dropping, which probably 

occasioned by the changes of lifestyle, environment and 
the development of screening methods [3–5]. Recent 
advances of the chemotherapy, radiotherapy, hormone 
therapy and immuno-biological therapy have dramatically 
improved the survival for patients with breast cancer. 
Nevertheless, great individual differences have been 
found in the outcomes of breast cancer treatments due to 
the tumor heterogeneity. 
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Chemotherapy is the chief means of HER2-
negative breast cancer treatment, among which, taxane-
anthracycline combination regimens have been advised 
as standard neoadjuvant and adjuvant strategies [6]. At 
present, chemo-resistance still poses a major obstacle to 
successful treatment of breast cancer, with a lot of patients 
being under- or over-treated. Though great efforts have 
been made on the development of effective prognostic 
indicators through molecular and cell biological studies, 
outcomes of patients with breast cancer are still predicted 
largely on the basis of conventional clinicopathological 
and molecular prognostic factors [7–9]. However, quite 
a few patients show distinct responses to chemotherapy 
even if they have same or similar clinicopathological 
characteristics. Thus, there is a critical need for innovative 
biomarkers to accurately predict the therapeutic sensitivity 
and prognosis of HER-2 negative breast cancer.

In this study, we first performed univariate survival 
analysis and identified 3145 distant relapse–free survival 
(DRFS) associated genes in 310 patients with HER-
2 negative breast cancer from the GSE25055 dataset. 
After that, a 4-gene prognostic signature was developed 
by using robust likelihood-based survival model and 
unsupervised hierarchical clustering analysis. A risk score 
model was then built by multivariate survival analysis and 
the prognostic value was further validated in GSE25065 
dataset. Our findings suggested that this 4-gene signature 
could serve as an effective biomarker to predict the 
chemosensitivity and prognosis for patients with HER-2 
negative breast cancer receiving taxane/anthracycline-
based therapy.

RESULTS

Identification of differentially expressed genes 
associated with prognosis in the training dataset

The overall flow diagram of present study was 
summarized in Figure 1. The 310 breast cancer samples 
with expression values of 22283 genes were acquired from 
the GSE25055 dataset. All the patients were diagnosed 
HER-2 negative and treated with taxane and anthracycline-
based chemotherapy. 13510 differentially expressed 
probes were selected for further analysis according to the 
screening criteria described in the Materials and Methods 
part (Supplementary Table 1). A univariate survival 
analysis was conducted using Cox proportional hazard 
regression model based on the expression level of these 
genes. Finally, 3145 seed genes significantly associated 
with DRFS (p < 0.05) were identified (Supplementary 
Table 2). The top 20 genes with most remarkable changes 
are listed in Table 1.

In order to investigate the main function of the 
aforesaid seed genes, we performed KEGG pathway 
enrichment analysis using clusterProfiler. The result 
showed that these genes were enriched in several key 

cancer-related signaling pathways such as cell cycle, 
cellular senescence, pathways in cancer (Supplementary 
Table 3). The top 10 pathways were shown in Figure 2.

Development of the 4-gene signature for 
prognosis prediction in the training dataset

Given the difficulty in using such a large number of 
genes for clinical diagnosis, we next screened the optimal 
survival-associated signature genes by a robust likelihood-
based survival model. Four genes (SRPK1, PCCA, PRLR 
and FBP1) were selected as signature genes that can 
optimally predict the DRFS of patients in the training 
dataset, as shown in Table 2. KEGG pathway functional 
annotation was then adopted to explore the function of 
these four signature genes. As shown in Table 3, these four 
genes involved in several signaling pathways related to the 
development and progression of breast cancer.

With the selected gene signature, unsupervised 
hierarchical clustering analysis was carried out, and the 
patient population was divided into three sub-classes 
(Cluster 1, Cluster 2 and Cluster 3), with 132, 69 and 109 
samples respectively (Figure 3A). As depicted in Figure 
3B, comparing with the other two sub-classes, patients 
in cluster 3 had much worse outcomes (p = 1.07e–10). 
A closer look at the clinical characteristics revealed 
that patients in cluster 3 were mostly basal-like subtype 
(86.2%, 94/109), and the number was only 39.4% in 
the whole cohort. Thus, basal-like breast cancer was 
distributed mainly in cluster 3, consisting with the well-
known fact that the triple negative patients always had 
poor outcomes in clinical practice. Moreover, SRPK1 
expression was significantly elevated in triple negative 
samples while PCCA, PRLR and FBP1 expressions were 
decreased dramatically (Figure 3C).

All these results suggested that this 4-gene signature 
may have important application in predicting the prognosis 
for patients with HER-2 negative breast cancer receiving 
taxane and anthracycline combination regimens.

Construction and assessment of prognostic risk 
score model based on 4-gene signature

The regression coefficients of the four signature 
genes were generated by multivariate survival analysis. A 
risk score model was then built as follow: Risk Score = 
0.38*exp (SRPK1)-0.56*exp (PCCA)-0.3*exp (PRLR)-
0.22*exp (FBP1). With the risk score of each sample, 
the prognostic differences was evaluated (Figure 4A). As 
illustrated in Figure 4B, higher risk score indicated greater 
mortality risk for patient with HER-2 negative breast 
cancer. We also observed that along with the increase 
of risk score, the expression level of SRPK1 was up-
regulated while the other three were declined (Figure 4C). 
Receiver operating characteristic (ROC) curve analysis 
was performed to evaluate the prediction power of the 
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risk model. The area under ROC curve (AUC) was 0.883, 
indicating good performance of this model for prognosis 
prediction (Figure 5A). The 310 patients were divided into 
high and low-risk groups using the optimal cut-off score. 
As showed in Figure 5B, the DRFS of patients in the high-
risk group was significantly shorter than that of the low-
risk group (p = 8.24e–11). 

To investigate the impact on prognosis of each 
single signature gene, patients of the training dataset 
were classified into different groups using the median 
expression level as the threshold. The results of Kaplan-
Meier analysis showed that each of the genes had 
predictive ability on DRFS, especially PRLR and FBP1. 
However, the prognostic power was found much stronger 
when these four genes used in combination (Figure 6). We 
further compared the prediction capacity of this risk score 
model with other clinical classification systems including 
tumor size (T), lymph node invasion (N), TNM stage 
and PAM50 signature. As shown in Figure 7, the 4-gene 
signature was proved to have the most robust prognostic 
power among these clinical signatures.

External validation of 4-gene signature

To validate the accuracy and repeatability of 
the prognostic 4-gene signature, the risk score model 
was applied to the GSE25065 dataset (n = 198). Like 
that of GSE25055, all the samples of GSE25065 were 

HER-2 negative following taxane and anthracycline 
chemotherapy. The prognostic risk score of each patient 
was then calculated according to the formula. As in 
the training dataset, higher risk score indicated greater 
mortality risk for patient with HER-2 negative breast 
cancer (Figure 8A). Besides, both the expression levels of 
four signature genes and the proportion of basal-like breast 
cancer in the GSE25065 dataset were in line with that in 
the training dataset. The samples were further divided into 
high-risk group and low-risk group based on the optimal 
cut-off risk scores. The Kaplan-Meier univariate analysis 
indicated a statistical significance on DRFS between 
the two groups (p = 2.0e–6, Figure 8B). Furthermore, 
increased expression of SRPK1 and reduced expressions 
of the other three genes in basal-like breast cancer were 
also observed in the validation dataset. Therefore, this 
4-gene signature was an effective marker in predicting 
prognosis for patients with HER-2 negative breast cancer 
following taxane and anthracycline-based chemotherapy.

DISCUSSION

Breast cancer is a heterogeneous group of diseases 
with diverse clinicopathological features and gene 
dysregulations [10, 11]. Despite the rapid development 
of therapeutic approaches, there are still many patients 
suffer from tumor recurrence and metastasis, which 
is mainly caused by chemo-resistance. Conventional 

Table 1: The top 20 genes with most remarkable changes in training set
Probe ID Gene symbol p value
211110_s_at AR 1.39E–08
210476_s_at PRLR 5.21E–08
200810_s_at CIRBP 1.24E–07
219648_at MREG 1.31E–07
202171_at VEZF1 1.38E–07
205862_at GREB1 1.54E–07
212811_x_at SLC1A4 1.87E–07
208935_s_at LGALS8 2.18E–07
221874_at KIAA1324 2.36E–07
205428_s_at CALB2 2.38E–07
203860_at PCCA 3.16E–07
202200_s_at SRPK1 4.53E–07
214552_s_at RABEP1 5.15E–07
205597_at SLC44A4 5.24E–07
206401_s_at MAPT 5.92E–07
201951_at ALCAM 6.67E–07
209696_at FBP1 7.44E–07
212095_s_at MTUS1 8.02E–07
218692_at SYBU 8.11E–07
208682_s_at MAGED2 9.01E–07
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clinicopathological and molecular prognostic factors, 
such as TNM stage, histological grade, expression of the 
oestrogen and progesterone receptors, can not effectively 
estimate the benefits of chemotherapy in HER-2 negative 
breast cancer. Additionally, tests designed for molecular 
classification or prognosis without chemotherapy were 
found lacking of clinical usefulness in the prediction of 

survival outcomes in chemosensitive patients [12–14]. 
Therefore, reliable prognostic factors are urgently needed 
for HER-2 negative breast cancer patients treated with 
chemotherapy.

Various genetic changes have been found to play 
important roles in breast cancer initiation and progression 
[15, 16]. For example, women with pathogenic variants 

Figure 1: Flow diagram of methods for developing the prognostic 4-gene signature.
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Table 2: Survival-associated gene signature screening using forward selection
Probe ID Gene symbol nloglik AIC

202200_s_at SRPK1 342.16 686.33*

203860_at PCCA 335.30 674.60*

210476_s_at PRLR 329.94 665.88*

209696_at FBP1 328.87 665.75*

212956_at TBC1D9 328.87 667.73
206401_s_at MAPT 327.93 667.86
214552_s_at RABEP1 327.58 669.16
208682_s_at MAGED2 326.85 669.71
212492_s_at KDM4B 326.82 671.65
212811_x_at SLC1A4 323.86 667.71
200670_at XBP1 323.71 669.42
211110_s_at AR 322.83 669.65
205597_at SLC44A4 322.46 670.93
221874_at KIAA1324 322.38 672.77
219197_s_at SCUBE2 322.00 673.99
200810_s_at CIRBP 321.74 675.48
219648_at MREG 321.03 676.06
205862_at GREB1 320.37 676.73

202171_at VEZF1 316.68 671.35

Figure 2: The top 10 enriched pathways for 3145 seed genes significantly associated with DRFS.
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Figure 3: Development of the 4-gene signature for prognosis prediction. (A) Results of unsupervised hierarchical clustering 
analysis based on the expression levels of the four signature genes. (B) Kaplan–Meier curves for patients in different clusters. (C) The 
mRNA expression of four signature genes in Basal-like and non-basal-like patients.

Table 3: Results of function annotation analysis for 4 signature genes
KEGG pathway Gene symbol

Pentose phosphate pathway FBP1
Fructose and mannose metabolism FBP1
Glycolysis/Gluconeogenesis FBP1
Glucagon signaling pathway FBP1
AMPK signaling pathway FBP1
Insulin signaling pathway FBP1
Glyoxylate and dicarboxylate metabolism PCCA
Propanoate metabolism PCCA
Valine, leucine and isoleucine degradation PCCA
Carbon metabolism PCCA/FBP1
Prolactin signaling pathway PRLR
Jak-STAT signaling pathway PRLR
Cytokine-cytokine receptor interaction PRLR
Neuroactive ligand-recptor interaction PRLR
PI3K-Akt signaling pathway PRLR

Herpes simplex infection SRPK1
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in breast cancer 1 (BRCA1) and BRCA2 were reported 
to have a cumulative lifetime risk of developing breast 
cancer between 41% and 90% [17, 18]. Besides, mutations 
in tumor protein p53 (TP53) [19], phosphatase and 
tensin homolog (PTEN) [20], serine/threonine kinase 11 
(STK11), cadherin 1 (CDH1) [21], partner and localizer of 
BRCA2 (PALB2) [22] and checkpoint kinase 2 (CHEK2) 
[23] were also associated with an increased risk of 

breast cancer. However, there are currently few systemic 
evaluations on clinical application of these genes as most 
studies only focused on one or a few genes. In recent 
decades, high-throughput genomic technologies, such as 
DNA microarrays and next-generation sequencing, have 
been widely applied in the studies of cancer heterogeneity. 
Several risk models have been constructed to predict tumor 
metastasis, recurrence, treatment response and prognosis 

Figure 4: Construction of prognostic risk score model based on 4-gene signature. (A) The risk score of each sample. (B) 
Different survival status according to the risk score. (C) The mRNA expression of four signature genes in each sample with different risk 
score.

Figure 5: Assessment of the the prediction power of the risk model. (A) The ROC curve for survival predictions with an AUC 
of 0.883. (B) Kaplan–Meier curves for patients in high and low-risk groups divided with the optimal cut-off score.
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Figure 6: Analysis of the prognostic impact of each single signature gene. (A) Kaplan–Meier curves for patients in SRPK1 high 
and low-expression groups. (B) Kaplan–Meier curves for patients in PCAA high and low-expression groups. (C) Kaplan–Meier curves for 
patients in PRLR high and low-expression groups. (D) Kaplan–Meier curves for patients in FBP1 high and low-expression groups.

Figure 7: Comparisons of the prediction capacity between 4-gene signature and other clinical classification systems.
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by using miRNA [24, 25] and lncRNA expression profiling 
[26–28]. 

In the current study, we developed a robust 4-gene 
signature (SRPK1, PCCA, PRLR and FBP1) to predict 
DRFS for patients with HER2-negative breast cancer 
receiving chemotherapy by analyzing the publicly 
available gene expression profiles from the GEO database.

The GSE25055 dataset was used as training set 
and total 3145 genes were identified to be significantly 
associated with DRFS. Results of KEGG analysis revealed 
that these genes were enriched in several key cancer-related 
signaling pathways such as cell cycle, cellular senescence, 
pathways in cancer. We eventually selected four genes 

(SRPK1, PCCA, PRLR and FBP1) as signature genes 
for prognosis prediction by using robust likelihood-based 
survival model. Among which, PCCA was predicted to be 
associated with energy metabolism. However, there has been 
no reported study in breast cancer so far. SRPK1, a protein 
kinase that specifically phosphorylates serine/arginine-rich 
(SR) splicing factors, has been reported to be involved 
in a number of biological and pathological processes 
[29]. Studies have found that SRPK1 expression was up-
regulated in breast cancer, which correlated with poor 
outcome and preferential metastasis to the lungs and brain 
[30, 31]. Targeted inhibition of SRPK1 may exert some of 
its antitumor effects in breast cancer through altering the 

Figure 8: External validation of 4-gene signature. (A) Top: The risk score of each sample in validation set; Middle: Corresponding 
survival status of each sample; Bottom: The mRNA expression of four signature genes in each sample with different risk score. (B) Kaplan–
Meier curves for patients in high and low-risk groups. (C) The mRNA expression of four signature genes in Basal-like and non-basal-like 
patients.
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splice pattern and sensitivity to apoptotic signals [32, 33]. 
PRLR is a type 1 cytokine receptor that has been implicated 
in the pathology of breast cancer. Emerging evidence 
suggests that targeting the PRLR signaling pathway may 
represent a novel antihormonal approach for the treatment 
of breast cancer [34, 35]. FBP1, the rate-limiting enzyme 
in gluconeogenesis, is a critical modulator in breast 
cancer progression by altering glucose metabolism [36, 
37]. Recent studies have demonstrated that low or absent 
expression levels of FBP1 was a critical oncogenic event in 
epithelial-mesenchymal transition and might be associated 
with reduced disease-free survival in basal-like breast cancer 
[38, 39]. Therefore, all the four signature genes may play 
key roles in the development and progression of breast 
cancer and are worth further investigation.

The 4-gene signature was first assessed in the 
training set. Results of ROC analysis showed robust 
prognostic power with an AUC of 0.883. Patients in the 
training set were successfully divided into high- and low-
risk groups with significant differences in DRFS between 
the two groups. The predictive value was further validated 
in another GEO dataset and similar results were observed. 
Moreover, the 4-gene signature was proved to have 
superior prognostic power compared with several clinical 
signatures such as tumor size, lymph node invasion, TNM 
stage and PAM50 signature. These results indicated that 
this 4-gene signature was an effective prognostic predictor 
for patients with HER-2 negative breast cancer following 
taxane and anthracycline-based chemotherapy.

High-throughput genomic studies have provided new 
insights into the molecular mechanisms of breast cancer. 
However, the clinical applicability of this technology 
was restricted by the cost and information overflow. The 
4-gene prognostic signature obtained from our study can 
overcome this hurdle to some extent. Considering the 
limited sample size of our study, large-scale cohort studies 
will be performed in the future to evaluate the prognostic 
value of this 4-gene signature. In addition, the biological 
functions of these four signature genes in breast cancer 
metastasis have not been fully revealed. Thus, further 
experimental studies should be conducted to uncover 
the detailed effects of these four genes on the biological 
behavior and pathogenesis of breast cancer. 

In conclusion, our findings demonstrated that the 
4-gene signature was a promising prognostic indicator 
with a good prospect of clinical application for HER-
2 negative breast cancer patients receiving taxane-
anthracycline combination therapy.

MATERIALS AND METHODS

Microarray data acquisition and processing

Two independent breast cancer gene expression 
profile datasets on the Affymetrix Human Genome 
U133A platform with corresponding clinical information 

were downloaded from the publicly available GEO 
database. All the patients were diagnosed HER-2 
negative and treated with taxane and anthracycline-based 
chemotherapy. The GSE25055 dataset containing 310 
samples was used as training set to construct risk model 
and the GSE25065 dataset containing 198 samples was 
used as validation set to confirm the prognostic power of 
the model. The MAS5.0 signal intensity for each probe 
was log2 transformed and quantile normalized to obtain 
equal distributions.

Four-gene signature identification

Differentially expressed probes were preliminary 
picked out with the criteria as follows: (i) the median 
expression level of A gene in each sample is 20% higher 
than that of the whole genome; (ii) the expression level 
variance of A gene in each sample is 20% higher than 
that of the whole genome. A univariate Cox proportional 
hazard regression survival analysis was conducted by 
using the R package “survival” to obtain the prognosis-
related seed genes with p < 0.05. KEGG Pathway 
enrichment analysis was performed to investigate the 
functions of these seed genes by using the clusterProfiler 
package in R [40]. A robust likelihood-based survival 
modeling approach [41–43] was used to select the 
optimal survival-associated gene signature by using the 
R package “rbsurv”. The detailed algorithmic procedure 
is as follows: (i) The samples were randomly split into 
the training set with N*(1 − p) samples and the validation 
set with N*p samples (p = 1/3). The parameter estimate 
for each gene was obtained after fitting to the training 
sample set. With the parameter estimate, log likelihood 
was computed in both sample sets; (ii) The above 
procedure was repeated 10 times and the best gene with 
the largest mean log likelihood was first picked out; (iii) 
By evaluating every two-gene model, the one with the 
largest mean log likelihood was selected as the next most 
appropriate gene. Such forward gene selection process 
was continued and eventually generated a set of different 
candidate models; (iv) Akaike information criterion 
(AIC) statistics was applied for all the candidate models 
generated in the previous steps. Finally, an optimal model 
with the smallest AIC was obtained. KEGG pathway 
functional annotation was further adopted to explore the 
function of these four signature genes.

Unsupervised hierarchical clustering and 
multivariate survival analysis

By unsupervised hierarchical clustering analysis, 
samples were divided into three sub-classes according 
to the expression levels of four signature genes [44]. 
Prognostic differences between these sub-classes were 
further analyzed with Kaplan-Meier survival analysis 
[45].
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Prognostic risk score model construction and 
external data validation

The regression coefficients of the four signature 
genes were generated by multivariate survival analysis. A 
prognostic risk score model was constructed to evaluate the 
effects of this 4-gene signature on prognosis. The risk score 
of each patient was calculated according to the formula as 
follow: Risk Score = 0.38*exp (SRPK1)-0.56*exp (PCCA)-
0.3*exp (PRLR)-0.22*exp (FBP1). Receiver operating 
characteristic (ROC) curve analysis was performed to 
evaluate the prediction power of the risk model by R package 
“survivalROC” [46] and the area under the curve (AUC) 
was calculated. The optimal threshold for risk classification 
based on ROC curve was obtained. The risk score model was 
applied to the GSE25065 dataset to validate the accuracy and 
repeatability of the prognostic 4-gene signature.

ACKNOWLEDGMENTS AND FUNDING

We gratefully acknowledge financial support 
by the National Natural Science Foundation of China 
(81702803), the Natural Science Foundation of Zhejiang 
Province (LY18H160001).

CONFLICTS OF INTEREST

The authors have declared that no competing 
interests exist. 

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. 
CA Cancer J Clin. 2017; 67:7–30. https://doi.org/10.3322/
caac.21387.

2. Harbeck N, Gnant M. Breast cancer. Lancet. 2017; 389:1134–
50. https://doi.org/10.1016/s0140-6736(16)31891-8.

3. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, 
Rowland JH, Stein KD, Alteri R, Jemal A. Cancer treatment 
and survivorship statistics, 2016. CA Cancer J Clin. 2016; 
66:271–89. https://doi.org/10.3322/caac.21349.

4. Isik A, Firat D. Bilateral intra-areolar polythelia. Breast J. 
2017. https://doi.org/10.1111/tbj.12838.

5. Isik A, Karavas E, Peker K, Soyturk M, Yilmaz I. Male 
Mondor’s Disease is a Rare Entity. Breast J. 2016; 22:700–
1. https://doi.org/10.1111/tbj.12657.

6. Kuijer A, Straver M, den Dekker B, van Bommel AC, Elias 
SG, Smorenburg CH, Wesseling J, Linn SC, Rutgers EJ, 
Siesling S, van Dalen T. Impact of 70-Gene Signature Use 
on Adjuvant Chemotherapy Decisions in Patients With 
Estrogen Receptor-Positive Early Breast Cancer: Results of 
a Prospective Cohort Study. J Clin Oncol. 2017; 35:2814–9. 
https://doi.org/10.1200/jco.2016.70.3959.

7. Hess KR, Anderson K, Symmans WF, Valero V, 
Ibrahim N, Mejia JA, Booser D, Theriault RL, Buzdar 

AU, Dempsey PJ, Rouzier R, Sneige N, Ross JS, et al. 
Pharmacogenomic predictor of sensitivity to preoperative 
chemotherapy with paclitaxel and fluorouracil, doxorubicin, 
and cyclophosphamide in breast cancer. J Clin Oncol. 2006; 
24:4236–44. https://doi.org/10.1200/jco.2006.05.6861.

 8. Lee JK, Coutant C, Kim YC, Qi Y, Theodorescu D, 
Symmans WF, Baggerly K, Rouzier R, Pusztai L. 
Prospective comparison of clinical and genomic 
multivariate predictors of response to neoadjuvant 
chemotherapy in breast cancer. Clin Cancer Res. 2010; 
16:711–8. https://doi.org/10.1158/1078-0432.ccr-09-2247.

 9. Popovici V, Chen W, Gallas BG, Hatzis C, Shi W, 
Samuelson FW, Nikolsky Y, Tsyganova M, Ishkin A, 
Nikolskaya T, Hess KR, Valero V, Booser D, et al. Effect 
of training-sample size and classification difficulty on the 
accuracy of genomic predictors. Breast Cancer Res. 2010; 
12: R5. https://doi.org/10.1186/bcr2468.

10. Genomic Analysis Detects Recurrent Promoter Mutations 
in Breast Cancer. Cancer Discov. 2017. https://doi.
org/10.1158/2159-8290.cd-rw2017-130.

11. Rheinbay E, Parasuraman P, Grimsby J, Tiao G, 
Engreitz JM, Kim J, Lawrence MS, Taylor-Weiner A, 
Rodriguez-Cuevas S, Rosenberg M, Hess J, Stewart C, 
Maruvka YE, et al. Recurrent and functional regulatory 
mutations in breast cancer. Nature. 2017; 547:55–60. 
https://doi.org/10.1038/nature22992.

12. Albain KS, Barlow WE, Shak S, Hortobagyi GN, 
Livingston RB, Yeh IT, Ravdin P, Bugarini R, Baehner 
FL, Davidson NE, Sledge GW, Winer EP, Hudis C, et al. 
Prognostic and predictive value of the 21-gene recurrence 
score assay in postmenopausal women with node-positive, 
oestrogen-receptor-positive breast cancer on chemotherapy: 
a retrospective analysis of a randomised trial. Lancet 
Oncol. 2010; 11:55–65. https://doi.org/10.1016/s1470-
2045(09)70314-6.

13. Straver ME, Glas AM, Hannemann J, Wesseling J, van de 
Vijver MJ, Rutgers EJ, Vrancken Peeters MJ, van Tinteren H, 
Van’t Veer LJ, Rodenhuis S. The 70-gene signature as a 
response predictor for neoadjuvant chemotherapy in breast 
cancer. Breast Cancer Res Treat. 2010; 119:551–8. https://
doi.org/10.1007/s10549-009-0333-1.

14. Liedtke C, Hatzis C, Symmans WF, Desmedt C, Haibe-
Kains B, Valero V, Kuerer H, Hortobagyi GN, Piccart-
Gebhart M, Sotiriou C, Pusztai L. Genomic grade index is 
associated with response to chemotherapy in patients with 
breast cancer. J Clin Oncol. 2009; 27:3185–91. https://doi.
org/10.1200/jco.2008.18.5934.

15. Buys SS, Sandbach JF, Gammon A, Patel G, Kidd J, 
Brown KL, Sharma L, Saam J, Lancaster J, Daly MB. A 
study of over 35,000 women with breast cancer tested with 
a 25-gene panel of hereditary cancer genes. Cancer. 2017; 
123:1721–30. https://doi.org/10.1002/cncr.30498.

16. Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, 
Soria JC, Massard C, Levy C, Arnedos M, Lacroix-Triki M, 
Garrabey J, Boursin Y, Deloger M, et al. Mutational Profile 



Oncotarget103338www.impactjournals.com/oncotarget

of Metastatic Breast Cancers: A Retrospective Analysis. 
PLoS Med. 2016; 13:e1002201. https://doi.org/10.1371/
journal.pmed.1002201.

17. Chen S, Parmigiani G. Meta-analysis of BRCA1 and 
BRCA2 penetrance. J Clin Oncol. 2007; 25:1329–33. 
https://doi.org/10.1200/jco.2006.09.1066.

18. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord 
JE, Hopper JL, Loman N, Olsson H, Johannsson O, 
Borg A, Pasini B, Radice P, Manoukian S, et al. Average 
risks of breast and ovarian cancer associated with 
BRCA1 or BRCA2 mutations detected in case Series 
unselected for family history: a combined analysis of 22 
studies. Am J Hum Genet. 2003; 72:1117–30. https://doi.
org/10.1086/375033.

19. Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, 
Platzer P, Eng C. Breast-cancer stromal cells with TP53 
mutations and nodal metastases. N Engl J Med. 2007; 
357:2543–51. https://doi.org/10.1056/NEJMoa071825.

20. Li S, Shen Y, Wang M, Yang J, Lv M, Li P, Chen Z, Yang 
J. Loss of PTEN expression in breast cancer: association 
with clinicopathological characteristics and prognosis. 
Oncotarget. 2017; 8:32043–54. https://doi.org/10.18632/
oncotarget.16761.

21. Han MR, Zheng W, Cai Q, Gao YT, Zheng Y, Bolla MK, 
Michailidou K, Dennis J, Wang Q, Dunning AM, Brennan 
P, Chen ST, Choi JY, et al. Evaluating genetic variants 
associated with breast cancer risk in high and moderate-
penetrance genes in Asians. Carcinogenesis. 2017; 38: 
511–8. https://doi.org/10.1093/carcin/bgx010.

22. Foo TK, Tischkowitz M, Simhadri S, Boshari T, Zayed N, 
Burke KA, Berman SH, Blecua P, Riaz N, Huo Y, Ding YC, 
Neuhausen SL, Weigelt B, et al. Compromised BRCA1-
PALB2 interaction is associated with breast cancer risk. 
Oncogene. 2017; 36:4161–70. https://doi.org/10.1038/
onc.2017.46.

23. Schoolmeester JK, Moyer AM, Goodenberger ML, Keeney 
GL, Carter JM, Bakkum-Gamez JN. Pathologic Findings in 
Breast, Fallopian Tube and Ovary Specimens in non-BRCA 
Hereditary Breast and/or Ovarian Cancer Syndromes: A 
Study of 18 Patients with Deleterious Germline Mutations 
in RAD51C, BARD1, BRIP1, PALB2, MUTYH or 
CHEK2. Hum Pathol. 2017. https://doi.org/10.1016/j.
humpath.2017.06.018.

24. Du F, Yuan P, Zhao ZT, Yang Z, Wang T, Zhao JD, Luo 
Y, Ma F, Wang JY, Fan Y, Cai RG, Zhang P, Li Q, et al. 
A miRNA-based signature predicts development of disease 
recurrence in HER2 positive breast cancer after adjuvant 
trastuzumab-based treatment. Sci Rep. 2016; 6: 33825. 
https://doi.org/10.1038/srep33825.

25. Bing Z, Tian J, Zhang J, Li X, Wang X, Yang K. An 
Integrative Model of miRNA and mRNA Expression 
Signature for Patients of Breast Invasive Carcinoma with 
Radiotherapy Prognosis. Cancer Biother Radiopharm. 2016; 
31:253–60. https://doi.org/10.1089/cbr.2016.2059.

26. Zhong L, Lou G, Zhou X, Qin Y, Liu L, Jiang W. A six-
long non-coding RNAs signature as a potential prognostic 
marker for survival prediction of ER-positive breast cancer 
patients. Oncotarget. 2017; 8:67861–67870. https://doi.
org/10.18632/oncotarget.18919.

27. Guo W, Wang Q, Zhan Y, Chen X, Yu Q, Zhang J, Wang Y, 
Xu XJ, Zhu L. Transcriptome sequencing uncovers a three-
long noncoding RNA signature in predicting breast cancer 
survival. Sci Rep. 2016; 6:27931. https://doi.org/10.1038/
srep27931.

28. Sun J, Chen X, Wang Z, Guo M, Shi H, Wang X, Cheng L, 
Zhou M. A potential prognostic long non-coding RNA 
signature to predict metastasis-free survival of breast cancer 
patients. Sci Rep. 2015; 5:16553. https://doi.org/10.1038/
srep16553.

29. Bullock N, Oltean S. The many faces of SRPK1. J Pathol. 
2017; 241:437–40. https://doi.org/10.1002/path.4846.

30. van Roosmalen W, Le Devedec SE, Golani O, Smid M, 
Pulyakhina I, Timmermans AM, Look MP, Zi D, Pont C, 
de Graauw M, Naffar-Abu-Amara S, Kirsanova C, Rustici 
G, et al. Tumor cell migration screen identifies SRPK1 as 
breast cancer metastasis determinant. J Clin Invest. 2015; 
125:1648–64. https://doi.org/10.1172/jci74440.

31. Li XH, Song JW, Liu JL, Wu S, Wang LS, Gong LY, Lin X. 
Serine-arginine protein kinase 1 is associated with breast 
cancer progression and poor patient survival. Med Oncol. 
2014; 31: 83. https://doi.org/10.1007/s12032-014-0083-8.

32. Hayes GM, Carrigan PE, Miller LJ. Serine-arginine protein 
kinase 1 overexpression is associated with tumorigenic 
imbalance in mitogen-activated protein kinase pathways 
in breast, colonic, and pancreatic carcinomas. Cancer Res. 
2007; 67:2072–80. https://doi.org/10.1158/0008-5472.can-
06-2969.

33. Lin JC, Lin CY, Tarn WY, Li FY. Elevated SRPK1 lessens 
apoptosis in breast cancer cells through RBM4-regulated 
splicing events. Rna. 2014; 20:1621–31. https://doi.
org/10.1261/rna.045583.114.

34. Damiano JS, Wasserman E. Molecular pathways: blockade 
of the PRLR signaling pathway as a novel antihormonal 
approach for the treatment of breast and prostate 
cancer. Clin Cancer Res. 2013; 19:1644–50. https://doi.
org/10.1158/1078-0432.ccr-12-0138.

35. Kelly MP, Hickey C, Makonnen S, Coetzee S, Jalal S, 
Wang Y, Delfino F, Shan J, Potocky TB, Chatterjee I, 
Andreev J, Kunz A, D’Souza C, et al. Preclinical Activity 
of the Novel Anti-Prolactin Receptor (PRLR) Antibody-
Drug Conjugate REGN2878-DM1 in PRLR-Positive Breast 
Cancers. Mol Cancer Ther. 2017; 16:1299–311. https://doi.
org/10.1158/1535-7163.mct-16-0839.

36. Shi L, He C, Li Z, Wang Z, Zhang Q. FBP1 modulates 
cell metabolism of breast cancer cells by inhibiting the 
expression of HIF-1alpha. Neoplasma. 2017; 64:535–42. 
https://doi.org/10.4149/neo_2017_407.



Oncotarget103339www.impactjournals.com/oncotarget

37. Li K, Ying M, Feng D, Du J, Chen S, Dan B, Wang C, 
Wang Y. Fructose-1,6-bisphosphatase is a novel regulator 
of Wnt/beta-Catenin pathway in breast cancer. Biomed 
Pharmacother. 2016; 84:1144–9. https://doi.org/10.1016/j.
biopha.2016.10.050.

38. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, 
Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung 
MC, et al. Loss of FBP1 by Snail-mediated repression 
provides metabolic advantages in basal-like breast cancer. 
Cancer Cell. 2013; 23:316–31. https://doi.org/10.1016/j.
ccr.2013.01.022.

39. Shi L, Zhao C, Pu H, Zhang Q. FBP1 expression is 
associated with basal-like breast carcinoma. Oncol Lett. 
2017; 13:3046–56. https://doi.org/10.3892/ol.2017.5860.

40. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. Omics. 2012; 16:284–7. https://doi.org/10.1089/
omi.2011.0118.

41. Wang JY, Tai JJ. Robust quantitative trait association tests 
in the parent-offspring triad design: conditional likelihood-
based approaches. Ann Hum Genet. 2009; 73:231–44. 
https://doi.org/10.1111/j.1469-1809.2008.00502.x.

42. Renaud G, Stenzel U, Maricic T, Wiebe V, Kelso J. deML: 
robust demultiplexing of Illumina sequences using a 
likelihood-based approach. Bioinformatics. 2015; 31:770–2. 
https://doi.org/10.1093/bioinformatics/btu719.

43. Kendall WL, Pollock KH, Brownie C. A likelihood-based 
approach to capture-recapture estimation of demographic 
parameters under the robust design. Biometrics. 1995; 
51:293–308. 

44. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster 
analysis and display of genome-wide expression patterns. 
Proc Natl Acad Sci USA. 1998; 95:14863–8. 

45. Stel VS, Dekker FW, Tripepi G, Zoccali C, Jager KJ. 
Survival analysis I: the Kaplan-Meier method. Nephron Clin 
Pract. 2011; 119:c83–8. https://doi.org/10.1159/000324758.

46. Zou KH, O’Malley AJ, Mauri L. Receiver-operating 
characteristic analysis for evaluating diagnostic tests and 
predictive models. Circulation. 2007; 115:654–7. https://
doi.org/10.1161/circulationaha.105.594929.


