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AbstrAct:
A challenge in cancer therapy is to selectively target activities that are essential 
for survival of malignant cells while sparing normal cells. Translational control 
represents a potential anti-neoplastic target because it is exerted by major signaling 
pathways that are often usurped in cancers. Herein we describe approaches 
being developed that target eukaryotic initiation factor (eIF) 4F, a heterotrimeric 
complex that integrates multiple signaling inputs to the translation apparatus.

INtrODUctION

The single greatest challenge in the treatment of 
cancer has always been to uncover therapeutic agents that 
eliminate only tumor cells while sparing normal cells. The 
era of genomics has given a much deeper understanding 
of the biology of cancer and the genetic mutations that 
underlie progression of the disease and has brought with 
it a new generation of so-called molecular targeted cancer 
therapeutics that specifically act on the very oncogenic 
lesions that promote and sustain the disease. These new 
drugs rely on the fact that maintenance of transformed 
cells and the pathogenesis of the tumor are inextricably 
linked to the initial genetic reprogramming that has 
occurred, a concept referred to as “oncogene addiction” 
[1]. Nevertheless, most of the more common older-
generation chemotherapeutics currently available for the 
oncologist have broad applicability for diverse neoplastic 
disease despite suffering from low therapeutic indices in 
patients. Thus, the notion of using “dirty” compounds for 
the treatment of cancer has yet to be supplanted in the 
clinic nor has it lost traction in current drug development, 
as can be seen in several recently FDA approved 
chemotherapeutics (e.g. bortezomib or sorafenib). In fact, 
what seems at first a contradiction to the whole notion of 
rational designed targeted-therapeutics can be explained 
in a model elegantly described by Elledge and colleagues 
as “non-oncogene addiction”[2]. This model puts forth 
the idea that the vast biological rewiring on which 
the tumorigenic state of the cell depends on stem from 
gene products that in and of themselves are not natural 

oncogenes and whose functions are now “rate-limiting” to 
the survival and proliferation of the transformed cell. It is 
this unhinged metabolic burden that renders cancer cells 
exquisitely dependant on intrinsic stress-relief pathways 
for their normal existence, offering up unique therapeutic 
opportunities. One such class of emerging cancer drug 
targets, protein synthesis inhibitors, will remain the focus 
of this minireview.

The mRNA translation process may be thought of 
as occurring in three phases: initiation, elongation, and 
termination. Initiation, as its name implies, is the process 
wherein the cell prepares mRNA transcripts for binding 
to ribosomal subunits and subsequent proper alignment of 
the ribosome to the correct initiation codon, thus allowing 
for proper polypeptide synthesis (and gene expression) to 
ensue. Elongation is polypeptide synthesis, the cycle of 
amino-acid covalent attachment into polypeptide chains 
catalyzed by the ribosome, the result of matching the 
triplet-nucleotide codons embedded in mRNA message 
to their cognate amino acid-acylated tRNA. Termination 
is the end stage of polypeptide synthesis, the halting of 
a transiting ribosome at a stop codon for which there 
are no corresponding amino acid-acylated tRNAs and 
thus release of the fully synthesized protein into the cell. 
Ribosome density measurements along mRNA templates 
are consistent with the notion that the initiation phase 
of translation is generally rate-limiting [3]. We refer the 
reader to other texts for more in-depth analysis of the 
processes of elongation and termination [4, 5], which are 
well beyond the purview of this review. What follows is 
a brief overview of the initiation process, as it elaborates 
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on some of the factors targeted by the inhibitors discussed 
below (for a recent review and a more thorough analysis 
see Refs. [6, 7]). 

Translation initiation is a multifaceted highly 
regulated biological process, requiring at least nine 
eukaryotic initiation factors (eIFs) composed from at least 
30 subunits. It can be separated into three distinct steps: 
i) the binding of initiation factors to mRNA transcripts to 
prepare for, ii) the binding of the 43S ribosomal complex 
(which consists of the 40S ribosome subunit in complex 
with eIF2-GTP-tRNA-Meti ternary complex, eIF3, eIF1, 
eIF1A and eIF5) to the mRNA message, thus forming 
the 48S initiation complex and the, iii) joining of the 40S 
ribosome to the 60S ribosomal subunit, once the 48S 
ribosome is properly aligned at the start codon of the open-
reading frame. For the majority of mRNAs, the binding of 
43S ribosomal complexes begins at the 5’-end, where the 
methyl-7-guanosine (or “cap”) structure is found. Here, 
a preformed 43S pre-initiation complex is directed to the 
5’-end with the help of the eIF4F initiation complex. Once 
there the ribosome begins “scanning” the 5’-untranslated 
region (5’-UTR) unidirectionally towards the 3’-end, until 
it reaches the appropriate initiation codon. Once properly 
oriented, eIF5 and eIF5B, using the energy from the 
hydrolysis of two GTP molecules, help replace all the eIFs 
with the joining large 60S ribosomal subunit, forming 
an elongation-competent 80S ribosome. Although most 
mRNAs utilize the cap structure to facilitate recruitment 
of the 43S ribosomal complex, initiation on a select few 
cellular and viral mRNAs (typically those that bear no 
cap-structure or that have long and complex 5’-UTRs) is 
mediated by an alternative cap-independent mechanism, 
utilizing a distinct RNA structure termed an internal 
ribosome entry site (IRES), which directs binding and 
start codon selection of the 43S complex internally on the 
mRNA transcript [6, 8]. 

eIF4F

eIF4F is a heterotrimeric complex composed 
of: i) eIF4A, a DEAD-box containing ATPase and 
ATP-dependent RNA helicase required to melt local 
secondary structure and facilitate access of the ribosome 
to the mRNA template; ii) eIF4G, a modular scaffolding 
protein that mediates mRNA binding to the 43S pre-
initiation complex, and iii) eIF4E, the cap-binding protein 
responsible for binding of the eIF4F complex to the mRNA 
cap structure [5, 9] (Fig. 1). In mammals, there are three 
isoforms of eIF4A (eIF4AI, II and III) that share ~90% 
and ~65% identity, respectively, with the most abundant 
cellular factor eIF4AI [10, 11]. All isoforms are DEAD-
box RNA helicase family members but only the paralogs 
eIF4AI and eIF4AII are found in the eIF4F complex and 
participate in translation initiation [12, 13]. Similarly, 
there are two paralogs of eIF4G (eIF4GI and eIF4GII) 
that share 46% identity, as well as a distantly related 

protein, p97/DAP5/NAT1, that boasts a similar amino-
acid sequence to the C-terminal portion of eIF4G. Despite 
being able to bind eIF4A and eIF3, p97 cannot bind eIF4E 
and thus appears to play a role in the cap-independent 
translation of a specific subset of mRNAs [14]. eIF4E 
imparts RNA binding specificity to the eIF4F complex by 
selectively recognizing the cap structure present at the 5’ 
end of all eukaryotic cellular mRNAs [15-18]. Binding 
of 43S ribosomal complexes to the cap in order to begin 
scanning is thought to require eIF4F for most mRNAs. 
Unstructured mRNAs in in vitro reconstituted systems 
with purified translation components are able to weakly 
recruit 43S complexes [19], but the introduction of even 
a modest amount of RNA secondary structure eliminates 
all 43S recruitment in the absence of eIF4F. Once cap-
bound, the various components of eIF4F act in concert to 
stabilize it to the mRNA template and prepare the mRNA 
for binding to 43S complexes. eIF4G, now proximally 
located on the mRNA template, reinforces the eIF4E-cap 
interaction [20-22]. eIF4A then unwinds local secondary 
structure to prepare the template for its interaction with 
43S complexes, a process that is greatly improved by 
the auxiliary eIF4A interacting factors, eIF4B [23] and 
eIF4H [24]. It is eIF4G that directs 43S ribosome binding 
through a bridging interaction with eIF3, and finalizes 
43S complex binding to the mRNA [25]. Although eIF4F 
primarily directs 5’-end 43S recruitment, it also brings 
the 3’-end in close proximity to the 5’-cap, through an 
interaction between eIF4G and the 3’-end bound poly(A) 
binding protein (PABP), enabling circularization of 
the mRNA template [26-28] (Fig. 1). This results in a 
stimulatory effect on ribosome binding and translation as 
a whole, either by ensuring that eIF4F remains cap-bound 
or through the recycling and reinitiation of ribosomes 
post-termination [27].

eIF4F AND ONcOgeNesIs - seeINg 
the FOrest bUt NOt the trees

Ever since early experiments in model cell culture 
systems demonstrated that overexpression of eIF4E on 
its own can drive transformation of fibroblasts [29], there 
has emerged a large body of literature implicating eIF4F 
and several other translation initiation factors (e.g. eIF3 
subunits, eIF2) in cancer biology [30]. The evidence 
supporting eIF4E as an oncogene is now quite compelling 
and has been demonstrated in multiple settings. In both 
xenograft nude-mouse and more genetically and clinically 
relevant mouse cancer models, overexpression of eIF4E 
was shown to both accelerate the onset of tumor formation 
and aggravate its drug response [29, 31, 32]. Conversely, 
overexpression of 4E-BP (for 4E-Binding Protein, a 
competitive inhibitor to the eIF4E-eIF4G interaction) in a 
p53-/- mouse cancer model slowed progression of cancer in 
part through a mechanism involving premature senescence 
[33]. Moreover, in a wide variety of blood and solid tumor 
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samples, elevated expression of eIF4E protein correlates 
with later stage tumors, more aggressive pathologies and 
poorer prognosis [34-49], while the opposite appears to 
be true for 4E-BP [50]. Similarly, eIF4GI overexpression 
appears to phenocopy some of the oncogenic features 
of eIF4E: it too can drive transformation of mouse cell 
lines [51] and increased expression has been found in 
some overlapping tumor tissues [52-54]. Finally, there 
have been a few reports which found eIF4A expression 
to be elevated in some human derived tumor samples, 
melanoma [55] and hepatocellular carcinoma [56] cells, 
although the implication of this is as of yet uncertain [57]. 

And yet, even with all of the aforementioned data 
demonstrating eIF4E (or more generally eIF4F) as a bona 
fide oncogene, the precise molecular mechanism governing 
its tumorigenicity has remained somewhat elusive. 
Although it might seem intuitive at first that cancer cells 
would benefit greatly from increased rates of protein of 
synthesis (and in fact they do), in the case of eIF4E this is 
not really the case, as the levels that elicit oncogenesis are 
somewhat modest (~2-3 fold) [31] and probably not high 
enough to alter overall protein abundance. More likely, the 
mechanism by which increased eIF4F activity contributes 
to transformation is via the increase in translation of 
a limited set of pro-oncogenic mRNA transcripts [58, 
59]. One of the reasons for this pronounced selectivity 
is thought to be due to the differential requirements 
that some mRNAs have towards eIF4F activity [60]. 
mRNAs that have long, G-C rich and structured 5’-UTR 
nucleotide sequences, are generally poorly translated 
(presumably due to lowered 48S complex formation rates 
due to unfavorable eIF4F-cap interaction [61-63]), under 
most transient and normal growth conditions of the cell, 
where initiation factors in general, and eIF4F in particular, 
are limiting. In essence, they cannot outcompete the other 
more efficiently translated messages (those that have short 
and relatively unstructured 5’-UTRs) for ribosomes [60]. 

This all changes once the levels and activity of eIF4F 
rises: those messages that were once outcompeted will 
have their translation rates disproportionately stimulated, 
stemming from an increase in the rate-constant of 
ribosome binding and initiation due to the relative 
decrease in thermal stability at their 5’-ends mediated by 
increased eIF4F levels. Perhaps not surprisingly, a great 
many pro-growth, stress-associated or cell-cycle regulated 
transcripts whose protein levels are tightly controlled and 
are kept at a relatively low homeostatic level generally 
bear the hallmarks of a poorly translated message. In fact, 
simple overexpression of eIF4E can increase the levels of 
a wide variety of messages encoding growth and survival 
regulators (e.g. PDGF, FGF-2, VEGF), signal transducers 
(e.g. Pim-1, Ras), and components of the cell cycle and 
apoptotic machinery (e.g. cyclin D1, c-myc, RNR2, ODC, 
survivin and Mcl-1) [60, 64-68]. And this list is expanding 
given recent efforts at gene profiling of polysomal bound 
mRNAs that are under eIF4F regulation [69, 70]. Future 
technologies, such as those involving novel RNA-
sequencing methodologies [3] will no doubt uncover an 
even more complex translational regulatory system. Thus 
targeting translation initiation, and in particular the eIF4F 
complex, would seem a viable and novel chemotherapeutic 
avenue.

INhIbItINg eIF4F – NOt ALL sUbUNIts 
Are eQUAL

In recent years, there has been renewed interest in the 
development of pharmacological agents that disrupt these 
key steps of translation, in particular agents that block 
eIF4F activity. This has been based on a few early proof-
of-principle experiments that showed that downregulation 
of eIF4E via antisense oligonucleotides [71, 72] or direct 
inhibition from peptides that compete for eIF4G binding 
[73] can stop transformation, cause cell-cycle arrest, and 

Figure 1: schematic outline of mtOr regulation of the eIF4F-mrNA binding step.
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elicit apoptosis. But much of the attention paid of late to 
eIF4E biology as it pertains to cancer, especially from 
oncologists and pharmaceutical companies, relates to 
the anti-neoplastic potential of the macrolide rapamycin 
(and its analogs) and its cellular target, the master kinase 
mTOR. Note that a full treatment of the literature and 
published research on the subject of mTOR is well beyond 
the purview of this text and we encourage the reader to 
look at a recent review for a more complete understanding 
of the extensive and important role that mTOR plays in the 
cell [74]. Nevertheless, it is important to emphasize one 
key downstream target and effector of mTOR function, 
namely eIF4F (Fig 1). 

mTOR is a master regulator of cellular homeostasis, 
sensing inputs from growth factor withdrawal, amino acid 
imbalance, energy depletion and even oxygen tension and 
altering gene expression and metabolism in order for the 
cell to adjust, and one of those key metabolic and gene 
expression pathways that it regulates is protein synthesis, 
primarily through its target 4E-BP, one of the earliest 
known targets shown to be directly phosphorylated by 
mTOR [9, 75] . In most cells, there exists three 4E-BP 
isoforms (4E-BP1, 2 and 3) and all are phosphorylated 
on multiple serine and threonine residues by mTOR. 
4E-BPs act as small molecular mimics to eIF4G, bearing 
the canonical Tyr-X-X-X-X-Leu-ϕ eIF4E binding 
consensus motif (where ϕ represents a hydrophobic 
residue) [76]. Under nutrient replete and growth-factor 
abundant conditions, where mTOR activity is turned 
on, 4E-BP is hyperphosphorylated and can no longer 
bind to eIF4E allowing for robust translation initiation. 
However, upon growth factor withdrawal or nutrient 
starvation, mTOR activity is reduced, leading to the 
dephosphorylation of 4E-BP, allowing for tight binding 
to eIF4E (since they are no longer sterically hindered 
by the phosphate charges), blocking access to eIF4G 
and thereby inhibiting translation. Although much of the 
regulation of protein synthesis derived from signaling 
through mTOR acts predominantly through the 4E-BPs 
[77], mTOR can also modulate translation initiation and 
eIF4F through phosphorylation of p70 S6 kinase (or S6K) 
and its downstream substrates Pdcd4 [78] and eIF4B 
[79]. Pdcd4 was first identified as tumor suppressor in the 
clonally derived JB6 cell line that had lost the ability for 
neoplastic transformation [80]. It was subsequently found 
to bind to both eIF4A and eIF4G and thus inhibits eIF4A 
helicase activity while preventing its association with 
eIF4G, restricting translation [81]. Following activation 
of mTOR, Pdcd4 is phosphorylated on Ser67 by S6K1, 
which in turn promotes phosphorylation of Ser71 and 
Ser76 allowing for binding to βTRCP (F-box proteins) 
and ubiquitin-mediated degradation [78]. This releases 
eIF4A and concomitantly stimulates cap-dependent 
translation [78]. eIF4B is also a substrate of S6K, whose 
phosphorylation can also affect translation, but its effects 
are far from obvious [79, 82]. 

The question arises as to which of these two 
interactions (4E:4E-BP and eIF4A:Pdcd4) is rate-
limiting (and therefore more important) in vivo for eIF4F 
assembly. The answer may be that it depends on context or 
that both are important but affect translation initiation in 
different ways. Comparing relative abundance of factors 
(eIF4A is the most abundant translation initiation factor 
present at three copies per ribosome [83] and eIF4E is the 
least abundant present at 0.26 copies per ribosome [83]) 
does not address this issue since subcellular localization 
could render abundant factors rate-limiting. The relative 
stoichiometry of eIF4E and 4E-BPs versus that of Pdcd4 
and eIF4A has not been reported and may differ depending 
on cell type. Another point to consider is that the cap 
structure is required to stimulate translation initiation, but 
its presence is not an absolute requirement for translation 
initiation in vitro or in vivo [84-92]. De Gregorio et al. 
[93] have shown that eIF4G mutants lacking the eIF4E 
binding site can activate translation on uncapped mRNA 
reporters in vitro and that the central core domain of 
eIF4G (containing one eIF4A and eIF3 binding site) is 
sufficient to mediate ribosome recruitment [94]. The 
5’ end specificity that is observed upon translation of 
uncapped transcripts may be imparted because the mRNA 
is masked by RNA binding proteins [89]. These results 
suggest a model whereby blocking eIF4E from entering 
into the eIF4F complex could still allow for translation 
because in principle, eIF4G:eIF4A mediated, 5’-end 
directed translation initiation could still occur, albeit at 
a reduced rate. Removal of the eIF4A subunit from the 
eIF4G:eIF4A dimers or from the eIF4F complex would 
result in stronger repression or translation inhibition of 
a different set of mRNA transcripts. Indeed, we propose 
that differences in translation inhibition observed between 
cell lines exposed to rapamycin [95-98] in part may be a 
consequence of which step (4E:4E-BP or eIF4A:Pdcd4) is 
predominantly affected upon mTOR inhibition. 

Clearly, a cancer cell would benefit greatly from 
hyperactive mTOR activity and this is what is observed 
in many forms of cancer. In fact, mutations in upstream 
regulators of mTOR (e.g. PTEN, Akt, PI3K etc.) are some 
of the most frequently observed (see for example Ref [99]). 
Thus, cancers driven by hyperactive mTOR signaling 
would be hypersensitive to treatment with rapamycin, 
and this is often the case in cell culture [100] and mouse 
models [98, 101]. In the clinic, however, rapamycin 
treatment has had much more modest success. Although 
the rapamycin analog everolimus (RAD001) was recently 
approved by the FDA for the treatment of advanced stage 
renal cell carcinoma [102], overall clinical outcome with 
rapamycin analogs are unpredictable and in general are 
only marginally effective as monotherapy [103]. The 
reasons behind rapamycin’s struggles in the clinic are 
not yet clear, but might relate to its ability to reactivate 
PI3K/Akt signaling upstream of mTOR, negating a 
well known mTOR negative-feedback loop [104-106]. 
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In addition, recent data has suggested that rapamycin’s 
ability to inhibit mTOR kinase activity (and downstream 
4E-BP phosphorylation) is only partial, suggesting that 
catalytic-site inhibitors might prove more effective [107, 
108]. Additionally, eIF4E has been shown to be a genetic 
modifier of the rapamycin response, with increased levels 
of eIF4E imparting rapamycin resistance [109]. As well, 
the status of 4E-BP1 also appears to contribute to mTOR’s 
oncogenic repertoire. Recent publications have suggested 
that 4E-BP1 is vital for the regulation of cell proliferation 
by mTOR [77] and 4E-BP1 inactivation contributes to 
growth in mouse tumor models [33, 77, 110]. Moreover, 
the expression of a nonphosphorylatable, constitutively 
active 4E-BP1 suppressed growth of tumors driven by 
PI3K and K-Ras mutations [111]. Taken together, these 
studies demonstrate that development of novel compounds 
and strategies targeting eIF4F-dependent translation 
directly would be a feasible therapeutic strategy in the 
treatment of cancer. 

eIF4e cap-Analog Inhibitors.

 Oldest among inhibitors of eIF4F are synthetic 
nucleotide cap-analogs, those that compete for binding 
with nascent capped transcripts to eIF4E. These have 
been used extensively now for over 30 years in the 
field and have been instrumental in the identification of 
specific translation initiation factors and the elucidation 
of the process of initiation as a whole [15, 112]. Diverse 
chemical modification to cap-analogs and nucleosides 
have given rise to a myriad of novel structures with even 
greater inhibitory potentials than the common synthetic 
cap-analog precursor (m7GpppG) or even ordinary methyl-
7-GTP (m7GTP) [113] but their use has been limited to 
in vitro studies since they are not readily cell membrane 
permeable nor stable in cell culture [114, 115]. In an effort 
to circumvent such pitfalls, current research has focused on 
the use “pronucleotide” modifications (nucleosides with 
protecting groups that convert to their active metabolic 
form by native cytosolic enzymes) in the development of 
cap-analogs with greater therapeutic potential. In a recent 
paper, Ghosh et al. [116] have reported the synthesis of 
phosphoramidate derivatives of m7GTP, a “pronucleotide” 
modification that is relatively non-toxic, water soluble and 
much more stable in blood plasma. One compound, dubbed 
4Ei-1 (Table I), was reportedly capable of inhibiting cap- 
and eIF4E-dependent reporter constructs both in vitro 
and in vivo when injected into freshly fertilized zebrafish. 
Although promising, these results are still somewhat 
incomplete since they have yet to determine whether 4Ei-
1 can natively cross phospholipid membranes or inhibit 
translation in mammalian experimental systems. 

Another nucleoside analog, ribavirin, has recently 
garnered some attention as a novel anti-eIF4E cancer 
therapeutic [117, 118]. Ribavirin is a nucleoside analog 
that displays fairly broad anti-viral properties and is 

currently FDA approved in the treatment of RSV and HCV. 
The exact mechanism of action of ribavirin in the cell has 
remained somewhat obscure, with theories ranging from 
ribavirin acting as a direct inhibitor of viral transcription 
or mRNA capping to a more indirect method of inhibition 
by reducing intracellular GTP pools or by promoting an 
interferon response [119]. A paper by Kentsis et al. [117] 
has shown data demonstrating binding of ribavirin to 
eIF4E in multiple assays, inhibition by ribavirin of eIF4E-
dependent functions in vivo, as well being able to slow 
tumor growth in a xenograft mouse model, suggesting that 
ribavirin can act like a therapeutically viable cap-analog, 
although this explanation for its pharmacological action 
has been somewhat controversial [120, 121]. Still, even 
though mimicking the cellular mRNA cap as a means 
of directly preventing eIF4E function may seem to be 
the most “rational” pharmacological approach, it should 
be emphasized that cellular physiology surrounding 
the mRNA cap does not begin nor end with translation. 
Multiple processes governing gene expression, such as 
pre-mRNA splicing, nucleo-cytoplasmic transport, or 
mRNA decay (to name a few) utilize the cap structure as 
point of regulation. Thus, it should always be kept in mind 
that cap-analogs might have effects other than inhibiting 
eIF4E-dependant protein synthesis, and that perhaps other 
pharmacological strategies might prove more specific in 
design. 

targeting the eIF4e:eIF4g Interaction

An alternative approach towards the development 
of agents that can interfere with eIF4E function would be 
the discovery and design of small molecule inhibitors that 
would interfere with eIF4E-eIF4G interaction. As of this 
writing, there are two small molecules that can compete 
with and block eIF4G from binding to eIF4E. The first 
of these to be discovered was from the Wagner lab [122], 
identified in a screen for small molecules that decreased 
the specific fluorescence polarization of a labeled peptide 
fragment encompassing the eIF4G binding domain when 
titrated with recombinant eIF4E. 4EGI-1 (Table I), as it 
is called, inhibited cap-dependent translation in in vitro 
translation extracts, depleted known eIF4E regulated 
proteins in vivo and elicited apoptosis in several cancer 
cell lines. NMR spectra further confirmed direct chemical 
interactions of 4EGI-1 with eIF4E residues. Curiously, 
4EGI-1 did not appear to prevent the translational 
repressor 4E-BP1 from binding to eIF4E (which shares a 
similar consensus binding motif), but, counterintuitively, 
seemed to promote the interaction. Whether or not this 
“gain-of-function” activity contributes to some of the in 
vitro and in vivo effects observed remains to be tested. 

A second eIF4E-eIF4G inhibitor, found by our group 
which we named 4E1RCat (Table I), was identified in an 
ultra high-throughput screen aimed at finding compounds 
that directly blocked the very same interaction [123]. Here a 
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fluorescence-based assay was used involving recombinant 
eIF4E and a peptide fragment of eIF4G encompassing 
the consensus binding motif. Importantly, 4E1RCat 
blocked the cap-dependent but not HCV IRES-dependent 
translation of a bicistronic dual-luciferase reporter mRNA 
with an IC50 of ~25 uM [123]. Like 4EGI-1, 4E1RCat can 
prevent the association of eIF4G to m7GTP-Sepharose 
bound eIF4E, but unlike 4EGI-1, it also blocked 4E-BP1 
binding with nearly the same efficacy. 4E1RCat was also 
pharmacologically active in cells and in mice, where it 
decreased the rate of overall protein synthesis by ~30%. 
More promisingly, 4E1RCat, like other protein synthesis 
inhibitors (see below), was able to improve the response 
to chemotherapy in the Eµ-myc mouse lymphoma model 
and thus prolong the animal’s tumor-free survival, without 
any obvious toxicity.

targeting eIF4e Production

An alternative to using competitive small 
molecule inhibitors would be the use of bioavailable 
oligonucleotides to genetically suppress the production of 
eIF4E protein. Earlier work demonstrated the feasibility of 
using antisense oligonucleotides (ASO) targeting eIF4E, 
thus limiting the tumorigenicity of K-Ras transformed 
cell lines, but was constrained technologically to proof-
of-principle in vitro manipulations [124]. More recently, 
Graff and colleagues at Eli Lilly Research Labs [125] 
have developed ASOs directed against eIF4E using 
second-generation backbone antisense modifications that 
impart improved nuclease resistance and tissue stability 
to allow for effective systemic therapeutic delivery. In 
their study, they observed 80% knockdown of eIF4E 
with their most potent 4E ASO (Table I), which had only 
a relatively small impact on global protein synthesis 
(~20% change). Still, known eIF4E-specific pro-growth 
and pro-survival gene products decreased in a dose-
dependent manner. Impressively, administration of 4E 
ASOs almost completely blocked tumor growth in breast 
and prostate xenografts. Furthermore the reduction of 
eIF4E also appeared to prevent endothelial cell tube 
formation suggesting a possible role for eIF4E in tumor 
angiogenesis. And from a pharmacological standpoint, 
reduced eIF4E levels were well tolerated in normal mouse 
tissues, perhaps reflecting the notion that the sensitivity 
and tumor selectivity from the specific translational 
downregulation of oncogenic targets afforded from eIF4E 
knockdown allows for a greater therapeutic index.

targeting eIF4A activity

Loss of eIF4E prevents binding of eIF4F to the cap-
structure that ultimately reduces its ability to eliminate 
5’-end RNA secondary structure and hampers efficient 
recruitment of the 43S ribosome complexes. A different 

approach towards limiting translation initiation would be 
by targeting eIF4A, the source of eIF4F enzymatic activity. 
Our lab has previously reported on the identification and 
characterization of three small molecule inhibitors of 
eIF4A (Table I) [126-128]. Two of these (pateamine A and 
silvestrol), paradoxically, stimulate eIF4A activity, mostly 
by forcing the binding of eIF4A to RNA on which much 
of its enzymatic activity relies [126, 128-131]. The net 
effect is however an overall reduction in protein synthesis 
caused by a pronounced block in translation initiation as 
a result of most of eIF4A being depleted from the eIF4F 
complex [126, 128, 129]. Hippuristanol, the third eIF4A 
inhibitor, suppresses eIF4A’s helicase, ATPase and RNA 
binding properties[127, 132]. All three compounds show 
high specificity towards eIF4A, making them attractive 
for studying the biological action of eIF4A in vivo. 

Silvestrol has been tested in several different mouse 
cancer models with encouraging results. The compound 
does not cause distress, weight loss or liver damage, and 
does not appear to immunosuppress in the mouse [133, 
134]. In some settings, silvestrol alone has therapeutic 
benefit as chemotherapy: this is the case for xenograft 
studies of acute lymphoblastic leukemia in SCID mice 
[134], prostate cancer and breast cancer xenografts in 
nude mice [133], in the Eµ-Tcl-1, a mouse model of 
chronic lymphocytic leukemia (CLL), as well as primary 
human CLL samples [134]. In the latter study, the authors 
observed that silvestrol was far more toxic towards 
B-cells than T-cells and that B-cells derived from chronic 
lymphocytic leukemia patients were more sensitive to 
the drug than from healthy individuals [134], suggesting 
preferential targeting of faster growing leukemic cells 
by silvestrol. Still, in the Eµ-Myc mouse model, a 
Burkitt’s B-cell lymphoma cancer model, silvestrol alone 
showed no effect, although this might be explained by 
the lower doses used [128]. However, when combined 
with doxorubicin it greatly prolonged the tumor-free 
survival of tumor-burdened mice [128]. Moreover, this 
combination therapy was even effective against eIF4E-
driven lymphomas, which normally do not respond to 
conventional monotherapy or combination chemotherapy 
regime [109]. This is also what is seen in AML cells, where 
silvestrol increases the cytotoxicity of daunorubicin, 
etoposide and cytarabine [135].

FUtUre DIrectIONs

Even though these are still very early days in the 
development of eIF4F inhibitors as antineoplastics, protein 
synthesis inhibitors seem poised for a pharmaceutical 
comeback. Homoharringtonine (HHT) (omacetaxine 
mepesuccinat), a known inhibitor of peptide-chain 
elongation, has shown promise in Phase II clinical 
trials for the treatment of gleevec-resistant chronic 
myelogenous leukemia (CML) [136] and was approved 
to be “fast-tracked” by the FDA for clinical development. 
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Homoharringtonine’s anti-neoplastic abilities have been 
known since the ‘70s [137] and it was considered the 
premier drug in salvage therapy for CML before getting 
supplanted by gleevec [138]. Recent data have suggested 
that part of HHT’s mechanism of action is its ability to 
downregulate the short-lived anti-apoptotic and pro-
oncogenic protein Mcl-1 [139, 140], as would be expected 
from transient exposure to a general protein synthesis 
inhibitor and perhaps explaining some of the synergistic 
effects observed from most inhibitors of translation 
elongation in the Eµ-Myc model [141]. Other elongation 
inhibitors have had less success clinically in treatment of 
cancer due to non-specific toxicity in the patient [142], 
suggesting a limited therapeutic index for these general 
protein synthesis inhibitors. Targeting eIF4F might have 
the benefit of expanding this window of therapeutic 
success, given the molecular response afforded by 
blocking translation initiation: one can affect the scope of 
protein synthesis production (from a more global to more 
specific mRNA translational inhibition) not only from 
dosing of a given drug but also by changing the nature 
of the pharmacological intervention (eIF4A versus eIF4E 
inhibition). It will be interesting to see whether targeting 
other regulators of initiation (e.g.-eIF4B. eIF4H, PABP) 
would yield a similar or even greater therapeutic potential 
in the treatment of cancer. The next 5 years will indeed 
be exciting as we monitor the clinical development and 
progress of translation initiation inhibitors as potential 
antineoplastics.
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