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Glipizide sensitizes lung cancer cells to TRAIL-induced apoptosis 
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ABSTRACT

The combination of tumor necrosis factor–related apoptosis-inducing ligand 
(TRAIL) with subsidiary agents is a promising anticancer strategy to conquer TRAIL 
resistance in malignant cells. Glipizide is a second-generation oral hypoglycemic 
medicine for the cure of type II diabetes because of its capability to selectively 
stimulate insulin secretion from β-cells. In this study, we revealed that glipizide 
could trigger TRAIL-mediated apoptotic cell death in human lung adenocarcinoma 
cells. Pretreatment with glipizide downregulation of p-Akt and p-mTOR in different 
concentrations. In addition, LC3-II and p-Akt was suppressed in the presence of 
LY294002, a well-known inhibitor of P13K. Treatment with glipizide commenced in 
a slight increase in conversion rate of LC3-I to LC3-II and significantly decreased 
p62 expression levels in a dose-dependent manner. This indicates that glipizide 
encouraged autophagy flux activation in human lung cancer cells. Inhibition of 
autophagy flux applying a specific inhibitor and genetically modified ATG5 siRNA 
enclosed glipizide-mediated enhancing effect of TRAIL. These data demonstrate that 
inhibition of Akt/mTOR by glipizide sensitizes TRAIL-induced tumor cell death through 
activating autophagy flux and also suggest that glipizide may be a combination 
therapeutic target with TRAIL protein in TRAIL-resistant cancer cells.

INTRODUCTION

Lung cancer is the principle cause of cancer-
concerned death in the world with over one million men 
and women diagnosed each year. Multiple options for 
the cure of lung cancer have been described, including 
radiation therapy, chemotherapy, and surgery [1, 2]. 
However, combination chemotherapy can be dynamic for 
patients with advanced cancers that are not adaptable to 
surgical treatment or radiation therapy.

Tumor necrosis factor (TNF)-related apoptosis-
inducing ligand is a type II transmembrane cytokine. It is 
a member of the TNF superfamily, and mediates cellular 
apoptosis in a wide extent of tumor cells. However, it 
has little or no outcome on normal cells [3, 4]. TRAIL 

can bind up to five members of the death receptor 
family: The death receptors (DR4, DR5), the decoy 
receptors (DcR1, DcR2) and osteoprotegerin (OPG) 
[5, 6]. Of these receptors, only death receptors have 
cytoplasmic death domains involving in the extrinsic 
apoptotic pathway upon TRAIL binding [7]. TRAIL 
initiates apoptosis upon binding of death receptors DR4 
and DR5 leads to the recruitment of Fas-associated 
death domain protein and consummately procaspase-8, 
to the construction of death-inducing signaling complex 
(DISC), leading to consequent effector caspases 
(caspase-8, -9, -10, and -3) [8, 9].

Glipizide is a second-generation oral 
hypoglycemic medicine developed in the 1950s for 
the cure of type II diabetes because of its capability 
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to particularly stimulate insulin secretion from β-cells 
[10–12]. Recent studies have discovered that diabetic 
patients have supreme risks of developing different 
types of tumor [13–18]. Interestingly, epidemiological 
studies revealed that long-term application of some anti-
diabetic drugs like as glipizide may alleviate the risk of 
developing cancer [19]. However, the manner in which 
these types of anti-diabetic drugs reduce cancer risk 
remains unclear.

Autophagy is a cellular self-digestion mechanism 
that involves degradation of unnecessary or defective 
cytoplasmic elements, through the actions of 
endogenous lysosomes, in response to converse 
conditions, in order to sustain cellular energy supply 
and homeostasis [20, 21]. Autophagy flux is the entire 
mechanism of autophagy, starting with the construction 
of autophagosomes throughout the cargo, amalgamation 
of the autophagosome with lysosomes, and dilapidation 
and recycling of the cargo [22]. Several studies have 
discovered that autophagy can be triggered by a diversity 
of stressors, such as mitochondrial loss, oxidative stress, 
nutrient impairment, and exogenous chemicals [23]. The 
most conventional appearance of autophagy, known 
as ‘macro-autophagy’, has been mentioned as type II 
programmed cell death [24]. Initiation of autophagy 
is negotiated by aggregation of the ULK1/2-ATG13-
FIP200 compound, which results in progression of the 
isolation membrane, also called as phagophore which 
extends, and after closure, forms a vesicular composition 
known as the autophagosome. The role of ULK1/2-
ATG13-FIP200 complex is elongation and maturation of 
autophagosomes [25]. The generation of this compound 
is coordinated by mammalian target of rapamycin, which 
is subsequent of the PI3K/Akt pathway. Progression 
of the autophagosomes contingent on class III PI3K 
complex, which correspond of the Vps-34, beclin1, 
and p150 and recruit supplementary autophagy-related 
proteins to allow for elongation and completion of the 
autophagosomes. Once the autophagosome is formed, 
its maturation process is complete upon amalgamation 
with lysosomes to form an autophagolysosome, which 
undergoes a cellular degradation process [23, 26]. These 
serine/threonine proteins are significant key regulators 
of many fundamental cellular systems such as cell 
survival, proliferation, growth, and differentiation 
[27]. The activation of PI3K/Akt stimulates mTOR, 
which encourages cells to restrain autophagy activation 
followed by cell death [24]. Several studies have 
demonstrated that autophagy promotes cancer cell 
death in response to multitudinous anticancer agents on 
apoptosis deficient cells [28–31].

The therapeutic effect of anti-diabetic drugs 
such as metformin as a monotherapy or in combination 
with TRAIL is well established [32, 33]. Therefore, the 
objective of this project was to determine the molecular 
mechanisms underlying the anticancer effect of glipizide 

and its synergistic outcome of glipizide combined with 
TRAIL in lung adenocarcinoma cells.

RESULTS

Glipizide sensitizes TRAIL-mediated apoptosis 
in lung adenocarcinoma cells

To investigate the outcome ofglipizide on TRAIL-
induced apoptosis, cells were pre-incubated with varying 
concentrations of glipizide for 12 h and exposed to TRAIL 
for 2 h. Cells were photographed under a light microscope 
to visualize the morphological changes. Treatment 
of glipizide or TRAIL alone did not or only slightly 
influenced cell death (Figure 1) and did not morphological 
change was recognized compared with that in control, 
suggesting that A549 cells were highly resistant to TRAIL-
mediated apoptosis. However, co-treatment with TRAIL 
and different concentrations of glipizide significantly 
increased the number of apoptotic cell deaths or going 
through apoptosis compared to glipizide or TRAIL alone 
(Figures 1A, 1B, 1C, and 1D). Co-treatment of TRAIL 
and glipizide also decreased cell viability and significantly 
sensitized apoptosis in Calu-3, HCC-15 cells (Figures 1E, 
1F, 1G and 1H). These result suggested that glipizide 
sensitized TRAIL-induced apoptosis in A549, Calu-3 and 
HCC-15 cells.

Glipizide induces autophagy and sensitized 
apoptosis mediated by TRAIL

To investigate the effect of glipizide on autophagy 
flux. Whole cell lysates were included to western blot 
analysis. As shown in Figure 2A, the protein levels of 
DR4 and DR5 were unchanged by glipizide at varying 
concentrations. The formation of the autophagosome 
is negotiated by the Atg12-Atg5-Atg16 complex 
and LC3-I-phospholipid links LC3-II. P62 is an 
important autophagy substrate that is incorporated into 
autophagosomes by exactly interacting with LC3 and 
is ability degraded by autophagy. Inhibiting autophagy 
results in prompt accumulation of p62, whereas 
suppressed p62 levels are amalgamated with autophagy 
activation. Nevertheless, LC3-II increased, and p62 
expression decreased after glipizide treatment in a dose-
dependent manner (Figure 2B). Immunocytochemistry 
results also supported that various concentrations of 
glipizide decreased p62 protein levels (Figure 2C). 
A TEM assay suggested that numerous autophagic 
vacuoles and empty vacuoles were appeared in the 
cells treated with glipizide (Figure 2D). The combined 
treatment with glipizide and TRAIL enhanced 
intracellular apoptosis indicators Ac-cas3 and Ac-cas8 
expression levels compare with the single treatment with 
TRAIL or glipizide (Figure 2E). These results reveal 
that glipizide can induce autophagy in A549 cells.
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Glipizide enhanced TRAIL-induced apoptosis is 
blocked by inhibition of autophagy

Chloroquine was used to investigate the effect of 
glipizide on TRAIL-induced apoptosis. A549 cells were 
pre-incubated with the indicated glipizide concentrations 

for 12 h and exposed to TRAIL for 2h. Additional 
cells were also pre-incubated with chloroquine for 1 
h, followed by glipizide. Co-treatment with TRAIL, 
glipizide, and chloroquine blocked cell death. However, 
Cell morphology results also supported that chloroquine 
enclosed the cell death effect compared to treatment with 

Figure 1: Glipizide sensitizes TRAIL-mediated apoptosis in lung adenocarcinomacells. A549, HCC-15 and Calu-3 cells 
were pre-incubated with glipizide at different doses (0, 25, 50, and 100 μM) for 12 h and exposed to TRAIL protein 200 ng/ml for 2 h. (A 
and E) Cell morphology photographed using light microscope in A549 and Calu-3 Cells (×100); (B and G) Cell viability was measured with 
crystal violet assay in A549 andHCC-15 Cells; (C and H) Bar graph indicating the average density of crystal violet in A549 andHCC-15 
Cells; (D and F) Cell viability was measured with trypan blue dye exclusion assays in A549 and Calu-3 Cells. ** p<0.01, *** p < 0.001: 
represent significant differences between control and each treatment group; Gli: Glipizide; TRAIL: Tumor necrosis factor (TNF)-related 
apoptosis-inducing ligand.
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glipizide and TRAIL (Figure 3A). Co-treatment with 
TRAIL, glipizide, and chloroquine strongly increased cell 
viability in A549 cells with significantly decreased cell 
death (Figures 3B, 3C, and 3D). These data suggested that 
chloroquine could promote glipizide-mediated cancer cell 
survival induced by TRAIL.

Autophagy inhibitor blocks TRAIL mediated 
apoptosis by glipizide via activating autophagy 
flux

We determine the effect of the glipizide on 
TRAIL induction of the apoptotic way by activating 

Figure 2: Glipizide induces autophagy and sensitized apoptosis mediated by TRAIL. A549 cells were pre-incubated with 
glipizide at varying doses (0, 25, 50, and 100 μM) for 12 h. (A and B) Western blot for DR-4, DR-5, LC3-II, and p62 proteins was analyzed 
from A549 cells; (C) Cells were immunostained with p62 antibody (red) and observed in fluorescent view; (D) TEM shows the ultrastructure 
of cells treated with glipizide for 12 h. Arrows indicate autophagosomes, together with residual digested material and empty vacuoles; (E) 
Western blot for Ac-cas3 and Ac-cas8 expression levels was conducted with A549 cells. Cells were pre-incubated with glipizide for 12 h 
and exposed to TRAIL protein for an additional 1 h. β-actin was used as the loading control. Gli: Glipizide; TRAIL: Tumor necrosis factor 
(TNF)-related apoptosis-inducing ligand; Ac-cas3: Activated caspase 3; Ac-cas8: Activated caspase 8.
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Figure 3: Glipizide enhanced TRAIL-induced apoptosis is blocked by inhibition of autophagy. Cells were pre-incubated 
with the indicated glipizide doses for 12 h and exposed to TRAIL protein for an additional 2h. Additional cells were also pre-incubated with 
autophagy inhibitor chloroquine for 1 h followed by glipizide treatment. (A) Cell morphology photographed using light microscope (×100); 
(B) Cell viability was measured with crystal violet assay; (C) Bar graph indicating average density of crystal violet; (D) Cell viability 
was measured with trypan blue dye exclusion assays. ** p<0.01, *** p < 0.001: represent significant differences between control and each 
treatment group; Gli: Glipizide; TRAIL: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand; CQ: Chloroquine.
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autophagy flux with pharmacological autophagy inhibitor 
chloroquine. All the cell lysates were included to western 
blot analysis. The expression levels of DR4 and DR5 
were unchanged by chloroquine or glipizide alone or 
by combined treatment with chloroquine and glipizide 
in A549 cells (Figure 4A). Autophagy induction was 
further adopted by the observation of autophagic flux 
using chloroquine. Autophagy inhibitor Chloroquine 
caused impressed accumulation of membrane-bound 
LC3-II levels, with decreasing p62 (Figure 4B). 
Immunocytochemistry results also supported that 
glipizide treatment decreased the p62 protein level 
compared with chloroquine or by treatment with both 
glipizide and chloroquine (Figure 4C). The combined 
treatment of glipizide and TRAIL enhanced intracellular 
apoptosis indicators Ac-cas3 and Ac-cas8 expression 
levels. However, co-treatment of glipizide, TRAIL, and 
chloroquine enclosed the increase in expression level of 
Ac-cas3 and Ac-cas8 (Figure 4D). These results suggested 
that glipizide-mediated enhancement of the TRAIL-

induced apoptosis could be blocked by chloroquine via 
activation of autophagy flux.

Glipizide enhanced TRAIL-induced apoptosis is 
blocked by genetic inhibition of autophagy

Genetic autophagy inhibitor ATG5 siRNA used 
to determine the effect of glipizide on TRAIL-induced 
apoptosis. A549 cells were pre-incubated with ATG5 siRNA 
or NC for 24 h and then exposed to indicate glipizide doses 
for 12 h with or without TRAIL for 2 h. Co-treatment of 
glipizide, ATG5 siRNA, and TRAIL blocked cell death. 
However, Cell morphology results also supported that ATG5 
siRNA blocked cell death effect compared to glipizide, 
TRAIL, and negative control siRNA treatment (Figure 
5A). Co-treatment with glipizide, TRAIL, and ATG5 
siRNA strongly increased cell viability in A549 cells with 
significantly decreased cell death (Figure 5B, 5C, and 5D). 
These results suggested that ATG5 siRNA could promote 
glipizide-mediated cancer cell survival induced by TRAIL.

Figure 4: Autophagy inhibitor blocks TRAIL mediated apoptosis by glipizide via activating autophagy flux. A549 cells 
were pre-incubated with chloroquine for 1h followed by indicated glipizide doses for 12 h. (A and B) Western blot for DR-4, DR-5, LC3-II, 
and p62 proteins was analyzed from A549 cells; (C) Cells were immunostained with p62 antibody (red) and observed in fluorescent view; 
(D) Western blot for Ac-cas3 and Ac-cas8 expression levels was conducted with A549 cells. Cells were pre-incubated with the indicated 
glipizide concentrations for 12 h and exposed to TRAIL protein for an additional 1h. Additional cells were pre-incubated with autophagy 
inhibitor chloroquine for 1 h, followed by glipizide treatment. β-actin was used as the loading control. Gli: Glipizide; Tumor necrosis factor 
(TNF)-related apoptosis-inducing ligand; Ac-cas3: Activated caspase 3; Ac-cas8: Activated caspase 8; CQ: Chloroquine.
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Figure 5: Glipizide enhanced TRAIL-induced apoptosis is blocked by genetic inhibition of autophagy. A549 cells were 
pre-incubated with ATG5 siRNA or negative control siRNA for 24 h and then exposed to indicated glipizide doses for 12 h with or without 
TRAIL protein for an additional 2 h. (A) Cell morphology photographed using light microscope (×100); (B) Cell viability was measured 
with crystal violet assay; (C) Bar graph indicating average density of crystal violet; (D) Cell viability was measured with trypan blue 
dye exclusion assays. ** p<0.01, *** p < 0.001: represent significant differences between control and each treatment group. Gli: Glipizide; 
TRAIL: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand; siATG5: ATG5 small interfering RNA; NC: Negative control.
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Genetic autophagy inhibitor blocks TRAIL-
induced apoptosis by glipizide via activation of 
autophagic flux

We determine the effect of the glipizide-induced 
TRAIL-mediated apoptotic pathway by activating 
autophagy flux withgenetic autophagy inhibition by ATG5 
siRNA. All the cell lysates were included to western blot 
analysis. The expression levels of DR4 and DR5 were 
unchanged by glipizide alone or by combined treatment 
with ATG5 siRNA or NC in A549 cells (Figure 6A). To 
address the induction of autophagy, cells were transfected 
with siRNA directed in opposition to autophagy protein 
5 (Atg5) to block autophagic vesicle composition, and 
silencing of ATG5 was confirmed. Knockdown of ATG5 
markedly decreased the glipizide-induced LC3-II protein 
level (Figure 6B). Immunocytochemistry results also 
suggested this p62 protein level in A549 cells (Figure 

6C). Co-treatment of glipizide, NC siRNA, and TRAIL 
enhanced intracellular apoptosis indicators Ac-cas3 and 
Ac-cas8. Nevertheless, co-treatment with glipizide, ATG5 
siRNA, and TRAIL enclosed the increase in Ac-cas8 and 
Ac-cas3 expression levels (Figure 6D). These results 
suggested that glipizide-mediated enhancement of the 
TRAIL-induced apoptosis could be blocked by genetic 
inhibition of autophagy via activation of autophagy flux.

Effects of glipizide on the Akt/mTOR/autophagy 
signaling pathway

We determine the outcome of glipizide on 
the Akt/mTOR pathway. Pretreatment of glipizide 
inducedinhibition of p-Akt and p-mTOR in a dose-
dependent manner (Figure 7A). Immunocytochemistry 
results also supported that various concentrations of 
glipizide decreased p-Akt protein levels (Figure 7B). 

Figure 6: Genetic autophagy inhibitor blocks TRAIL-induced apoptosis by glipizide via activation of autophagic flux. 
A549 cells were pre-incubated with ATG5siRNA or negative control siRNA for 24 h, and then exposed to indicated glipizide doses for 12 
h. (A and B) Western blot for DR-4, DR-5, LC3-II, p62 and ATG5 proteins was analyzed from A549 cells; (C) Cells were immunostained 
with p62 antibody (red) and observed in fluorescent view; (D) Western blot for Ac-cas3 and Ac-cas8 expression levels was conducted. 
A549 cells were pre-incubated with ATG5siRNA or negative control siRNA for 24 h, and then exposed to indicated glipizide doses for 12 h 
with or without TRAIL protein for an additional 1 h. β-actin was used as the loading control. Gli: Glipizide; TRAIL: Tumor necrosis factor 
(TNF)-related apoptosis-inducing ligand; Ac-cas3: Activated caspase 3; Ac-cas8: Activated caspase 8; siATG5: ATG5 small interfering 
RNA; NC: Negative control.
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Western blot analyses revealed that LC3-II and p-Akt was 
suppressed in the presence of LY294002 (Figure 7C). ICC 
results also supported that p-Akt were inhibited in the 
presence of LY294002 (Figure 7D Morphological image 
and crystal violet staining results display that combined 
treatment with LY294002 and TRAIL decreased cell 
viability and significantly sensitized apoptosis in A549 
cells, similar to treatment with TRAIL and glipizide 
(Figures 7E, 7F, and 7G). These results suggest that the 

role of glipizide function is not only based on suppression 
of the pathway but is also contingent on the induction of 
autophagy.

DISCUSSION

The purpose of this project was to determine 
the effect of glipizide with or without TRAIL on lung 
adenocarcinoma A549 cells. Our results demonstrated 

Figure 7: Effects of glipizide on the Akt/mTOR/autophagy signaling pathway. Lung adenocarcinoma cells were pre-incubated 
with different doses of glipizide (0, 25, 50, and 100 μM) for 12 h and exposed to TRAIL protein for an additional 2h. Additional cells were 
pretreated with LY294002 for 1 h followed by treatment with glipizide. After that, (A and C) western blot for T-Akt, p-Akt, p-mTOR, 
T-mTOR, LC3-II, and p62 proteins was analyzed from A549 cells; (B and D) Cells were immunostained with p-Akt antibody (green) and 
observed in fluorescent view; (E) Cell morphology photographed using light microscope (×100); (F) Cell viability was measured with 
crystal violet assay; (G) Bar graph indicating average density of crystal violet. β-actin was used as loading control. *p < 0.05, **p < 0.01: 
represent significant differences between control and each treatment group; Gli: Glipizide; TRAIL: Tumor necrosis factor (TNF)-related 
apoptosis-inducing ligand.
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that glipizidesensitizes human lung cancer cells to TRAIL-
mediated apoptosis via Akt/mTOR/autophagy pathways.

TRAIL could be a safe and dynamic biological 
candidate that can be utilized for tumor therapy in humans. 
It has recently accomplished significant interest in medical 
knowledge, as it can selectively induce tumor cells, virus-
infected cells, and transformed cells to maintain apoptosis 
without harming toxicity in normal cells [34–38]. Recent 
pharmacoepidemiological surveys report that the treatment 
of antidiabetic drugs can attribute cancer risk in patients 
with type 2 diabetes. It was also revealed that diabetic 
patients prescribed with glipizide are at lower hazard 
of developing cancer [39]. Autophagy is a lysosome-
dependent degradation process activated by starvation, 
hypoxia, growth inducing factor distress, or endoplasmic 
reticulum stress [40]. Consequently, autophagy plays a 
critical role in the degeneration of cytoplasmic proteins 
and other macromolecules by disintegrating damaged 
or aged organelles [41, 42]. Recent studies suggest 
that inhibition of the PI3K/Akt signaling pathway and 
its downstream goal mTOR initiates autophagy [43]. 
Accordingly, the suppression of the class I PI3K/Akt/
mTOR pathway is an imperious and attractive target for 
cancer therapy.

Jin et al. [44] demonstrated that A549 cells are 
resistant to TRAIL. In our present study, we also observed 
that single treatment of glipizide or TRAIL had negligible 
effects on apoptosis in A549 cells. Thus, scientists are 
currently tempting to identify TRAIL sensitizers that 
are proficient at overcoming TRAIL resistance in cancer 
cells. Here we show that co-treatment with TRAIL and 
varying concentrations of glipizide significantly increased 
the number of apoptotic cell deaths or going through 
apoptosis compared to glipizide or TRAIL alone (Figure 
1). Some reports have demonstrated that some anti-
diabetic drugs inhibited cancer cell proliferation as well 
as tumors in animal models [45]. However, our western 
blot and ICC results revealed LC3-II was increased and 
p62 was decreased after glipizide treatment in a dose-
dependent manner, though co-treatment of glipizide with 
TRAIL enhanced intracellular apoptosis indicators Ac-
cas3 and Ac-cas8 expression levels compared to treatment 
with TRAIL or glipizide alone (Figure 2). Our results 
also suggested that specific pharmacological inhibitor 
chloroquine promoted the survival of lung adenocarcinoma 
A549 cells (Figure 3 and Figure 4). In addition, genetic 
autophagy inhibitor blocked glipizide mediated apoptosis 
of A549 cells induced by TRAIL (Figure 5 and Figure 6). 
The PI3K/Akt/mTOR signaling pathway plays a cardinal 
role in the tumorigenesis of human tumors [46, 47], which 
makes this pathway a significant target for molecular 
drug therapies. Our results demonstrate that Pretreatment 
of glipizide inducedinhibition of p-Akt and p-mTOR in 
varying concentrations. Western blot analyses revealed 
that LC3-II and p-Akt was suppressed in the presence of 
LY294002 (Figure 7).

In summary, Akt/mTOR signaling pathway 
inhibition by glipizide sensitizes TRAIL-induced tumor 
cell death in A549 cells via autophagy flux. Combined 
treatment of glipizide with TRAIL might be an adequate 
therapeutic technique to carefully treat some TRAIL-
resistant cancers, including lung adenocarcinoma cells.

MATERIALS AND METHODS

Cell culture

Cancer cells originating from human lung (A549, 
HCC-15 and Calu-3) tumors were obtained from the 
American Type Culture Collection (Global Bioresource 
Center, Manassas, VA, USA). Cells were maintained 
in RPMI-1640 (Gibco BRL, Grand Island, NY, USA) 
medium containing 10% fetal bovine serum and 100μg/
ml penicillin-streptomycin. Cells were maintained at 37 
°C and 5% CO2 in humidified incubator.

Reagents

Recombinant glipizide, chloroquine, and LY294002 
(PI3K inhibitor) were purchased from Sigma-Aldrich (St. 
Louis, MO, USA). Recombinant TRAIL (200 ng/ml) was 
purchased from Abfrontier (Geumcheon-gu, Seoul, South 
Korea).

Cell viability analysis

A549, Calu-3 and HCC-15 cells were plated at 1.0 × 
104 cells onto 12-well plates and incubated at 37°C for 24 
h. The cells were pre-incubated with varying concentration 
of glipizide (0, 25, 50, and 100 μM) for 12h and exposed 
to TRAIL for 2h. Additional cells were also pretreated 
with chloroquine (20 μM) and LY294002 (10 μM) for 
1 h, followed by glipizide treatment. Cell morphology 
was examined by photographs taken under inverted 
microscopy (Nikon, Japan). Cell viability was determined 
applying crystal violet staining method as previously 
described [32].

Trypan blue exclusion assay

The number of cell viability was examined by 
trypan blue dye exclusion assay (Sigma-Aldrich) using a 
hemocytometer. The result was mainly expressed as the 
percentage of viable cells compared with that of vehicle-
treated controls.

Western blot analysis

A549 cell lysates were prepared by harvesting, 
washing in cold PBS, resuspending in lysis buffer 
followed by sonication. Proteins (35 μg) were resolved 
by 10%–15% SDS gels and transferred to a nitrocellulose 
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membrane, and analyzed by western blotting as described 
previously [48]. The following antibodies were used for 
immunoblotting: LC3(Novus Biologicals, Littleton, CO, 
USA), p62 (Millipore Corp., Milford, MA, USA), ATG5, 
cleaved caspase-3, mTOR (Cell Signaling Technology, 
Danvers, MA, USA), DR-4, DR-5, and ß-actin Sigma-
Aldrich (St. Louis, MO, USA), cleaved caspase-8 (BD 
pharmingen, USA), p-Akt (Abcam, England).

Immunocytochemistry

A549 cell lines cultured on glass coverslips 
positioned on a 24-well plate. The cells were washed 
with PBS and fixed with 4% paraformaldehyde for 
15 min at room temperature. Following this, Cells 
were then washed twice with ice-cold PBS, blocked 
with 5% FBS inTris-buffered saline with Tween, and 
incubated with monoclonal antibodies against p62, 
p-Akt at room temperature for 24 h. Unbound antibody 
was removed with PBS wash ( three times) and Cells 
were then incubated again with secondary antibody at 
room temperature for 2 h in the dark. Finally, cells were 
mounted with DakoCytomation fluorescent mounting 
medium and visualized via a fluorescence microscopy.

TEM (Transmission Electron Microscopy) 
analysis

TEM samples were analyzed by Transmission 
Electron Microscope (JEM-2010, JEOL) installed in the 
Center for University-Wide Research Facilities (CURF) at 
Chonbuk National University. After fixation of A549 cell 
samples in 2 % glutaraldehyde and 2 % paraformaldehyde 
in 0.05 sodium cacodylate buffer, specimens were post 
fixed in 1% osmium tetroxide, dehydrated in graded 
ethanol and propylene oxide. A549 cells were embedded 
in Epoxy resin. Ultrathin sections were cut on an LKB-III 
ultratome and were stained with 0.5% uranyl acetate and 
lead citrate. The images were taken on a Hitachi H7650 
electron microscope at an accelerating voltage of 100 kV.

RNA interference

A549 cells were transfected with ATG5-specific 
small interfering RNA (siRNA; oligo ID HSS114103; 
Invitrogen, Carlsbad, CA, USA) using Lipofectamine 
2000 according to the manufacturer’s instructions. After 
36-h post transfection, the knockdown efficiency at protein 
level was observed by immunoblotting and cell viability 
test. Nonspecific siRNA was used as a negative control.

Statistical analysis

All data are expressed as means ± standard deviation 
(SD) and were compared using the Student’s t-test, 
analysis of variance and the ANOVA Duncan test using 
SAS statistical package (SAS Institute, Cary, NC, USA). 

Statistical significance was indicated by a P value less 
than 0.05 (*), 0.01 (**), or 0.001 (***).
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