
Oncotarget90730www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 53), pp: 90730-90747

Host cell transcriptome modification upon exogenous HPV16 L2 
protein expression

Xinwei An1, Yuhan Hao2,3 and Patricio I. Meneses1

1 Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
2 Department of Pathology, New York University School of Medicine, New York, New York, United States of America
3 Applied Bioinformatics Laboratories, New York University School of Medicine, New York, New York, United Sates of America

Correspondence to: Patricio I. Meneses, email: pmeneses@fordham.edu
Keywords: HPV16 L2, transcriptome modification, RNA sequencing, cell cycle, Rb & Cdc2, Pathology Section
Received: August 31, 2017 Accepted: September 15, 2017 Published: October 12, 2017

Copyright: An et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Human papillomavirus type 16 minor capsid protein L2 has been shown to assist 

in the initial entry and intracellular trafficking events leading to nuclear translocation 
of the viral genome. During our investigations of L2 function, we observed that 
expression of L2 in a keratinocyte cell line (HaCaT) resulted in phenotypic changes. 
In this manuscript, we present data that expression of the L2 protein in this cellular 
model system HaCaTs resulted in a shift from G0/G1 phase to mitotic S phase, as 
well as a reduced amount of retinoblastoma protein (Rb) and an increase in Cdc2 
phosphorylation. We performed genome-wide host cell mRNA sequencing and 
identified 2586 differentially expressed genes upon HPV16 L2 expression. Via machine 
learning and protein network analysis, genes involved in cellular differentiation and 
proliferation were highlighted as impacted by L2. Our results have implications 
for the role of L2 at the viral production stages when the virus needs to prevent 
cellular differentiation while maintaining the cells ability to replicate DNA. Our study 
suggests a potential novel function of the L2 protein, as a regulator of cellular gene 
transcription.

INTRODUCTION

Human papillomaviruses (HPVs) are small, non-
enveloped DNA viruses. They infect and replicate in 
cutaneous and mucosal epithelia [1]. In epithelial tissue, 
as the basal layer cells migrate to the parabasal layers, 
cells begin to differentiate and exit the cell cycle. This 
migration leads to a loss of internal membranes, including 
the nucleus, and a stoppage of DNA replication [2]. HPVs 
depend on the cellular replication machinery to achieve 
their genome amplification, and thus during infection, viral 
proteins E6 and E7 interact with cellular proteins stimulate 
and maintain the progression of cell cycle [3]. In these 
cells the viral genomes are maintained at a low level (50-
100 copies per cell) in part to the expression of viral early 
proteins (E1, E2, in addition to E6 and E7) [4, 5]. There 
is no viral production in the basal cells, and the ability 
to replicate DNA in the upper layers of keratinocytes is 
crucial for amplification of viral DNA and production of 
viral particles. Prior to or in conjunction with the increase 

in viral DNA replication in the upper layer, HPV capsid 
proteins L1 and L2 are expressed. The expression of L1 
and L2 are crucial for the completion of viral production 
as they are necessary to form the capsid, which packages 
the viral genome. 

The minor capsid protein L2 of human 
papillomavirus type 16 (HPV16) is a critical structural 
component of the viral particle and is known to be 
necessary to establish HPV infection [6-8]. After initial 
binding to receptors, located in extracellular matrix (ECM) 
or on host cell surface, viral particles go through several 
conformational changes that expose a buried L2 furin 
cleavage site [9-14]. Upon furin cleavage, viral particles 
bind to secondary receptors or a receptor complex that 
stimulate virion internalization. After entry into host cell 
is accomplished, a series of vesicle trafficking steps serve 
as a route for the viral genome to reach the nucleus. Viral 
genome nuclear import is partly mediated by L2 (and 
perhaps L1). In addition to L2’s function in viral entry and 
trafficking, L2 has also been demonstrated to be involved 
in regulating the immune escape [15]. 
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In an attempt to make a stable L2 cell line for 
viral production in both 293TT and HaCaT cells, we 
observed changes in morphology in both cell lines. 
Thus our attention was diverted towards a potential role 
of L2 in a cell’s biology. Based on this observation and 
the knowledge that L2 is expressed at a time when viral 
life cycle needs to have a dividing cell, we hypothesize 
that L2 is able to alter cellular transcription to favor viral 
production. In this manuscript we pursued two lines of 
research: (1) studies of cell cycle phases distribution 
and status of key regulators of cell proliferation: cyclin-
dependent kinase 1 (Cdk1, also called Cdc2), and tumor 
suppressor retinoblastoma protein (Rb); and (2) performed 
a genome-wide host cell transcriptome analysis using 
mRNA sequencing (mRNA-seq). Our results indicate 
changes in Cdc2 and Rb expression and phosphorylation, 
and a significant shift of L2-expressing cells toward 
mitotic S phase. Gene set enrichment analysis identified 
significantly modified gene sets that are related to cell 
proliferation and differentiation. We hypothesize that these 
changes may have a crucial role in the amplification of 
viral genome and viral particle production. 

RESULTS

HPV16 L2 expression drove HaCaTs to S phase 
and affected Rb and Cdc2 expression and 
phosphorylation

HaCaT cells were transfected with HPV16 L2 
(16L2) expressing plasmid p16L2h or empty control 
vector pA3M and cells were harvested for flow cytometry 
analysis of cell cycle and Western Blotting analysis of Rb, 
Cdc2, L2, and β-Αctin levels. Cell population at different 
phases of cell cycle was determined by staining and 
measuring DNA content using propidium iodide (PI) flow 
cytometry. A statistically significant decrease of 10% of 
cells in G1 phase was observed at 18h after transfection 
when comparing p16L2h vs. pA3M transfected cells 
(Figure 1A and 1B). The population of cells in S phase 
showed a significant increase in the L2 transfected 
samples. 

When comparing cell numbers after transfection, 
total cell counts dropped after L2 expression (Table 1, 
total number of cells). The bar graph in Figure 1B shows 
the average number of population of each phase from three 
experimental repeats. In summary, these data indicated 
that 16L2 led to a switch of cell cycle with more cells into 
S phase.

Having observed changes in cell cycle phase 
distribution, especially the increase of population in S 
phase, we looked for changes in expression of two cell 
cycle regulatory genes, Cdc2 and Rb. Cdc2/Cyclin-B 
complex plays a crucial role in regulating entry into 

mitosis and is related to cancer development [16]. 
Inactivation of the complex by either phosphorylation of 
Cdc2 protein or low level of Cyclin B can lead to cell 
cycle G2-phase arrest. Rb is a tumor suppressor that 
plays a negative regulatory role in cell cycle progression 
and differentiation [17]. It has been proven that Rb is 
responsible for mitotic cells passing the restriction point 
and completing the G1/S transition [18]. 

L2 and A3M transfections were harvested at 18 
hours for total protein or RNA. By Western Blotting, we 
observed a 22% decrease of Rb total protein level after 
p16L2h transfection (Figure 1C) and a lower amount 
of Rb mRNAs after 18 hours as measured by real-time 
RT-PCR (Figure 1D, larger Ct number). In the same 
experiments, Cdc2 protein level showed an increase 
(Figure 1C), although a decline in mRNA level (Figure 
1D). Because phosphorylation of Rb and Cdc2 are directly 
related to their functional activity, Western Blotting 
for phosphorylated Rb and Cdc2 (pRb and pCdc2) was 
performed. The ratio of phosphorylated to total Rb was 
not changed, whereas the percentage of phosphorylated 
Cdc2 increased (pRb/Rb=1.00, pCdc2/Cdc2=1.11; Figure 
1C). These results suggest that the increase of total Cdc2 
and pCdc2 may contribute to the increase of cells in G2/M 
phase, and that the decrease of Rb protein abundance 
might contribute to the increase in S phase population by 
having more free E2F transcription factor [19]. 

Transcriptome analysis revealed 2586 
differentially expressed genes upon L2 expression

In order to explore if genome-wide transcription 
changes occur after L2 expression, host cell mRNA 
sequencing was performed. A schematic workflow of 
the RNA-seq strategy is shown in Figure 2A (described 
in Materials and Methods). In our RNA-seq screen we 
had five experimental conditions on HaCaTs (Figure 2B): 
untreated cells, or cells transfected with empty vector 
pA3M, eGFP ORF expressing control plasmid p8fwb, 
HPV16 L1 ORF expressing plasmid p16L1h, or p16L2h. 
Cells were transfected in 6-well plates, and total RNAs 
were collected at 18h post-transfection. RNA sample 
quality was assessed before preparing mRNA library. 
Using poly(A) tail as bait, mRNAs were purified and used 
for next generation sequencing (NGS) library preparation. 
Two rapid single-read 50 Illumina HiSeq sequencing 
runs were performed, raw reads from separate lanes of 
the same sample were merged, aligned, and mapped to 
human genome. Normalized gene expression counts of 
each RNA-seq sample and sample alignment statistics can 
be found in Supplementary Table 1. 

We first used Differential Gene Expression (DGE) 
analysis to reveal genes that were up- or down- regulated 
in their mRNA levels (Differentially Expressed Genes, or 
DEGs). An adjusted p-value<0.001 was used as the cut-
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off for the statistic significance. To visualize RNA-seq 
variations and transcript expression patterns in different 
groups, we made use of both heatmap and the principal 
component analysis (PCA). By default, the two dimensions 
that explain most variation in the data set were chosen as 

x-axis and y-axis. For our data set, the first two principal 
components explained a total of 81% (54%+27%, shown 
in Figure 2C) of the variation. This is to say that the most 
differences across groups observed in our dataset can be 
explained and represented by PCA results. As a standard 

Figure 1: HPV16 L2 expression drives HaCaTs to S phase and affects Rb and Cdc2 expression and phosphorylation. 
Cells were transfected with 500ng p16L2h or empty vector pA3M. 18h after transfection, cells were collected and stained with Propidium 
Iodide (PI). DNA contents were measured with Accuri® C6 flow cytometer. A. Representative results of DNA content detection after empty 
vector pA3M or p16L2h plasmid transfection. B. Average percentage of the cell population in each cell cycle phase. Data are represented 
as mean±STD from four independent experiments. Significances of difference were analyzed with student’s t-test. *: G1: p = 0.0189; S: p = 
0.0268. C. Representative Western Blotting of 500ng plasmid transfection. Average relative fold numbers shown above. Experiments were 
repeated three times. pRb and pCdc2 indicate phosphorylated Rb and Cdc2, respectively. Protein levels were first normalized to internal 
control Actin and then calculated as the fold number of pA3M transfected ones. D. Two-step real-time RT-PCR of Rb and Cdc2 mRNA 
levels. Depicted are Ct (Cycle number of threshold) values. Results were compared to the empty vector pA3M transfected group. Data are 
represented as mean±STD from three independent experiments. Black bars: pA3M transfected cells; gray bars: p16L2h transfected cells. 
*: p = 0.012; student’s t-test.
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analysis means to visualize high dimensional data, PCA 
showed the comparison results among all five groups and 
exhibited the differences across groups with their loci in 
the grids. In Figure 2C, each replicate from the various 
conditions is represented by a colored dot. Three dots 
in the same color represent replicates of the same group 
and indicate three individual transfections and sample 
collections. The triplicates from each group all mapped 
to the same location in the grids; thus reproducibility of 
each condition was demonstrated. The process of DNA 
transfection discriminated between transfected cells and 
untreated cells. Expression of foreign protein differed 

groups 8fwb, 16L1h, and 16L2h from group A3M (the 
DNA control, no-detectable exogenous protein). In total, 
PCA results visualized the differences among groups by 
showing their loci in the grids and explained 81% of the 
variation observed in our dataset.

With the confirmation that different experimental 
groups would show different loci in the PCA grids, it is 
interesting to see that the samples expressing eGFP or 
HPV16 L1 (8fwb and 16L1h group, respectively) clustered 
together. This is in contrast to the samples that expressed 
L2 protein. 16L2h samples clustered far separately from 
other groups. This suggested that the expression of 

Table 1: Comparison of cell counts among transfection conditions in DNA content detection. 
Total G1 S G2/M

pA3M 55920 35425
(63.5%)

7644
(13.95%)

12624
(22.3%)

p16L2h 30048 17024
(56.23%)

5668
(18.75%)

7418
(25.1%)

p-value 0.00103 0.000536 0.037238 0.02458

Table 2: Top IPA results for the 471 differential expressed genes (DEGs) identified from the 16L2h:8fwb contrast.
Top Canonical Pathways p-value Overlap*

Role of Macrophages, Fibroblasts and Endothelial 
Cells in Rheumatoid Arthritis 3.26E-14 11.3%, 34/300

HMGB1 Signaling 3.15E-11 15.3%, 20/131
Hepatic Cholestasis 8.73E-10 12.7%, 20/157
Role of Osteoblasts, Osteoclasts and chondrocytes in 
Rheumatoid Arthritis 8.80E-10 10.6%, 24/227

Hepatic Fibrosis / Hepatic Stellate Cell Activation 1.87E-09 11.6%, 21/181
Top Upstream Regulators p-value of overlap Predicted Activation

TNF 4.29E-20 Activated
IL1A 8.23E-14 Activated
RELA 1.73E-12 Activated
Jnk (MAPK8) 1.60E-10 Activated

Top Diseases and Disorders p-value range # Molecules
Cancer 9.76E-04 - 4.36E-13 428
Organismal Injury and Abnormalities 9.78E-04 - 4.36E-13 434
Dermatological Diseases and Conditions 5.80E-04 - 1.95E-12 267
Reproductive System Disease 9.69E-04 - 1.55E-10 262
Inflammatory Disease 9.31E-04 - 1.09E-09 105

Top Molecular and Cellular Functions p-value range # Molecules
Cell-To-Cell Signaling and Interaction 9.76E-04 - 1.83E-12 89
Cellular Development 9.76E-04 - 4.45E-12 134
Cellular Movement 8.70E-04 - 1.26E-11 96
Cellular Growth and Proliferation 9.76E-04 - 3.74E-11 148
Lipid Metabolism 8.38E-04 - 1.53E-08 50

*Overlap: genes shared between 471 DEGs and genes in a canonical pathway
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proteins L1 and eGFP had similar effect to each other, 
and distinct from 16L2h or untreated or A3M samples. 
To confirm the expression of the experimental ORFs in 
the samples, PCA result was then assessed by pseudo-
genome mapping, which used eGFP, L1h, and L2h gene 
coding sequences as a reference pseudo-genome for reads 
alignment (Supplementary Figure 1). As designed, L2 
expression was detected only in the group transfected with 
p16L2h. This analysis supported that in each transfection 
group, expression of plasmid-based exogenous gene 
occurred (Supplementary Figure 1, A, B, and C). Having 
the reliability of our assay proven, the PCA results of the 
similarity between 8fwb group and 16L1h group strongly 
suggested that regarding gene transcription profile, 16L1 
protein had no different effect as eGFP. This novel finding 
suggests that L1 has no observable effect on target cell’s 
transcription profile and thus no effect on cellular protein 
networks. 

A heatmap was used to visualize the top 1000 
most abundant transcripts (counts per million) across all 
samples (Figure 2D). Using read counts rather than DEGs 
in a heatmap gave us an unbiased perspective by looking 
at how much transfected cells tend to vary across samples. 
In Figure 2D, repeats within each group showed similar 
color pattern across genes, which were clustered on the 
left side of the heatmap, as well as apparent differences 
between groups. For instance, if three repeats of p16L2h 
transfection showed strong similarity for a certain gene, 
same or similar color would be found for the same gene 
(same row) in all 16L2h repeats (three lanes), whereas a 
gene might have different color in the lane of L2h.1 versus 
the lane of 8fwb.1.

PCA results demonstrated that changes in 8fwb 
group were similar with 16L1h group, whereas 16L2h 
group showed large difference from these two groups as 
well as untransfected cells or control DNA transfection 
samples (A3M group). The same trend was observed in 
the heatmap. These two analyses suggested that 16L2 
protein played a role that cannot be fulfilled by any foreign 
protein since eGFP and 16L1 certainly did not shed the 
same influence as L2 on the cellular transcriptome, nor 
due solely to the introduction of plasmid DNA. 

GFP has been used in this and many experiments 
as a control protein, i.e., without biological effect. Our 
data suggest that introduction of eGFP does result in 
changes of gene expression when compared to vector 

transfection (A3M) but equal to HPV16 L1 protein that 
has also not been implicated as having a biological effect 
on cellular transcription. We thus compared p16L1h and 
p16L2h transfected cells with p8fwb transfected group 
(16L1h:8fwb contrast, or 16L2h:8fwb contrast), and the 
lists of significantly regulated genes and their Differential 
Gene Expression (DGE) analysis statistics can be found 
in Supplementary Table 2. We show the varying genes in 
analyses using Venn Diagrams (Figure 2E and 2F). 

In Figure 2E, the pink circular area represents genes 
that had more transcripts in p16L2h transfected cells as 
compared to 8fwb transfections. Green area shows up-
regulated genes in p16L2h-transfected cells, comparing 
to untreated HaCaTs. Blue area indicates up-regulated 
genes in 8fwb plasmid transfected cells, as compared 
to control HaCaT cells. In Figure 2E, genes that were 
in the pink circle but not in the blue circle (958+195, 
in the area enclosed by red arcs) were genes whose up-
regulation was caused by p16L2h but not p8fwb, i.e. by 
16L2 protein but not eGFP. Genes in 16L2h group that 
showed variance on their mRNA level when compared 
to the 8fwb group (16L2h_8fwb comparison) but not any 
differential expression in the 8fwb_untreated comparison 
were selected as uniquely regulated genes. Unique genes 
were listed in Supplementary Table 3. Down-regulated 
genes were shown in Figure 2F. 

Our transcriptome analysis identified 1153 genes 
positively regulated and 1433 genes negatively regulated 
at their mRNA levels in L2 expression samples. We also 
did the same analysis for 16L1h group, and one gene, 
rpl12, was identified as the unique gene. Rpl12 was 
negatively regulated in the L1 expression examples, 
while no positively regulated gene was detected. Rpl12 
gene encodes the ribosomal protein L12, a component 
of ribosome 60S subunit. We did not observed any 
morphological changes in our cultures expressing L1 or 
eGFP. Hence, we theorize they have no or limited effect 
on cell biology, i.e., irrelevant to cell function. 

To probe more deeply to the influences that 16L2 
can shed on HaCaTs transcriptome, using more restricted 
cut-off settings, we narrowed the differentially expressed 
genes (DEGs) to 471 (p-value < 0.001 and |logFC| > 1). 
Statistics of all results from the DGE analysis of duplicates 
of RNA-seq data were used. Particularly, p-value and 
logFC of each DEG were transformed and then exhibited 
in the volcano plot (Figure 2G). Blue and red dots indicate 

Figure 2: Expression of HPV16 L2 leads to up-regulation of 299 genes and down-regulation of 172 genes. HaCaT cells 
were transfected with 500ng p16L2h plasmid, and total RNAs were collected 18h after transfection. pA3M, p8fwb, p16L1h transfection, 
as well as untreated HaCaT cell RNAs, were used as the control. A. Schematic workflow of RNA-seq and sample preparation. B. A table 
of plasmids used in transfections for RNA-seq sample preparation. C. Principle Component Analysis (PCA) result with replicates from 
each group. D. Heatmap of top1000 most abundant variant transcripts among each replicates. E. and F. Venn diagram showing significantly 
regulated genes in different comparison conditions. Area enclosed by red lines indicates uniquely affected genes. E: Positively regulated 
genes in p16L2h transfection; F: Negatively regulated genes in p16L2h transfection; G: Volcano plot of differentially expressed genes 
(DEGs) in 16L2h:8fwb contrast. Vertical lines denote fold changes greater than ± 2-fold. Horizontal line denotes p-value > 0.001. Blue dots 
indicate genes down-regulated in p16L2h transfected group, and red dots indicate genes up-regulated.



Oncotarget90736www.impactjournals.com/oncotarget

DEGs that were ±2-fold differentially expressed between 
L2 and eGFP expressing HaCaTs (299 up-regulated genes, 
shown as red dots in Figure 2G; and 172 down-regulated 
genes, shown as blue dots in Figure 2G). The total number 
of blue and red dots was 471.

Confirmation of transcriptome findings

To confirm our findings in RNA-seq, we picked 
out five genes that play important regulatory roles in 
cell growth, mitosis, and cell proliferation to conduct 
both real-time RT-PCR and Western Blotting. HaCaTs 
were transfected with either p8fwb or p16L2h plasmid 
DNA, and cells were harvested for RNA or total protein 
preparation. Then the mRNA level and protein level of 
Cdk6, TGFβ2, MAPK1, FAK, and Pyk2 were analyzed. 
Levels of both mRNA and protein of these genes are 
shown in Supplementary Figure 2. The validation 
confirmed our RNA-seq results. 

Identification of genes and gene sets modified by 
L2 expression

DGE analysis revealed 2586 significant genes, and 
with the more restricted cut-off, we narrowed the dataset 
down to 471 genes. Using these 471 genes, we performed 
computational and statistical analysis in two separated 
tracks: 

1) The first track of analysis included GSEA + LEA 
and IPA. GSEA and LEA together identified individual 

genes affected by L2 expression and participated in the 
regulation and control of cell proliferation and apoptosis. 
IPA from a pathway analysis angle provided evidence 
of biological processes that participate in the regulation 
of cell proliferation and apoptosis were altered upon L2 
expression. 

2) The second track of analysis included Machine 
Learning and PANTHER analysis. Using Support 
Vector Machine (SVM) and Random Forest (RF) for 
the classification between 8fwb and 16L2h, we further 
selected 50 genes that were most affected by L2 expression 
and investigated whether they are functionally related 
using PANTHER. Our results showed strong support to 
our hypothesis that it is because pathways and biological 
processes are altered by L2, that the occurrence of shift of 
cells from G0/G1 phase to S phase, as well as the change 
of total cell number.

1) Gene Set Enrichment Analysis (GSEA) and 
Leading edge analysis (LEA) identified cell 
proliferation and apoptosis regulatory gene sets 
altered by 16L2 expression

To gain a deeper understanding of cellular 
transcriptome changes upon 16L2 expression, Gene Set 
Enrichment Analysis (GSEA) was performed. GSEA 
software [20, 21] and molecular signatures database 
(MSigDB) were used for this analysis to determine prior-
defined sets of genes that showed statistically significant, 
concordant differences between L2h group and 8fwb 
group. Our analysis detected 102 positively regulated and 

Table 3: PANTHER identified genes altered by L2.
GOs Mapped Gene IDs

Biological Regulation 
(GO:0065007) NGFR, SERPINB3, RAB26

Cellular Component Organization 
or Biogenesis (GO:0071840) NGFR, SPTA1, RAB26, ACTBL2, SNX10

Cellular Process (GO:0009987) ACTBL2, SIRPB2, TTC9, SNX10, LCN2, KLHDC7B, LGALSL, SSC4D, CLR1, 
ABCA5, ABCA4, NGFR, FA2H, NEURL3, SPTA1, LCE5A, PTPLAD2, SIRPB2, 
ARL14, RAB26, FGF13, S100A7, CAMK4

Developmental Process 
(GO:0032502) ZNF608, NGFR, NEURL3, LCE5A, FGF13, CD274

Immune System Process 
(GO:0002376) OLR1, NGFR, HSPB3, S100A7, C3

Localization (GO:0051179) SSC4D, ABCA5, ABCA4, ARL14, RAB26, SLC7A11, ACTBL2, LCN2, PARD6B, 
SNX10

Locomotion (GO:0040011) NGFR, SEMA4A

Metabolic Process (GO:0008152) SSC4D, APOLD1, DHRS9, ABCA5, FA2H, HSPB3, ABCA4, LCE5A, S100A7, 
CAMK4, PTPRG, ZFP57, TTC9, LCN2, KLHDC7B, C3

Multicellular Organismal Process 
(GO:0032501) NGFR, LCE5A, RAB26

Reproduction (GO:0000003) NEURL3
Response to Stimulus 
(GO:0050896) NGFR, SEMA4A, HSPB3, CAMK4
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246 negatively regulated gene sets using a 16L2h:8fwb 
comparison. These gene sets and their GSEA statistics are 
provided in Supplementary Tables 4 and 5. Normalized 
p-value and false discovery rate (FDR) q-value were used 
to determine gene sets’ statistical significance (p<0.05, 
and q<0.1, respectively). Hyperlinks to MSigDB are also 
provided in Supplementary Tables 4 and 5 for detailed 
information of identified gene sets. 

To pursue the question the effect L2 expression may 
have on regulation of cell proliferation, and to understand 

the drop of cell counts in DNA content detection, we 
looked for enriched gene sets that participate in cell cycle/
cell proliferation regulation and programmed cell death. 
Our analysis demonstrated that the MSigDB prior-defined 
gene set Positive_Regulation_of_Cell_Proliferation met 
the strict criteria of both p-value and q-value and was 
identified as significantly altered by 16L2 expression. 
Three gene sets, Apoptosis_GO, Regulation_of_
Apoptosis, and Regulation_of_Programmed_Cell_Death, 
with genes participate in apoptosis or programmed cell 

Figure 3: Cell proliferation and apoptosis related gene sets response to 16L2 expression. Enrichment plots for four selected 
gene sets are shown as above. Gene sets are selected based on their biological functions, GSEA p-values, and FDR q-values (p < 0.05, 
and FDR<0.1). Green line indicates accumulative enrichment score; black lines show ranking location of genes with gene set; gray color 
visualizes ranking metric scores; red and blue gradient colors suggest a positive or a negative regulation, respectively; and hits on the left 
side of orange dash lines are considered within leading edge subset (labeled LEA).
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death satisfied the selection criteria. In the enrichment 
plots of these four gene sets, red and blue gradient colors 
were used to represent up- or down-regulated genes, 
respectively (Figure 3). Accumulative enrichment scores, 
which reflected the degree to which a gene set was 
overrepresented at the top or bottom of a ranked list of 
genes, were indicated by a green line. The score furthest 
from 0.0 on green line was the enrichment score (ES) for 
the gene set. Vertical black lines in the middle portion of 
plots showed where the members of the gene set appear 
in the ranked list of genes. An orange dash line in each 
plot was used to locate genes considered within leading 
edge subset (for gene sets having positive ES, prior to 
orange dash line), which was a subset of gene in the set 
that contributed the most to ES of the set. All four gene 
sets showed positive accumulative ES. Genes identified 
in the leading edge of these four gene sets were shown in 
Figure 4A and 4B. These results further highlighted that 
16L2 expression up-regulated the positive regulation of 
cell proliferation. This finding also strongly indicated that 
L2 expression altered the host cell apoptosis status, and 
influenced progression into the cell cycle towards mitosis.

To compare the members of the three gene sets 
that were related to apoptosis regulation, a leading edge 
analysis (LEA) was done and clustered genes in leading 
edge subsets are shown in a heatmap (Figure 4B). Colors 
represented expression values of each gene, while the 
range of colors showed the range of expression values. 
The columns in Figure 4B were the selected gene sets. 
The overlap between the leading edge subsets can be 
easily recognized as genes across columns colored 
similarly. As shown in Figure 4B, a majority of these 
genes had overlapping expression modification and with 
similar range, indicating that apoptosis and its regulation 
was a pathway that was strongly affected by HPV16 L2. 
Genes that overlapped through gene sets and were greatly 
changed on its regulation may be the most promising 
candidates for future mechanism studies. Given that 
only one gene set that was related to cell proliferation 
regulation was selected by GSEA, LEA was not applied 
to it. Detailed GSEA statistics of members of this gene set 
were provided in Figure 4A.

IPA revealed pathways and up stream regulators that 
are involved in regulation of cell proliferation affected 
by L2 expression

To address the question as to what pathways 
related to cell proliferation were potentially affected by 
the expression of 16L2, we utilized the core analysis of 
Ingenuity Pathway Analysis (IPA, Ingenuity Systems, 
http://www.ingenuity.com/) on our data. The top 
IPA results based on p-values for the 471 DEGs are 
summarized in Table 2. All top IPA results, including 
the top pathways enriched in those DEGs, top activated 
regulators inferred from those DEGs, top diseases, 
and top molecular and cellular functions revealed the 
involvement of those DEGs were related to cellular 
function in cell growth, proliferation, and cancer biology. 
HMGB1 (high mobility group box 1) signaling pathway 
was highlighted by IPA, and 15.3% genes function in this 
pathway overlapped with our 471 DEGs (20 out of 131, 
Table 2). This pathway plays important regulatory roles 
in several cellular processes, including cell differentiation, 
tumor cell migration [22-24]. Moreover, the upstream 
regulators predicted by IPA as activated all participated 
in the regulation of cell proliferation or apoptosis. These 
include cytokines tumor necrosis factor (TNF) and 
interleukin 1-alpha (IL1A) which both are involved in 
the regulation of a wide spectrum of biological processes. 
Through the interaction with its receptors, TNF regulates 
cell proliferation, differentiation, apoptosis, etc. Active 
IL1A can be released by its proteolytic process in response 
to cell injury, and thus induces apoptosis. Also included, 
RELA (RELA Proto-Oncogene, NF-κB Subunit. Also 
known as p65; NFκB3) directly bind with free NFκB 
upon the degradation of inhibitor of NFκB and forms 
the active complex for NFκB to fulfill its function as a 
ubiquitous transcription factor; protein encoded by Jnk 
gene is a member of MAP kinase family. MAPKs act 
as an integration point for multiple biochemical signals 
that are also involved in proliferation, differentiation, and 
transcription regulation [25].

Table 4: PANTHER results sub-categories.
GOs Mapped Gene IDs

Cellular Process 
(GO:0009987)

Cell Communication (GO:0007154) NGFR, PTPLAD2, RAB26, FGF13, CAMK4, 
PARD6B

Cell Cycle (GO:0007049) FGF13, S100A7, ACTBL2, PARD6B
Cell Proliferation (GO:0008283) NGFR
Cellular Component Movement (GO:0006928) NGFR
Cytokinesis (GO:0000910) ACTBL2

Immune System Process 
(GO:0002376)

Immune Response (GO:0006955) OLR1, NGFR, C3

Macrophage Activation (GO:0042116) S100A7
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2) Selection of genes using Machine Learning and 
their functional clustering with PANTHER

We have shown that in HaCaTs, 2586 genes 
expression profile has been significantly affected by 
the 16L2 expression, and 471 genes among them were 
selected by computational analysis as more convincing 
candidates, for a higher level of changes of the mRNA 

abundance (|logFC|>1). Gene set enrichment analysis, as 
well as protein functional and clustering analysis, led our 
attention to those participate in cell cycle progression and 
regulation. These gene sets and protein clusters revealed 
pathways and regulators that play important roles in 
the control of cell grow and dividing were affected by 
the expression of 16L2. These findings also provide 
strong supports to our hypothesis that the changes in 

Figure 4: Leading Edge Analysis (LEA) reveals core genes that account for the gene set’s enrichment signal, as well 
as genes that are overlapped among gene sets. A. Table of detailed GSEA results of enriched gene set “Positive Regulation of 
Cell Proliferation”. ES: Enrichment Score. B. Heatmap of clustered genes in the leading edge subsets of gene sets related to apoptosis and 
programmed cell death. Red and blue colors indicate positively and negatively regulated transcripts, respectively, upon HPV16 L2 protein 
expression. Darker the color, greater the fold difference. Rows are genes in leading edge subsets; columns are gene sets, which are labeled 
as 1 to 3. C. Table of explanations for Arabic numbers used in B.
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cell morphology we observed were a direct result of L2 
expression.

To validate our findings of genes and pathways 
that directly participate in or strongly related to cell cycle 
progression or regulation that were affected by 16L2 
on their mRNA expression, we conducted two machine 
learning feature selection models: Support Vector Machine 
(SVM) and Random Forest (RF, details in Materials and 
Methods). The 471 DEGs selected from the 16L2h:8fwb 
comparison were analyzed. The feature selection model 
assigns each gene an importance ranking which is 
calculated based on optimization of classification accuracy. 
To avoid over-fitting issues and model bias, two different 
models SVM and RF were applied, and then we combined 
both importance rankings together to obtain the merged 
gene ranking list (Supplementary Table 6, top 50 genes 
with ranking scores). The gene with a higher ranking is 
deemed to be more important for the classification of L2h 

and 8fwb. The results indicate that two gene ranking lists 
do not correlate with each other due to a small number 
of samples and different feature selection mechanisms. 
However, the gene with a higher ranking in the merged 
gene ranking list represents its high relevance in both 
models, so false positive of relevant genes is limited. We 
then focused on protein function of top 50 genes from the 
merged gene ranking list.

To gain a further understanding of the top 50 
relevant genes, we focused on their biological functional 
interpretation. Interesting information was gathered about 
different biological processes and pathways that could 
be affected by 16L2 expression. Top 50 relevant genes 
were analyzed in PANTHER (Protein ANalysis THrough 
Evolutionary Relationships, http://pantherdb.org) [26], 
11 categories of in total 84 biological processes affected 
upon 16L2 expression were uncovered by PANTHER. 
Genes in our dataset that were identified by PANTHER 

Figure 5: Using top 50 genes selected by Machine Learning, PANTHER identified GOs of cell cycle and cell proliferation 
affected by L2 expression. Top 50 genes of combined SVM and RF scores were used as input for PANTHER. Biological processes 
were analyzed. A. All affected GOs. Numbers in each scallop indicate the number of genes identified in the 50 genes list that are classified 
as members of the corresponding GO. Explored scallops representing cellular process and immune system process were further illustrated 
in B. and C. B: GOs categorized as part of the cellular process. C: GOs categorized as part of the immune system process.
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as hits in GOs were listed in Tables 3 and 4. As shown 
in both Figure 5 and Table 4, within the largest GOs hit 
by PANTHER, cell cycle and cell proliferation were 
highlighted, and five genes were identified as contributors 
for the changes in these GOs. In Figure 5, we highlighted 
the sub-categorical processes within Cellular Process 
(GO:0009987) in panel B. As listed in Table 4, five 
genes were related to cell cycle (GO: 0007049) and cell 
proliferation (GO: 00082083), FGF13, S100A7, ACTBL2, 
PARD6B, and NGFR. See also Supplementary Table 6 for 
the list of all 50 genes used here. 

We also listed genes related to immune response in 
both Figure 5C and Table 4. Four genes characterized in 
Immune System Process (GO:0002376) as PANTHER hits 
were OLR1, NGFR, C3, and S100A7. In fact, five more 
genes, CAMK4, LCN2, SEMA4A, CD274, and SIRPB2, 
in our list of 50 genes used in PANTHER analysis also 
participate in immunity and inflammation. 

DISCUSSION

In nature, papillomaviruses (PVs) take advantage 
of cellular machinery and pathways to accomplish viral 
production and the release of mature virions. The biology 
is such that PVs require a dividing non-differentiated cell 
for genome amplification. This requirement is a result of 
lack of DNA replication machinery in the viral genome, 
thus the dependency on cellular factors. The importance 
of L2 in various events of HPV 16 has been described. 
In order to expand on the quest to identify roles of L2, 
we attempted to generate HaCaTs expressing L2 protein. 
Although L2 could be expressed in HaCaTs, the cells 
appeared to change in phenotype or enter apoptosis. 
Here, by transfecting HPV16 L2 gene into HaCaTs, we 
demonstrated a shift of cell cycle phase distribution and 
detected the expression profile of key regulators of cell 
proliferation. We report that using RNA-seq technology 
we identified 2586 human genes differentially expressed 
upon expression of L2 protein. This is the first time that 
RNA-seq is incorporated in the study of effects of L2 on 
a human cell line.

As the regulator of G2-M transition of mitosis, 
Cdc2/Cyclin-B complex has been reported to be sufficient 
for mammalian cell to go through cell cycle for its 
compensation function of all three G1 Cdks (Cdk2, 4, 
and 6) [27]. Furthermore, it has been observed that Cdc2 
participates in p53-independent abrogation of postmitotic 
checkpoint (also known as spindle checkpoint) induced 
by HPV16 oncoprotein E6 [28]. In early G1 phase, Rb 
is hypophosphorylated and binds to transcription factor 
E2F. As the progression of G1 and Cdk4/6 promoting cell 
cycle to pass G1 restriction point, hyperphosphorylation 
of Rb results in the release of E2F, which then enters 
nucleus and mediates S-phase gene transcription. It is as 
well evident that E2F1 can regulate Cdc2 expression [29]. 
High concentration of hypophosphorylated Rb is also one 

feature of postmitotic checkpoint [30]. To date, researches 
on Cdc2 and Rb functioning in HPV biology are limited 
to HPV oncoproteins, such as 16 E6, and E1^E4. Our data 
of L2 transfected HaCaT cell cycle phase distribution 
demonstrated a shift from G1 to S and G2/M phases. This 
result is compatible with our result of decreased Cdc2 
abundance in HPV 16 L2 expressed cells. In fact, a wide 
range of viruses has the ability to induce G2/M arrest [31]. 
It was previously reported that human immunodeficiency 
virus (HIV) induces G2 arrest in infected cells and hence 
up-regulates viral production [32], and it was also evident 
that HPV16 E1^E4-induced cultured Saos-2 cells G2 
arrest is associated with cytoplasmic retention of active 
Cdc2/Cyclin B1 complexes [33]. Given that E1^E4 
expression occurs at the same time with L2 expression, 
and E1^E4 is requited for the onset of viral DNA 
amplification, J. Doorbar et al. hypothesized that G2 phase 
arrest may create an optimized intracellular environment 
for viral DNA replication and other late events [33]. If this 
is the case, it is quite possible that L2 can also facilitate 
generation of this required environment. 

Decreased level of both total and Ser807 
phosphorylated Rb protein were detected. We observed a 
dosage effect of L2 upon Cdc2 and Rb expression profile, 
as well (data not shown). Different amounts (62.5ng, 
125ng, 500ng, 1μg, 2μg, and 3μg) of p16L2h plasmids 
were transfected into cultured HaCaT cells, and protein 
lysates were then harvested at 12h, 18h, 24h, and 48h 
post transfection, and phosphorylated Cdc2 and Rb 
levels were checked. While being consistent with results 
shown in Figure 2A, the effect of L2 on both pCdc2 
and pRb (Ser807) developed faster with more plasmid 
used in transfection, i.e., when transfecting with more 
plasmid DNA, the changes appeared earlier as compared 
to transfection with less plasmid DNA. Phospho-Chk2 
(Thr68), phospho-Rb (Ser795), phosphor-Chk1 (Ser15), 
and phosphor-p53 (Ser15) were also tested via Western 
Blotting, and none of them showed noticeable changes of 
levels (data not shown). 

More interestingly, it is known that in the genome 
amplification stage of HPV life cycle, E7 can stimulate 
infected cells to re-enter into mitotic S-phase [34-
37]. This effect is mainly approached through E7-Rb 
interaction. E7 can bind to Rb and displaces previously 
Rb-bind E2F, which in turn gets into the nucleus and 
participates in transcription of genes required for cell 
cycle to progress. However, once infected cells migrate 
into upper epithelial layers, E6 and E7 abundances are at 
very low level, whereas L2 expression gets started. Viral 
synthesis is still going on in these cells. To guarantee the 
amplification of viral DNA, L2 may now maintain the 
S-phase re-entry stimulated by E7 and E6, given the fact 
that L2 can decrease Rb level. Therefore we hypothesize 
that L2 may partly compensate E7 function in regulating 
host cell cycle through impacting active Rb abundance. 
Using HPV31 in an organotypic culture, Holmgren and 
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colleagues suggested that L2 might be involved in the 
final stages of viral production by presenting data that 
L2 mutant systems produced less DNase resistant viral 
particles [8].  This lack of viral DNA encapsidation may 
be related to the loss of transcription of a cellular protein 
necessary for viral packaging. Further work needs to be 
done to address these phenomena. 

This is the first time that RNA-seq is used for a 
large-scale screen of responding genes in human cells 
upon HPV16 L2 expression. We used plasmid DNA 
transfection to introduce L2 protein into HaCaTs because 
we believe that L2 has a role in the viral production. In 
current analysis of our RNA-seq data, an emphasis has 
been put on regulatory gene sets of cell proliferation 
and apoptosis. However, our data provides much more 
information in understanding functions of L2 protein. 
By focusing on L2 transfection, our results can serve as a 
valuable database for future works focusing on L2 protein 
function, and may, therefore, simplify studies of overall 
L2 functions. Also, GSEA is a strong tool for generating 
promising hypotheses, which can then be used to reveal 
more roles played by L2 in HPV life cycle, as well as its 
influences on host cell biological processes. It has already 
been shown that L2 can interact with host cell transcription 
factors TBX2 and TBX3 [38], we are continuing to 
explore that L2 itself can act as a transcription factor. 

We chose Cdk6, TFGβ2, MAPK1, FAK, and Pyk2 
to conduct the validation of our RNA-seq results on 
their mRNA levels, as well as their biological functions. 
Cdk6 interacts with D-type cyclins during G1 phase to 
form a complex with Rb, mediates the phosphorylation 
of Rb, and therefore facilitates the entrance into the 
cell cycle [39]. TFGβ2 is a member of the transforming 
growth factor family cytokines, which are ligands for 
TGF-beta receptors. Binding of TGFβ2 to its receptor 
leads to recruitment and activation of SMAD family 
transcription factors that regulate gene expression [40, 41]. 
Many cellular processes can be regulated through TGF-
SMAD pathway, including proliferation, differentiation, 
adhesion, migration, and other functions [42]. Increases 
of TGFβ2 mRNA and protein level in our results indicate 
an activation of TGF mediated signaling. Alteration of 
expression of several other downstream factors of TGF-β 
receptors, such as Smad3, MAPK1, and Jnk, were also 
demonstrated by our RNA-seq results. Further studies to 
pursue the mechanism of how TGF-β signaling pathways 
are utilized by HPV16 to accomplish its life cycle is 
worth great attention. MAPK1, also called p42 or ERK2, 
is as well involved in proliferation. Active MAPK1 can 
translocate to the nucleus and phosphorylate its nuclear 
targets [43]. To date, about 200 distinct targets for MAPKs 
have been identified[44,45]. Many of these target genes 
are involved the regulation of transcription and initiation 
of mitosis [46-48]. MAPK1 also has a transcriptional 
repressor function that is independent of its kinase 
activity [49]. Focal adhesion kinase (FAK, also known 

as protein tyrosine kinase 2, PTK2) and Pyk2 (protein 
tyrosine kinase 2 beta) are members of FAK subfamily 
that regulate reorganization of the actin cytoskeleton, 
adhesion, cell migration, cell polarization, and spreading. 
FAK subfamily, as a bridge between cytoskeletal and ERK 
signaling, promotes the activation of MAP kinase signaling 
cascade, including activation of MAPK1/ERK2, MAPK3/
ERK1 and MAPK8/JNK1, and cellular response to TGF-β 
[50-52]. Our lab has previously reported that knock down 
of Pyk2 causes infectious HPV16 PsVs retention in trans-
Golgi network, thus leads to a decrease of infection [53]. 
In this study, we identified an approximate 50% increase 
in Pyk2 protein level upon 16L2 expression, whereas 
no change of Pyk2 mRNA level observed. This result 
suggests that L2 may mediate the stabilization of Pyk2 
protein without altering its mRNA expression. 

In summary, genome-wide mRNA profiling in 
the presence of HPV16 L2 in HaCaTs identified a large 
amount of genes (2586) that uniquely respond to L2 
expression. These genes covered more than 300 gene 
sets, revealing a great manipulation of cell biological 
pathways by L2. These findings provide a database that is 
extremely valuable for L2 function studies and selection 
of research targets and directions. Our data showing a 
shift of L2 positive cells toward mitotic S-phase, together 
with Cdc2 and Rb expression changes, provide evidence 
and support that L2 has an impact on host cell cycle 
progression. This leads to the hypothesis that L2 may, to 
some degree, compensate for E7 function in stimulating 
host cell division and may contribute to the homeostasis 
of the cell during initial entry and most importantly during 
viral production.

MATERIALS AND METHODS

Cell culture, plasmids, and antibodies

HaCaT cells (in vitro spontaneously transformed 
keratinocytes from histologically normal skin [54]) were 
purchased from AddexBio (San Diego, CA). Cells were 
cultured in Dulbecco’s Modified Eagle’s media (DMEM) 
supplemented with 10% fetal bovine serum (FBS). Control 
empty vector pA3M (pcDNA3 that encodes three copies 
of Myc epitope) was a gift from Dr. Robertson (Univ. of 
Pennsylvania School of Medicine, Philadelphia, PA) [55]. 
All other plasmids (p8fwb, p16L1h, and p16L2h) were 
derived from pA3M with addition of coding region of 
eGFP, HPV16 L1h (16L1h), and HPV16 L2h (16L2h), 
respectively, and were obtained from Dr. Schiller (NCI, 
Baltimore MD) [56]. The letter “h” represents the codon 
optimization of the coding regions of 16L1h and 16L2h 
without changing the amino acid sequence. Mouse 
monoclonal antibody (mAb) POH1 (anti-Cdc2), rabbit 
mAb D20 (anti-Rb), rabbit mAb against phospho-Rb 
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(Ser807/811) D20B12, and rabbit polyclonal phospho-
Cdc2 (Tyr15) antibody (product # 9111) purchased from 
Cell Signaling Technology (Danvers, MA). 

Transfection

HaCaT cells were seeded into 6-well plate (3-4 x 
105 cells/well) and cultured overnight. Fresh media was 
changed 30 minutes prior to transfection. GenJetTM DNA 
in vitro transfection reagent (SignaGen Laboratories, 
Cat#SL10048) was used as GenJetTM: DNA ratio (volume: 
mass) of 3:1. Cells were transfected when approximately 
60% confluence. Transfection was done following 
manufacture’s instruction and cells were cultured for 18h 
before sample collection. Transfection efficiency was 
examined by parallel eGFP plasmid (8fwb) transfection 
under identical conditions. The 8fwb plasmid is of similar 
size of p16L1h and p16L2h. Transfection efficiency was 
checked by fluorescence microscope and flow cytometer. 

DNA content detection with Propidium Iodide 
(PI)

1.0-1.2 x 106 cells were collected 18h post 
transfection. After trypsinization cells were washed three 
times with cold PBS and fixed overnight in 80% Ethanol 
at -20°C. Cells were collected by centrifugation next day 
and rehydrated in PBS for 10min. Three washes with 
PBS were used to remove potentially remaining Ethanol. 
Cells were then suspended in 500μl Propidium Iodide (PI) 
staining solution (PBS solution with 1% Triton X-100, 
20μg/ml PI, and 0.2mg/ml RNase A). DNA content 
detection was performed with BD Accuri™ C6 flow 
cytometer (BD Biosciences, San Jose, CA) and FL2-A was 
used for indication of DNA content. 

RNA extraction and reverse transcription

Total cellular RNA was extracted from cells using 
RNeasy minikit (Cat#: 74104, Qiagen, Alameda, CA). 
RNA was reverse transcribed to cDNA using QIAGEN 
LongRange 2Step RT-PCR Kit using oligo-dT primer as 
per manufacture’s instruction (Cat#: 205922, Qiagen). 

Real-time PCR and primers

Real-time PCR (qPCR) starting with cDNAs 
was performed using QuantiTect SYBR Green PCR 
Kit (Cat#: 204143, Qiagen). qPCR was run on an 
Applied Biosystems® 7500 Real-Time PCR System 
(Applied Biosystems, Waltham, MA) in triplicate per 
each sample and gene. PCR primers used: Rb forward 
primer: 5’- TTGGATCACAGCGATACAAACTT -3’; Rb 
reverse primer: 5’- AGCGCACGCCAATAAAGACAT 

-3’; Cdc2 forward primer: 
5’-CAGACTAGAAAGTGAAGAGGAAGG -3’; Cdc2 
reverse primer: 5’- AAGAATCCATGTACTGACCAGG 
-3’; β-Actin forward primer: 5’- 
CTGGAACGGTGAAGGTGACA -3’; β-Actin reverse 
primer: 5’- AAGGGACTTCCTGTAACAATGCA -3’. 
β-Actin was used as a control for RNA loading and reverse 
real-time PCR efficiency. 

RNA sequencing

15μg cellular RNA was used for RNA quality assess 
(BioAnalyzer from Agilent Technologies) and mRNA 
library preparation. The mRNAs were fragmented, and 
the first strand of cDNA was synthesized from the cleaved 
RNA using random primers followed by second strand 
cDNA synthesis. The purified cDNA templates were 
enriched by PCR amplification to generate cDNA libraries. 
The cDNA libraries were presented to RNA sequencing 
facility, and two rapid single-read 50 Illumina HiSeq 
sequencing runs were performed. Raw reads from separate 
lanes of the same sample were merged before mapping. 
RNA sequencing was performed at New York University 
Langone Medical Center Genome Technology Science 
Laboratory (New York, NY).

Bioinformatics and biostatistics analysis

Reads mapping and differential gene expression 
analysis (DGE)

Raw reads of sequencing were mapped with 
Bowtie1 (version 1.0.0), which was widely used for short 
reads (no more than 50 bp) mapping, with two mismatches 
allowed. Reads normalization was done with the function 
for estimation of size factor in DESEQ2 as descriped 
before [57]. The unique mapped reads were reported 
and subjected to subsequent necessary processing and 
PCR duplicates removal before assigning to gene model 
(hg19, ignome version). Standard principal component 
analysis (PCA) implementation in R (prcomp function) 
was used, which is stated by R: https://stat.ethz.ch/R-
manual/R-patched/library/stats/html/prcomp.html. For 
DGE statistical analysis, DESeq2 R/Bioconductor package 
in the R statistical programming environment was used. 
The p-value for DEG was determined by unpaired two-
tailed t-test with unequal variance and it is adjusted by 
Fisher-Yates methods. The false discovery rate (q-value) 
was calculated for each gene using Storey and Tibshirani 
methods [58].
Relevant genes prediction through machine learning

RNA-seq data was log2 transformed, and 8fwb 
and 16L2h groups were used as two classifications. 
To obtain candidate 16L2h relevant genes, we used 
Support Vector Machine (SVM) and Random Forest 
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(RF). These two machine learning algorithms worked 
for sample classification based on different complex 
patterns recognition. They were both commonly used for 
gene selection [59-63]. Random Forest was performed 
in MATLAB package (MATLAB and Statistics 
Toolbox Release 2016a, The MathWorks, Inc., Natick, 
Massachusetts, United States). SVM feature selection was 
performed by WEKA package [64, 65]. 

SVM is a classic algorithm for classification. In 
this study, we used linear SVM for the feature selection, 
though SVM could be customized by other kernel methods 
and generated to handle non-linear boundaries when the 
dataset size was very large. Also, SVM is a commonly 
used method for gene selection based on recursive feature 
elimination [59]. In this model, sign function was used to 
convert numerical output from input genes expression to 
categorical label. The model was defined by the following 
equation:

Where Y was classifications of samples, w=[w1, 
w2, … ,wn]

T was the weight vector for genes and g=[g1, 
g2, … , gn]

T was a vector of gene expression, n was the 
number of genes in this model. The gene with a large 
absolute value of weight represents strong importance for 
the classification of samples. Recursive feature elimination 
means that irrelevant genes are eliminated step by step, 
and the SVM was retrained with less and less number 
of genes. In each round, the gene with smallest absolute 
weight was removed. The whole process was recursive 
until it achieved good classification performance.

RF is an ensemble of decision trees developed by 
Leo Breiman [66]. Each decision tree was calculated from 
a bootstrap sample of the training data with a subset of 
features that were called split nodes. The split nodes of 
the tree were from a subset of genes which were randomly 
selected from the whole set of genes. At the same time, the 
importance of features could be measured through Out-
of-Bag error rate which was related with classification 
accuracy [67]. In this study, we built the random forest 
with 500 decision trees.

Since two models were used in this study, we 
combined these gene lists by Ensemble Feature Selection 
to reduce bias and increase the credibility of selected 
genes [68,69]. Each model generated a unique gene 
relevance list and the important genes were assigned to 
higher ranks in the list. Two lists were combined through 
rank combination. Genes with high rankings indicated 
they very likely played important roles in the process of 
cell biology with p16L2h transfection. 
Gene set enrichment analysis and leading edge analysis

GSEA v2.0.6 was used for this analysis (Broad 
Institute, Cambridge, MA, USA) [20, 21]. A pairwise 
comparison between L2h and 8fwb transfection group 
was performed using ranked gene expression profiles 
from DGE analysis. To be specific, all significant DEGs 

in the comparison between L2h and 8fwb (Supplementary 
Table 2, sheet 3) were ranked based on their p-values and 
adjusted p-values in DGE result. LogFC and number of 
each gene calculated by DGE analysis were used as input 
for GSEA. Ranked genes were mapped to C5: GO gene 
sets in MSigDB, which contains 1454 gene sets. Gene 
sets in this collection are derived from the controlled 
vocabulary of the Gene Ontology (GO) project: The Gene 
Ontology Consortium. The gene sets are based on GO 
terms (gene_ontology_edit.obo, downloaded 1/25/2008) 
and their associations to human genes (gene2go, 
downloaded 1/22/2008). The enrichment scores were 
calculated by walking down the ordered list.
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