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ABSTRACT
Microsatellite instability (MSI) and aneuploidy are inversely related phenomena. 

We tested whether ploidy status influences the clinical impact of MSI in endometrioid 
endometrial cancer (EEC). We analyzed 167 EECs for MSI and ploidy. Tumors were 
classified in three categories according to MSI and ploidy status. Associations with 
clinicopathological and molecular variables, survival, and treatment response were 
assessed.

All MSI tumors (23%) were scored as diploid, and 14% of microsatellite 
stable (MSS) tumors presented aneuploidy. MSI tumors associated with older age 
at diagnosis, non-obesity, high histological grade, and advanced surgical stage. 
MSS-aneuploid tumors also associated with higher grade and advanced stage. In 
multivariate survival analysis MSI did not influence disease-free survival (DFS) or 
cancer-specific survival (CSS). However, when just diploid tumors were considered for 
the analysis, MSI significantly contributed to worse DFS and CSS, and the same was 
observed for aneuploidy when MSS tumors were analyzed alone. In diploid tumors, a 
differential response to postoperative radiotherapy (RT) was observed according to 
MSI, since it predicted poor DFS and CSS in the multivariate analysis.

We conclude that ploidy status influences the clinical impact of MSI in EEC. 
Among diploid tumors those with MSI have poor clinical outcome and respond worse 
to RT.
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INTRODUCTION

Endometrial cancer (EC) is the most common pelvic 
gynecological malignancy and the fourth leading cause 
of female cancer in occidental countries [1]. Although 
the majority of cases follows an indolent course and 
are cured by surgery alone, about 20% of patients recur 
and die by disease despite receiving adjuvant therapies 
[1]. Two mayor types of EC are distinguished based on 
epidemiology, histopathology and clinical behavior. 
Type I endometrioid EC, which is the most abundant 
(about 80%), arises in relatively younger women with a 
history of unopposed estrogenic stimulation, usually has 
differentiated or moderately differentiated histological 
grade with non-aggressive behavior. Type II non 
endometrioid EC (mostly papillary serous and clear cell), 
commonly occurs in older women with a background 
unrelated to unopposed estrogen exposure, usually is high 
grade and has worse prognosis [2, 3]. The endometrioid 
type frequently presents microsatellite instability (MSI), 
estrogen (ER) and progesterone (PR) receptors expression, 
PTEN, K-ras and β-Catenin mutations, epigenetic 
silencing of APC and a near diploid DNA content, 
although aneuploidy has also been detected in around 
20% of this type [4]. In contrast, the non endometrioid 
type is mostly aneuploid, with lack or weak ER and PR 
expression, p53 mutations and HER2 overexpression [2, 
3].

MSI is present in the majority of tumors of the 
hereditary nonpolyposis colorectal cancer (HNPCC) 
syndrome, and also in a subset (15-20%) of sporadic 
tumors [5-8], that accumulate hundreds of thousands 
of somatic clonal mutations in simple repeat sequences 
(microsatellites) as a result of a defective mismatch 
repair (MMR) system [6, 9]. In colorectal cancer (CRC) 
MSI tumors exhibit pseudodiploidy and better outcome 
compared to tumors without MSI (MSS), which frequently 
are aneuploid [6, 9, 10]. In CRC, loss of expression of 
DNA double strand breaks repair proteins has been 
associated to increased aneuploidy and poorer survival 
[11-14]. Accordingly, three different pathways based on 
the combination of these two anomalies, namely, MSI-
diploid, MSS-diploid and MSS-aneuploid, have been 
proposed to better stratify CRC according to clinical 
characteristics and outcome [15-17].

In EC MSI is mainly present in near-diploid tumors 
of endometrioid histology [3], and shows different gene 
mutation profile compared to gastrointestinal tumors of 
the mutator phenotype [18-20], associating with K-ras 
and PTEN mutations [3]. Published data about the clinical 
impact of MSI are conflicting [21-26], and recent studies 
have related aneuploidy to worse clinical behavior [4, 27, 
28]. 

In this study, we tested whether MSI and aneuploidy 
could interfere when determining its influence on 
clinicopathological characteristics and outcome in 

endometrioid EC based on the inverse relationship found 
between MSI and aneuploidy, and the precedents about 
the clinical effect of the combination of these two genomic 
instability phenotypes in CRC. 

RESULTS

In our series of 167 patients with endometrioid 
EC, all tumors with MSI presented MLH1 promoter 
methylation and had a DNA-quasy-diploid content, and 
all aneuploid tumors were MSS. A single patient with 
presence of MSI and aneuploidy in the same tumor 
sample was excluded to simplify categories. Accordingly, 
tumors were divided in three categories: MSI, MSS-
diploid and MSS-aneuploid. MSI and aneuploidy were 
detected in 33 (20%) and 24 (14%) cases respectively. The 
distribution of the subtypes according to demographic, 
surgicopathological and molecular variables of patients is 
shown in Table 1.

MSI tumors exhibited distinctive demographic 
features compared to MSS-aneuploid and MSS-diploid 
both of which shared similar features. Compared to 
MSS patients, those with MSI were older, relatively 
slim and had fewer births, in the multivariate analysis. 
Regarding clinico-pathological features, MSI and MSS-
aneuploid tumors behaved similarly and exhibited marked 
differences compared to the MSS-diploid category. 
Thus, MSI and MSS-aneuploid tumors associated with 
advanced stage of progression (p=0.001) undifferentiated 
histological grade (p=0.005), and invasion of vascular 
space (p<0.001). With respect to molecular parameters, 
MSI tumors had higher frequency of K-ras (p<0.001) and 
PTEN (p=0.01) mutations, and APC promoter methylation 
(p<0.001). MSI and MSS-aneuploid categories associated 
with high S-phase (p<0.001). 

Univariate survival analysis (summary in 
Supplementary information, Tables S1 and S2) of the 
whole series showed that MSI, aneuploidy, older age at 
diagnosis, advanced stage, higher grade, myometrial 
invasion, vascular invasion, and radiation therapy, among 
others, were associated with worse DFS and CSS. Survival 
curves of the whole series stratified according to the three 
defined categories showed significant better DFS and CSS 
for MSS-diploid tumors (Fig. 1). The potential of MSI 
and aneuploidy as prognostic markers was estimated by 
multivariate analyses in the whole series and in the diploid 
and MSS groups (Tables 2 and 3). In the whole series, 
the basic multivariate DFS and CSS models included 
age at diagnosis, surgical stage and histological grade. 
After a stepwise procedure, MSI did not show significant 
prognostic value for DFS or CSS, and aneuploidy did for 
CSS (p=0.01). 

In the DNA-diploid group, age, grade and stage 
were also present in the basic DFS and CSS models. 
When MSI was tested, it significantly associated with 
poor DFS (p=0.02) and CSS (p=0.02). In the MSS group, 
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stage and grade for DFS, and age, stage and grade for 
CSS, were included in the basic model. Aneuploidy was 
not associated with DFS, but remained significant for CSS 
(p=0.02). 

The significant prognostic value of MSI in the 
DNA-diploid group, and of aneuploidy in the MSS 
group, prompted us to estimate the impact of adding both 
variables simultaneously to the basic model in the whole 
series. As a result, MSI was significantly associated with 
poor DFS (p=0.05), and MSI and aneuploidy with worse 
CSS (p<0.05 and p<0.01, respectively). Thus, patients 
with MSI had an increased risk of recurrence and die by 

disease 2.4 (95% CI, 1.0 to 5.9) and 2.5 times (95% CI, 
1.0-6.2) respectively, compared to MSS-diploid tumors.

The clinical impact of MSI was also assessed 
among the subgroup of patients treated with postoperative 
radiotherapy (RT) (Figure 2, univariate analyses are 
summarized in Supplementary information, Table S3). 
In the whole series of these treated patients, age, stage 
and grade, and in the DNA-diploid group, age and stage, 
were incorporated in the basic model for DFS and CSS. 
According to the multivariate analysis, MSI lacked 
independent value for DFS and CSS in the whole series. 
However, in the group of diploid tumors, MSI predicted 
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Figure 1: Kaplan-Meier curves for a) disease free survival and b) cancer-specific survival of the three categories of tumors 
defined by microsatellite instability and ploidy status in the whole series. Number of patients at risk, i.e. disease-free (a) or 
surviving (b), at time-points 0, 24, 48, 72, 96 and 120 months, are shown below the x-axis of each graph.
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Figure 2: Kaplan-Meier curves for a) disease free survival and b) cancer-specific survival of EC patients with diploid tumors 
(MSS or MSI) who were treated with radiotherapy.
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worse DFS (p=0.02) and CSS (p=0.04) (Table 4). 

DISCUSSION

In EC MSI and aneuploidy appear as mutually 
exclusive genomic alterations with clinical implications, 
although clinical data regarding MMR deficiency remain 
conflicting. In this work we hypothesized whether the 
clinical relevance of MSI in endometrioid EC could be 
clarified by studying this genetic alteration under the 
perspective of three alternative genomic cancer pathways, 
namely, MSI, MSS-diploid, and MSS-aneuploid. The 
clear known differences between endometrioid and non-
endometrioid tumors [2, 3] justify the exclusion of non-
endometrioid tumors from our study, since they can act 
as a confounding factor [26]. Another circumstance that 
added homogeneity to the stratification of our series is 
that all MSI tumors were diploid and had MLH1 promoter 
methylation. This refers to a non-hereditary origin [29], 
especially relevant when studying the relationship between 
MSI and, at least, some demographic variables. 

Patient age, obesity and nulliparity are three known 
EC risk factors. Although previous studies failed to find 
any relation between MSI and age [22, 24], it has been 
shown that women displaying MSI and methylated MLH1 
are significantly older [30, 26]. This agrees with our 
observations and with the fact that MLH1 methylation 
is known to be an age related phenomena [31-33]. 
The inverse relationship between MSI and BMI is in 
accordance to other reports [30]. In CRC the association 
between MSI and nulliparity has also been published 
[32]. Although a connection between estrogen exposure 
and reduced risk of acquiring MMR deficiency has been 
suggested [32, 34], further studies are required to elucidate 
the molecular bases. 

In the whole series, MSI cases associated with 
higher FIGO grade, advanced surgical stage and 
lymphovascular invasion compared to MSS-diploid 
tumors. For each clinical feature, several groups have 
reported similar results, either in EC, without distinction 
of histological types, or in the endometrioid subtype [24, 
26], although discordant findings have also been published 
[22, 24, 30, 26]. In CRC, the association between MSI 
and poor differentiated grade is well established [10]. 
Our data show that MSI might manifest in clones with 
undifferentiated aggressive appearing histology among 
tumors with a background of DNA-diploid content. 
MSS-aneuploid subtype tumors had pathological features 
similar to those of MSI tumors, since they frequently 
presented higher grade, advanced stage and vascular 
involvement. The association of aneuploidy with a more 
aggressive clinical phenotype in EC is well documented 
[4, 27, 28]. According to our data, MSS-diploid tumors 
display a more benign phenotype (differentiated grade, 
early stage and absence of vascular invasion) compared to 
MSI and MSS-aneuploid tumors. 

We found that MSI tumors were more likely to 
present lower ER levels and a trend towards lower PgR, 
which contrast with the fact that endometrioid tumors 
are prototypically associated with estrogen stimulation 
and generally express both receptors [2]. The reason for 
this observation could be the high prevalence of MSI 
in poor differentiated grades, since most high grade EC 
show weak ER and PgR expression [2]. In CRC, either 
arising in Lynch syndrome families or not, significantly 
lower hormone receptor levels have been described in MSI 
tumors [35, 36]. 

Our EC MSI tumors also showed increased S-phase 
compared to MSS-diploid tumors. In this line, cyclin A, 
which is necessary for DNA replication and S-phase entry, 
has also been related to the MSI phenotype and to cell 
proliferation in EC [37, 38]. 

As previously reported [39, 40, 3], our results 
show that MSI was positively related to K-ras and PTEN 
mutations and APC promoter hypermethylation, whereas 
inversely associated with β-catenin mutations. It is well 
known that in CRC the association of MSI with these 
molecular variables is quite different. For example, 
K-ras mutations mainly coexist with MSS tumors, while 
β-catenin mutations and APC promoter methylation are 
characteristic of MSI tumors [6, 41, 42].

The absence of a significant impact of MSI on 
survival was recently reported by Zighelboim et al [26] 
and by others previously in endometrioid EC, and by Basil 
et al [21] and McDonnald et al [22], among others, in EC 
(endometrioid and non-endometrioid). Conversely, several 
groups have referred an association of MSI with better 
[23, 24], or worse [25] outcome in series including only 
endometrioid tumors or both histological types. As for 
the prognostic value of ploidy in EC, latest publications 
suggest that is a statistically independent prognosticator 
of poor outcome through multivariate analysis [4, 27, 28].

Our most relevant finding in the multivariate 
survival analysis was that both MSI and aneuploidy 
remained as significant prognosticators of worse DFS 
and CSS when aneuploidy and MSI where, respectively, 
excluded from the corresponding survival analyses. In the 
whole series, the simultaneous inclusion of both variables 
influenced their respective outcome values, making 
(marginally) significant its relationship with DFS, and 
significant its contribution to CSS. This suggests that when 
analysing the prognostic value of MSI or aneuploidy, 
each variable could act as a confounding factor for the 
other. It is noteworthy that the number of recurrences 
(40%) and death (44%) of patients with MSI EC tumors 
in our series was higher than previously reported by some 
studies [22-24, 26]. In CRC, the interference between 
these variables in clinical outcome has also been proposed, 
and cumulative evidence associates MSI-diploidy with 
good prognosis [16, 17]. The strong local and systemic 
antitumoral immune response observed in MSI CRC 
have been proposed as a possible mechanism to explain 
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the increased survival rates in patients with MSI tumors 
[43]. However, in endometrioid EC, Risinger et al [44] 
reported that significant differences in tumor infiltrating 
lymphocytes derived transcripts, do not occur between 
tumors with and without MSI. Therefore, a relevant task 
for future research will be to elucidate the mechanism 
beneath the different immune response of CRC and 
EC with MSI, and why the influence of MSI-diploidy 
on patient’s survival in EC is just the opposite of that 
observed in CRC.

Finally, we have also observed that among diploid 
tumors, MSI predicts worse DFS and CSS in patients 
treated with postoperative RT. We have previously 
suggested the predictive role of MSI in early staged 
radiation-treated endometrioid EC [45]. There are few 
related studies, mostly in preoperative RT rectal treated 
tumors, and with discordant results [46-48]. As previously 
pointed, the worse response of MSI tumors to RT could 
be related to the suggested increased malignant potential 
of MLH1 null mice after ionizing radiation exposure due 
to the activation of mitotic recombinational events [49]. 

Due to the combination of low incidence of MSI 
and aneuploidy and of recurrences and cancer-specific 
deaths inherent to this non-aggressive endometrial cancer 
type, the present work has limited statistical power. 
Nevertheless, there was sufficient data (at least 5 events 
for each explanatory variable) to get reproducible results 
from multivariate regression analysis. Future work thus 
seems warranted, as it may assist to a better stratification 
of patients for election of modality of treatment. In 
summary, our data show that the three groups described 
here based on MSI status and ploidy might represent 
different molecular pathways of tumorigenesis and 
progression of endometrioid endometrial cancer with 
different prognostic and predictive significance.

MATERIALS AND METHODS

Study Participants and Clinical Data

A series of 167 patients with endometrioid EC 
(surgical stage I-III), was selected from a previously 
described Caucasian population-based series of 204 
patients with EC, diagnosed and treated between 1990 and 
1999 [40]. Exclusion causes from the original EC series 
were: non endometrioid histology, fulfill the Amsterdam 
criteria of HNPCC and lack of fresh tumor sample to 
perform flow cytometry. A single patient with presence of 
MSI and aneuploidy in the same tumor sample was also 
excluded.

Clinico-pathological data of patients were 
prospectively collected and computerized. Surgical 
stage and tumor grade were assigned according to the 
International Federation of Gynecology and Obstetrics 

(FIGO) 1988 criteria. None of the patients received 
preoperative radiation or chemotherapy. All patients 
underwent exploratory laparatomy, total hysterectomy 
and bilateral salpingo-oophorectomy. Lymphadenectomy 
was performed at the discretion of the surgeon. Radiation 
therapy after surgery was administered to most of stage 
II and III patients and to stage I patients with risk factors 
as deep myometrial invasion and high histological grade. 
The treatment consisted of irradiation of either the vaginal 
cuff (45-60 Gy), the whole pelvis (50 Gy), or both. A few 
patients received irradiation in the whole pelvis and in 
the para-aortic nodes (45 Gy). Only 4 patients received 
adjuvant chemotherapy in addition to radiotherapy. Forty 
non-cancerous endometrial samples were used as control 
tissue in methylation analysis. The study was approved 
by the institutional ethical committee and all subjects 
provided informed consent. 

Tissue fractionation, DNA isolation and molecular 
analyses 

Frozen tumor specimens were macroscopically 
dissected to enrich for neoplastic cellularity. The tissue 
was mechanically disrupted and the sub-cellular fractions 
(cytosolic and nuclear) were obtained as previously 
described [50]. DNA was extracted by a standard 
procedure. DNA was also obtained from matching 
peripheral blood leukocytes and from non-tumoral 
endometrial tissues. 

For MSI classification, five quasi monomorphic 
mononucleotide markers BAT25, BAT26, NR21, NR24 
and NR27 were used according to published conditions 
and criteria [51, 45]. Tumors were considered MSI when 
they showed alterations in at least 2 out of five markers. 
Ninety seven percent of MSI tumors (all but one) were 
correctly classified by using only BAT-26 and BAT-
25. Tumors with only one altered marker (n=12) were 
classified as MSS [52].

Promoter methylation analysis of hMLH1 gene 
was performed by methylation-specific PCR (MSP) [53], 
using previously reported primers and conditions [42, 
54]. Methylation of the analyzed MLH1 promoter region 
invariably correlates with absence of gene expression [55].

Ploidy status and S-phase fraction were estimated by 
flow cytometry as previously reported [50]. Tumors with 
a DNA index > 0.9 and < 1.1 were classified as “(quasi)
diploid” and others as aneuploid.

Single strand conformation polymorphism (SSCP) 
and DNA sequencing analyses were applied to search 
for mutations in K-ras (exons 1 and 2), PTEN (exons 1 
to 9 and intronic splice sites) and β-catenin (CTNNB1) 
(exon 3 mutations and intragenic deletions). Analyses of 
PTEN and β-catenin were as described elsewhere [41, 
40]. Primer sequences and conditions for K-ras mutation 
analysis are available upon request. Promoter methylation 
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analysis of APC was performed by methylation-specific 
PCR (MSP) [53], using previously reported primers and 
conditions [42, 54]. Quantification of estrogen (ER) and 
progesterone (PR) receptors was done using the labeled 
hormone exchange method as described [50].

Follow-up

All patients were routinely followed at 3-month 
intervals the first 2 years, 6 months until the fifth year, 
and every year thereafter. Three patients lost in less than 6 
months after surgery were excluded. Disease-free survival 
(DFS) was defined as the time from surgery to recurrence 
for patients with a disease-free interval after surgery, and 
cancer-specific survival (CSS) as the time from surgery 
to cancer-related death. Patients with persistent disease 
after surgery (n=9) were excluded from DFS analysis. 
Patients that died by causes other than disease (n=10) were 
censored at the date of death. The median follow-up was 
112 months (range 6-227 months) for all patients and 132 
months (range 16-227 months) for patients that did not 
die by disease.

Statistical analyses

The relationship among categories established 
by MSI and ploidy status and categorical variables 
was analyzed by Chi-square test. ANOVA was used for 
variables with a Gaussian distribution, and Kruskal-
Wallis test for variables with a non-normal distribution. 
Binary logistic regression analysis was employed to test 
the independent contribution of demographic variables 
to MSI development. Survival curves were prepared 
according to Kaplan-Meier method and compared by 
the log–rank test. Univariate and multivariate survival 
analysis was carried out using the Cox proportional hazard 
model. Demographic and surgicopathological (including 
treatment) variables were entered to discern their 
independent contribution to the basic regression model 
for the multivariate survival analyses. A forward stepwise 
method was used to test the influence of explanatory 
variables (with a p-value < 0.1 in the univariate analysis) 
in the multivariate regression studies. The analysis of 
independence was performed by likelihood ratio tests. All 
analyses were two sided, and statistical significance was 
set at a p-value < 0.05. Analyses were carried out using the 
PASW (version 18.0) statistical package (SPSS, Chicago, 
IL). 
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