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ABSTRACT
While genome-wide association studies (GWAS) have revealed thousands of 

disease risk single nucleotide polymorphisms (SNPs), their functions remain largely 
unknown. Recent studies have suggested the regulatory roles of GWAS risk variants 
in several common diseases; however, the complex regulatory structure in prostate 
cancer is unclear. 

We investigated the potential regulatory roles of risk variants in two prostate 
cancer GWAS datasets by their interactions with expression quantitative trait loci 
(eQTL) and/or transcription factor binding sites (TFBSs) in three populations. 

Our results indicated that the moderately associated GWAS SNPs were 
significantly enriched with cis-eQTLs and TFBSs in Caucasians (CEU), but not in African 
Americans (AA) or Japanese (JPT); this was also observed in an independent pan-
cancer related SNPs from the GWAS Catalog. We found that the eQTL enrichment in 
the CEU population was tissue-specific to eQTLs from CEU lymphoblastoid cell lines. 
Importantly, we pinpointed two SNPs, rs2861405 and rs4766642, by overlapping 
results from cis-eQTL and TFBS as applied to the CEU data. 

These results suggested that prostate cancer associated SNPs and pan-cancer 
associated SNPs are likely to play regulatory roles in CEU. However, the negative 
enrichment results in AA or JPT and the potential mechanisms remain to be elucidated 
in additional samples.

INTRODUCTION

Prostate cancer (PrCa) is the most prevalent non-
cutaneous cancer diagnosed in men in the United States, 
with about one in six men developing PrCa during their 
lifetime [1]. The genetic inflence in PrCa was estimated 
to be as high as 42-57% [2, 3]. Great efforts have been 
made during the past several decades to elucidate the 

underlying etiology of this disease. Among these efforts, 
genome-wide association studies (GWAS) have been one 
of the most valuable approaches to discover potential 
genetic susceptibilities. As of December 4, 2012, a total 
of 22 PrCa GWA studies have been deposited into the 
GWAS Catalog at the National Human Genome Research 
Institute (NHGRI) [4], yielding more than 100 common 
single nucleotide polymorphisms (SNPs) that potentially 
contribute to PrCa risk. However, the reported SNPs could 
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only explain a small proportion of the genetic variances 
that might contribute to this disease and most significantly 
associated SNPs are located in non-coding regions with 
unknown functional annotations [4]. Furthermore, the 
original GWA studies typically reported only a few SNPs 
that reach the strigent genome-wide significance (i.e., p 
< 5×10-8), while neglecting those SNPs with moderate or 
weak significance (5×10-8 < p < 0.05). 

Considering that a majority of disease-associated 
SNPs are located in non-coding regions that have 
unexplained functions, a paradigm has emerged to link 
associated SNPs discovered in GWAS with regulatory 
data, such as expression quantitative trait loci (eQTL) 
[5-11]. For example, Nicolae et al. [12] examined trait-
associated SNPs collected from the NHGRI GWAS 
Catalog [4] and the Wellcome Trust Case Control 
Consortium (WTCCC) GWAS data (Crohn’s disease, 
type 1 diabetes, and rheumatoid arthritis) and reported 
that trait-associated SNPs are more likely to be eQTLs. 
Additionally, several studies on neuropsychiatric disorders, 
such as schizophrenia [13, 14], bipolar disorder [15], 
Tourette’s syndrome [16], obsessive-compulsive disorder 
[17], and Autism [18], displayed a similar trend that top 
trait-associated SNPs are more likely to be enriched with 
regulatory variants in eQTLs or methylation quantitative 
trait loci (mQTLs). Comparative studies have not been 
conducted on any single type of cancer yet, though there 
were numerous cancer GWA studies published recently. It 
would be interesting to examine whether cancer-associated 
SNPs function through their regulatory roles in a way that 
is similar to those in psychiatric diseases. In addition, 
the recent release of the data from the Encyclopedia of 
DNA Elements (ENCODE) project provides valuable and 
comprehensive annotations regarding regulatory variants 
in the human genome, especially transcription factor 
binding site (TFBS) data [19, 20].

In this work, we explored top PrCa-associated SNPs 
for regulatory roles in eQTLs and TFBSs. Specifically, 
we used two PrCa GWAS datasets: the Cancer Genetic 
Markers of Susceptibility (CGEMS) [21] and the 
Multiethnic Cohort (MEC) [22]. Considering that eQTL 
information relies on specific population, we examined the 
regulatory roles in three human populations, respectively: 
Caucasian (CEU), African American (AA), and Japanese 
(JPT) populations (Figure 1). An enrichment test was 
performed based on randomization and/or permutation 
process, whichever was applicable. We incorporated 
TFBS data as complementary regulation mechanisms. 
Our observations were further validated by using pan-
cancer association SNPs collected from the GWAS 
Catalog [4]. We further evaluated the enrichment pattern 
using tissue- and/or population-matched eQTL data in 
top PrCa-associated SNPs. To the best of our knowledge, 
this is the first study that investigates the enrichment 
patterns of eQTL and TFBS in PrCa or any type of cancer. 
We observed a significant enrichment in the PrCa CEU 

population. Interestingly, our joint analysis of associated 
SNPs with eQTL and TFBS data further highlighted 
two SNPs, rs2861405 and rs4766642, in strong linkage 
disequilibrium (LD) with the PrCa-associated SNPs. These 
two SNPs were predicted to affect the expression of their 
downstream genes, i.e., ZNF791 (by regulation through 
eQTL) and CREBBP (by regulation through TFBS) for 
rs2861405, and GLTP (eQTL) and SPI1 (TFBS) for 
rs4766642. Our finding warrants future investigation of 
these SNPs’ functions in PrCa. 

RESULTS

Enrichment analysis with eQTL

We obtained 678, 1216, and 326 top PrCa-associated 
SNPs (p < 10-3) in CGEMS-CEU, MEC-AA, and MEC-
JPT, respectively. As a comparison, we re-analyzed the 
International Schizophrenia Consortium (ISC)-CEU 
GWAS data, which had been demonstrated previously 
as a significant enrichment of eQTLs in brain data [13]. 
We included this data for the purpose of validating our 
methods as well as to compare the effect of eQTL on 
different diseases. We obtained 1470 schizophrenia-
associated SNPs with p < 10-3.

We first examined whether top PrCa-associated 
SNPs were enriched with lymphoblastoid cell lines (LCL) 
eQTLs in each population. Both the randomization and 
permutation tests were performed (see Material and 
methods). Notably, the number of trans-eQTLs blocks 
in the original GWAS dataset for the three populations 
was less than 3 and sometimes the number was 0. This 
indicates that trans-eQTLs in these datasets may not 
hava a confident estimation of the significance in the 
test. Thus, we only focused on cis-eQTLs. As shown 
in Figure 2, the randomization test did not indicate a 
significant enrichment in any of the three populations 
regardless of the LD SNPs being taken into consideration. 
Specifically, the results not considering LD SNPs were 
pCEU = 0.720, pAA = 0.867 and pJPT = 0.979 (Figure 2A-
C); and considering LD SNPs were pCEU = 0.726, pAA = 
0.996 and pJPT = 0.996 (Figure 2D-F, Supplementary 
Table 2). By applying the permutation tests, as shown 
in Figure 2G-I, we identified 40, 10, and 16 independent 
eSNP blocks in CGEMS-CEU, MEC-AA, and MEC-JPT, 
respectively, while the expected numbers of eSNP blocks 
were 21.48 (s.d. = 7.68), 10.76 (s.d. = 4.30), and 20.72 
(s.d. = 8.10), respectively (Supplementary Table 2). Here, 
s.d. denotes standard deviation. The empirical p values of 
the permutation tests were pCEU = 0.019, pAA = 0.463, and 
pJPT = 0.653 (Supplementary Table 2). The results above 
indicated that the associated SNPs in CGEMS-CEU were 
significantly enriched with eSNPs from LCL cis-eQTL 
data but were not enriched in either the MEC-AA or MEC-
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JPT population.
As described in the Materials and Methods, 

the randomization test tends to overestimate the 
number of expected independent LD blocks because it 
ignores the LD structure across the genome. Thus, the 
generated null distribution would likely be inflated with 
eSNPs and lead to a false negative discovery. On the 
contrary, the permutation test is expected to be more 
accurate in identifying regulatory information than the 
randomization test, though it requires raw genotyping 
data and is computationally time consuming. To confirm 
this hypothesis, we applied both randomization and 
permutation tests to the ISC-CEU data, which has 
previously shown that trait-associated SNPs in this dataset 
were significantly enriched with brain eQTL through the 
randomization test [13]. Our randomization test indeed 

revealed a pattern that is similar to what was observed in 
the previous study (Supplementary Figure 1A, B). The 
permutation test showed a much stronger (Supplementary 
Figure 1C) enrichment pattern than the randomization test, 
indicating that the latter might overestimate the expected 
number of eSNPs (or eSNP blocks). As shown in Table 1, 
for GWAS data that contains a large proportion of eSNPs 
among top associated SNPs (e.g., ISC-CEU), we observed 
a significant enrichment pattern in both randomization and 
permutation tests (Supplementary Figure 1); however, for 
GWAS data with a smaller proportion of eSNPs, such 
as PrCa GWAS, overestimation of eSNPs may lead to a 
false negative discovery resulting from the randomization 
test. In both cases, the permutation test seems to have 
better power to estimate a null distribution reflecting the 
true association. Therefore, in the following analyses, 
we applied a permutation approach to evaluate the 
significance of enrichment, as long as the genotyping data 
was available.

Enrichment analysis with transcription factor 
binding sites

Similar to eQTL enrichment analyses, we examined 
whether top PrCa-associated SNPs were enriched with 
tSNPs, i.e. those SNPs in TFBSs retrieved from C1 and 
C2 categories data of RegulomeDB. As shown in Figure 
3, the top PrCa-associated SNPs in CGEMS-CEU were 
significantly enriched with C2 SNPs (pCEU = 0.014, Figure 
3D, Supplementary Table 2), while this significance was 
slightly above the p < 0.05 threshold when using C1 data 
(pCEU = 0.068, Figure 3A, Supplementary Table 2). We did 
not observe any significant enrichment in either the MEC-
AA or MEC-JPT population in data either from C1 (pAA 
= 0.061, Figure 3B; pJPT = 0.603, Figure 3C) or C2 (pAA 
= 0.230, Figure 3E, pJPT = 0.502, Figure 3F). When we 
examined the pattern in each subcategory, we found that 
most signals (94.9% from the observed data and 88.0% 
(s.d. = 4.1%) from the 1000 permutation sets) in C1 fell 
into subgroup 1f, which includes eQTL and minimal TF 
binding/DNase peak evidence [20]. This analysis partially 

Table 1: Proportion of expression quantitative trait loci (eQTL) SNPs under different p-value cutoffs in prostate cancer 
(PrCa) and schizophrenia (SCZ) GWAS. Abbreviations: CGEMS: Cancer Genetic Markers of Susceptibility. CEU: 
Caucasians. MEC: Multiethnic Cohort. AA: African Americans. JPT: Japanese. ISC: International Schizophrenia Consortium.

Disease GWAS 
dataset Population

p-value cutoff

1×10-6 5×10-6 1×10-5 5×10-5 1×10-4 5×10-4 1×10-3 0.01 0.1 1

PrCa CGEMS CEU 0 0 0 0 0.010 0.013 0.022 0.027 0.024 0.024

PrCa MEC AA 0 0 0 0 0 0.005 0.007 0.006 0.008 0.008

PrCa MEC JPT 0 0 0 0 0 0.014 0.028 0.037 0.035 0.033

SCZ ISC CEU 0.250 0.143 0.137 0.137 0.110 0.073 0.048 0.013 0.007 0.004

Figure 1: Flow chart of the enrichment analysis of 
top associated SNPs with prostate cancer. CGEMS: 
Cancer Genetic Markers of Susceptibility GWAS. MEC: 
Multiethnic Cohort GWAS. ISC: International Schizophrenia 
Consortium GWAS. CEU: Caucasians. AA: African Americans. 
JPT: Japanese. Top associated SNPs: SNPs whose association 
p-values surpassed the pre-defined cutoff. LD SNPs: SNPs 
located in the linkage disequilibrium (LD) blocks of the top 
associated SNPs. LCL: lymphoblastoid cell lines.
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Figure 3: Enrichment analysis of top PrCa-associated SNPs with transcription factor binding sites (TFBSs) of 
RegulomeDB Category 1 (C1) and Category 2 (C2) using the permutation test. X-axis: tSNP block count. Y-axis: frequency 
of tSNP blocks. The blue dot on each plot indicates the observed number of tSNP blocks. Note that the scales of those plots are different. 
Distributions of tSNPs blocks considering LD SNPs are shown in (A) CEU, C1, (B) AA, C1, (C) JPT, C1, (D) CEU, C2, (E) AA, C2, and 
(F) JPT, C2. 

Figure 2: Enrichment analysis of PrCa-associated SNPs with cis-expression quantitative trait loci (eQTLs). X-axis: 
eSNP block count. Y-axis: frequency of eSNP blocks. The blue dot on each plot indicates the observed number of eSNP blocks. Note that 
the scales of those plots are different. Distributions of eSNP blocks using a randomization test without considering LD SNPs are shown 
in (A) CEU, (B) AA, and (C) JPT populations. Distributions using a randomization test considering LD SNPs are shown in (D) CEU, (E) 
AA, and (F) JPT populations. Distributions using a permutation test considering LD SNPs are shown in (G) CEU, (H) AA, and (I) JPT 
populations.



Oncotarget6172www.impactjournals.com/oncotarget

repeated our eQTL enrichment result above but using 
mixed population of eQTL data, providing confidence 
in eQTL regulation of the top PrCa-associated SNPs in 
CGEMS-CEU.

Replication of eQTL and TFBS enrichment using 
GWAS Catalog SNPs

We collected 254 cancer-associated SNPs from 
64 studies of 14 different types of cancer in CEU 
(Supplementary Table 3). Data for the AA population 
was not sufficient because only 26 SNPs were deposited 
in the GWAS Catalog. Considering the small number 
of cancer-associated SNPs for the JPT population in the 
GWAS Catalog, we collected 79 cancer-associated SNPs 
from 19 studies covering 8 different types of cancer in the 
Asian population (Supplementary Table 4). As shown in 
Figure 4A and 4C, we found that the cancer-associated 
SNPs were significantly enriched with cis-eQTLs (p < 
0.001) and TFBSs (p = 0.021) in the CEU population 
(Supplementary Table 2). For the cancer-associated 
SNPs in the Asian population, we did not observe such a 
significant enrichment with either cis-eQTLs (Figure 4B) 
or TFBSs (Figure 4D). Next, we examined the enrichment 
of prostate cancer GWAS Catalog SNPs with eQTLs 
and TFBSs. We found 99 and 15 GWAS Catalog SNPs 
for PrCa in the CEU and Asian populations, respectively. 
For CEU, the PrCa GWAS Catalog SNPs showed similar 
enrichment significance with eQTLs (p = 0.012, 21 eSNP 
blocks) to CGEMS-CEU GWAS data (p = 0.019, 40 eSNP 
blocks), but not with TFBSs (p = 0.298, 12 tSNP blocks, 
compared to p = 0.014, 41 tSNP blocks in CGEMS-CEU 
GWAS data) (Supplementary Table 2). We noted that the 
number of tSNP blocks (12) based on PrCa CEU GWAS 
Catalog SNPs might be too small to have a reliable 
statistical test. Overall, the analysis of GWAS Catalog 
SNPs indicates that the top associated SNPs are likely to 
function through regulatory roles (e.g., eQTLs) in CEU 
PrCa samples. For the PrCa SNPs in Asian population, the 
number of eSNP/tSNP blocks was 0 and 1, respectively, 

in all random SNP sets. These numbers are too small to 
perform a qualified enrichment test. Thus, we did not 
perform the enrichment test in Asian population.

Due to the lack of appropriate genotyping data, 
we could not perform the permutation test. As we stated 
above, the bias in the randomization test leans toward 
false negative results only. Therefore, the observed 
positive enrichment pattern in CEU suggests that top 
cancer-associated SNPs are more likely to function 
through regulatory roles, i.e., via eQTLs or TFBSs, in 
CEU PrCa samples. Caution should be taken, however, 

Figure 4: Enrichment analysis of cancer-associated 
SNPs with cis-expression quantitative trait loci 
(eQTLs) and transcription factor binding sites 
(TFBSs) of RegulomeDB Category 2 (C2) using a 
randomization test. The blue dot on each plot indicates the 
observed number of eSNP/tSNP blocks. Note that the scales of 
those plots are different. Distributions of eSNP/tSNP blocks 
considering LD SNPs are shown in (A) CEU, cis-eQTL, (B) 
Asians, cis-eQTL, (C) CEU, C2, and (D) Asians, C2.

Table 2: Summary of expression quantitative trait loci (eQTL) enrichment under different scenarios 
using Cancer Genetic Markers of Susceptibility (CGEMS) prostate cancer GWAS data. Abbreviations: 
eSNP: eQTL SNP. CEU: Caucasians. LCL: lymphoblastoid cell lines. AA: African Americans. JPT: Japanese.

# observed eSNP blocks # expected eSNP blocks 
(s.d.) p-value

CEU, cis-eQTL, LCL 40 21.48 (7.68) 0.019
Tissue specificity
CEU, cis-eQTL, brain 4 3.00 (2.37) 0.211
CEU, cis-eQTL, liver 3 2.23 (1.52) 0.196
eQTL population specificity
AA, cis-eQTL, LCL 10 6.71 (3.28) 0.173
JPT, cis-eQTL, LCL 40 26.87 (8.21) 0.063
CEU+AA+JPT, cis-eQTL, LCL 63 36.90 (10.16) 0.011
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when a similar pattern is not present in the Asian or other 
population. Further investigation with more data will help 
us to better understand this regulatory system among PrCa 
populations.

Specificities of eQTL enrichment

The above analyses were conducted using LCL cis-
eQTL data in the matched population for PrCa-associated 
SNPs. We further asked whether the enrichment pattern 
we observed in CGEMS-CEU is conserved among eQTLs 
with different tissues or different populations. The results 
were shown in Table 2. First, our results showed that the 
top PrCa-associated SNPs were significantly enriched 
with LCL eQTLs but not with brain eQTLs (p = 0.211) or 
liver eQTLs (p = 0.196), suggesting that the enrichment 
pattern in CEU might be tissue-specific. Second, the top 
PrCa-associated SNPs in CEU did not show significant 
signals that were enriched with eQTLs derived from AA 
(p = 0.173) or JPT (p = 0.063), further highlighting the 
necessity to use the population-matched eQTL data for 
GWAS data analysis.

Combining cis-eQTL and TFBS for better 
detection of candidate susceptibility loci

We further checked the results from cis-eQTL 
and TFBS enrichment analyses among all LD SNPs of 
CGEMS-CEU. Among the identified 131 cis-eSNPs, two 
were found to be located in the TFBSs: rs4766642 and 
rs2861405. These two SNPs were not directly genotyped 
in the CGEMS-CEU GWAS. Rather, they were located in 
strong LD with the SNPs that were genotyped: rs4766642 
is in strong LD with the genotyped SNP rs10850830 (r2 

= 0.95; pGWAS = 9.17×10-4), while rs2861405 is in strong 
LD with the genotyped SNPs rs4804202 (r2 = 1.00; pGWAS 
= 2.63×10-4) and rs8107642 (r2 = 0.91; pGWAS = 1.89×10-

4). Because these two SNPs, rs4766642 and rs2861405, 
are both eSNPs and tSNPs, they provided candidates for 
future investigation.

DISCUSSION

We performed a comprehensive investigation of 
top PrCa-associated SNPs for their potential roles in 
regulating gene expression through eQTL and/or TFBS. 
We attempted to study the regulatory roles for two types 
of association data: moderately significant SNPs that were 
associated with PrCa and cancer-associated SNPs from the 
GWAS Catalog that reached the genome-wide significance 
level. To our knowledge, this is the first investigation of 
the enrichment of associated SNPs with eQTLs and TFBS 
in prostate cancer in different populations.

Our results not only revealed the potential regulatory 
mechanisms of the top PrCa-associated SNPs, but also 

highlighted two candidate SNPs that might play important 
roles in the disease. Notably, in the original CGEMS 
study [21], no SNP was able to reach the genome-wide 
significance level (p < 5×10-8). Through the examination 
of both eQTL and TFBS data, we identified two regulatory 
SNPs, rs2861405 and rs4766642, which were not directly 
genotyped in the GWAS data yet were shown in strong LD 
with the top associated SNPs. Both of the target genes that 
were regulated by these two SNPs have been previously 
reported involving in PrCa, thus, at least to some extent, 
proving the integrative analysis of eQTL and TFBS might 
increase the ability to detect true association signals in 
prostate cancer and other complex diseases. Specifically, 
ZNF791, whose expression is regulated by rs2861405 
through eQTL, encodes a member of the zinc finger 
protein family that have been reported as associated with 
prostate cancer at gene expression and protein levels [23, 
24]. SNP rs2861405 is located at the TFBS of CREBBP, 
a gene often considered to be a PrCa biomarker [25, 
26]. This gene plays critical roles in the prostate cancer 
pathway (KEGG ID: has05215) [27]. The other SNP, 
rs4766642, reportedly regulates the expression of GLTP 
through eQTL in prostate cancer cells, which could have 
an important contribution to the regulation of endothelial 
cell mobility [28]. Moreover, these two SNPs were also 
mapped in the DNase hypersensitive site of the ENCODE 
prostate cancer cell line, LNCaP, further supporting their 
roles in regulating gene expression [19, 20].

This study raised several methodology issues that 
may complicate the analysis of disease-associated SNPs 
with eQTL/TFBS data and, thus, provided a reference 
for similar analyses in future work. First, due to LD 
structures, the widely used randomization test may result 
in false negative findings when the enrichment is not 
strong. Alternatively, the permutation test is robust, but 
it also requires genotype data and is computationally 
intensive. Second, the incorporation of LD structure 
information is important for the discovery of regulatory 
patterns, especially when the GWA studies and the eQTL 
studies are conducted on different array platforms. For 
example, in our study, we observed 26 more eSNP blocks 
after considering LD SNPs (Supplementary Table 2). 
Third, a number of confounding factors may influence 
the comparison of GWAS data with eQTL data, including 
tissue specificity and population structure (Table 2). 

This study has the following limitations, which 
could be improved in future investigations. First, there has 
been no eQTL data profiled in prostate tissue; the eQTL 
data currently available is mainly from LCL, brain, and 
liver tissues. Our observations were based on LCL eQTL 
data, the closest tissue we could find for prostate cancer. 
Prostate tissue-specific eQTL data will likely be generated 
in the near future, such as from the Genotype-Tissue 
Expression (GTEx) project. Future studies that utilize the 
genetic information from disease-specific (i.e., prostate 
tissue) will make the conclusions solid. Second, the lack 
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of significance in the AA or JPT population in this study is 
inconclusive and requires replication in future work, as the 
existing prostate cancer GWAS data and eQTL/TFBS data 
is currently limited. For example, the amount of eQTL 
data available for the AA population (# eQTLs = 13,995) 
is only ~33.1% of that in the CEU population (# eQTLs = 
42,301), which reduced the reliability of our observations 
in the AA data. Notably, the samples used for detection of 
eQTL in AA were comparable to those in CEU, indicating 
that AA samples tend to have fewer eQTLs regardless of 
sample size [33]. As for the JPT population, though the 
eQTL data is sufficient for our analysis, the sample size 
in the MEC-JPT GWAS dataset was only 392 (158 cases 
and 234 controls), which may not have sufficient power 
to detect PrCa-associated SNPs in the JPT population. 
Third, the genotyping platforms used in eQTL studies 
and in GWA studies are often different, which introduces 
difficulties in forming direct comparisons between eSNPs 
and disease-associated SNPs. In our work, we employed 
the LD expansion strategy while, ideally, imputation 
should be a robust way to eliminate inconsistency among 
platforms. Due to the heavy computational load, we did 
not perform imputation on the GWAS data but will include 
it in our future work. 

In summary, we conducted comprehensive 
enrichment analyses of the top associated SNPs in eQTLs 
and TFBSs in three populations (CEU, AA, and JPT) 
from two PrCa GWAS datasets, CGEMS and MEC. Our 
results supported the hypothesis that prostate cancer 
risk SNPs in the CEU population may act through cis-
regulators in the expression of their target genes, which 
has not been observed in the AA or JPT population yet. 
Our preliminary work also revealed that the pattern might 
be specific to eQTL data in the matched disease-relevant 
tissue and population. We identified two promising 
regulartory SNPs (rs2861405 and rs4766642) in PrCa. Our 
work provides insights and guidance, both biologically 
and methodologically, for future investigations of the 
regulatory system of prostate cancer and other complex 
diseases.

MATERIAL AND METHODS

Genotype datasets

The CGEMS prostate cancer GWAS [21] dataset 
was generated using Illumina HumanHap300 (Phase 1A) 
and Illumina HumanHap240 (Phase 1B) arrays, resulting 
in approximately 550,000 SNPs for 1172 prostate cancer 
patients and 1157 controls of European ancestry from 
the Prostate, Lung, Colon and Ovarian (PLCO) Cancer 
Screening Trial. Data was downloaded from the National 
Center for Biotechnology Information (NCBI) dbGaP 
with approved access (request: # 5662-1). Following our 

previous study [29], we obtained a total of 506,216 SNPs 
from 2243 samples, and denoted the data hereafter as 
CGEMS-CEU.

The MEC GWAS were conducted by genotyping 
using the Illumina Human1M_Duov3_B array or 
the Human660W_Quad_v1_A array. The samples 
were collected in men of AA, JPT, and Latino (LTN) 
populations [22]. We only used samples from AA and 
JPT, and denoted them as MEC-AA and MEC-JPT, since 
eQTL data has been very limited so far for the LTN 
population. For AA samples, we collected 996,050 SNPs 
genotyped in 1371 cases and 1313 controls using Illumina 
Human1M_Duov3_B. For JPT samples, we collected 
458,616 SNPs genotyped in 158 cases and 234 controls 
using Human660W_Quad_v1_A. The association test was 
conducted following the previous study [22].

The schizophrenia GWAS dataset was from the 
International Schizophrenia Consortium (ISC). We 
denoted the data hereafter as ISC-CEU. A detailed 
description can be found in previous studies [30, 31].

HapMap genotype data (release 27, including 
samples from phase I, II, and III) were downloaded 
from the HapMap website [32]. The LD data of HapMap 
samples was downloaded for the CEU, AA, and JPT, 
respectively.

eQTL and TFBS datasets

We utilized human eQTL association data from a 
recently developed public database, seeQTL [33], which 
collected 9 unrelated HapMap studies of lymphoblastoid 
cell lines [6, 7, 9-11, 34, 35], human cortical samples [5], 
and monocytes [36]. In the seeQTL database, eQTL data 
from these previous studies was collected and re-analyzed 
using a combination of quality control, population 
stratification, and false discovery rate (FDR) assessement 
to generate cis- and trans-eQTLs. In our analysis, as 
shown in Supplementary Table 1, we used the LCL and 
brain eQTL data by significance (q-value) < 0.2 (default). 
Here, q-values were obtained by adjusting regression 
p-values using the Bejaminin-Hochberg correction method 
[37], as described in [33]. We also incorporated liver eQTL 
data reported by Innocenti et al. [38], which was retrieved 
from the eQTL Browser database (http://eqtl.uchicago.
edu/help.html).

RegulomeDB [20] is a comprehensive resource for 
regulatory variants in the human genome, primarily based 
on the ENCODE data [19], and other resources, such as 
ChIP-seq data from the NCBI Sequence Read Archive 
(SRA) and eQTL data from recent publications. Of note, 
the data collected by RegulomeDB is not specifically 
distinguished by population or tissue type. RegulomeDB 
has six categories of functional SNPs with systematic 
ranking scores. SNPs in C1 mainly contain eQTL and 
binding affinity signals, with 6 subcategories from 1a to 
1f that further classify SNPs by decreasing confidence. 
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SNPs in C2 are annotated as “likely to affect binding.” 
The other four categories (categories 4-6) represent weak 
or minimal binding evidence for the functional SNPs [20]. 
Correspondingly, we only considered category 1 (C1) and 
category 2 (C2) in our analysis for the enrichment test, 
which is shown in Supplementary Table 1. 

Enrichment tests and evaluation

Due to the lack of significantly associated SNPs 
surpassing genome-wide significance (p < 5×10-8) in either 
of the two original GWAS datasets, we denoted the top 
PrCa-associated SNPs as those with moderate significance 
(e.g., p < 10-3) [15]. In this study, we applied two statistical 
approaches, the randomization and the permutation tests, 
to build the null distribution of simulated SNPs at random 
cases for an enrichment test of eQTLs and/or TFBSs. 
Throughout this work, all enrichment tests were performed 
in a population-specific way, e.g., significant GWAS 
SNPs obtained in the CEU population were tested in the 
corresponding CEU eQTL or TFBS data, unless otherwise 
specified.

Following the work as described in Nicolae et al. 
[12], we classified the SNPs to the 10 MAF bins, which 
were constructed with an interval of 5%, i.e., 0-5%, 
5-10%, …, 45-50%. We generated 1000 random SNP sets, 
in which the same number of disease-associated SNPs 
with the same distribution of MAF bins as in the actual 
GWAS dataset was randomly sampled from all the SNPs 
genotyped on the GWAS platform without replacement. 
These random SNPs were then mapped to SNPs of eQTLs 
or located at the TFBSs (hereafter denoted as eSNPs and 
tSNPs, respectively) to form a null distribution to assess 
the significance.

Although the randomization test has been widely 
applied in many diseases [13, 15, 16], one recognized 
disadvantage is the ignorance of LD structures among 
SNPs, which may complicate the results and lead to 
false negative findings in practical cases. In contrast, in 
a randomization test, the randomly selected SNPs from 
the genome are more likely to be independent because 
the randomization process essentially disregards the 
LD structure. Due to this potential bias, we proposed 
counting the number of LD blocks instead of using 
the raw number of eSNPs to estimate the significance 
level. We define an LD block as a cluster of SNPs that 
are located in a genomic region in which any two 
of the SNPs have r2 ≥ 0.5, where r2 is the squared LD 
correlation coefficient. We used PLINK [39] to calculate 
the independent blocks of eSNPs and tSNPs. Accordingly, 
the empirical p value of the randomization test is defined 

as 

( ){ }
1000

blocks #   blocks ## ≥Φ
=p

, where Φ  denotes a 
randomization dataset.

Alternatively, the permutation test generates random 

datasets by randomly swapping cases and controls while 
keeping the same number of cases and controls in the 
population. In this way, the LD structure within individuals 
remains intact. We generated 1000 sets of phenotype files 
and conducted an association test using the same statistical 
strategy [29]. The top associated SNPs in each permutation 
dataset is similarly defined using the same threshold (e.g., 
p < 10-3), and the number of blocks is recorded to compute 

an empirical p value: 

( ){ }
1000

blocks #   blocks ## ≥
=

πp
, 

where π denotes a permutation dataset.
For both the randomization and permutation tests, 

we further extracted “LD SNPs,” which were defined as 
those with r2 ≥ 0.5 to any of the top disease-associated 
SNPs according to the LD data derived from the HapMap 
samples of the same population. Then, we applied a 
similar approach as described above to calculate the 
significance level.

As a replication, we examined all the top cancer-
associated SNPs deposited in the NHGRI GWAS Catalog 
[4]. Here, we denoted the top cancer-associated SNPs as 
those surpassing the genome-wide significance level (p < 
10-5) [12]. To collect cancer-associated SNPs, we manually 
extracted the SNPs deposited in the GWAS Catalog 
specifically for the European and Asian populations 
(samples in the AA population were neglected because 
only two GWA studies were reported) (as of December 
4, 2012, http://www.genome.gov/gwastudies/). Since 
the raw genotype data of these GWA studies are mostly 
unavailable, we only performed a randomization test. We 
followed the same procedure as described above; however, 
we used the combined SNPs from Affymetrix Genome-
Wide Human SNP Array 6.0 and Illumina’s High Density 
Human 1M-Duo as the genotyped SNPs on the GWAS 
platforms. Cancer-associated SNPs that did not have MAF 
information in the combined platform were excluded. 
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