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ABSTRACT

Glioma is one of the most common primary brain tumors with poor prognosis. 
Although radiotherapy is an important treatment method for gliomas, the efficacy is 
still limited by the high occurrence of radioresistance and the underlying molecular 
mechanism is unclear. Here, we performed a data mining work based on four glioma 
expression datasets. These datasets were classified into training set and validation set.
Radiotherapy-induced differential expressed genes and prognosis-associated genes 
were screened using different classifiers. The Kaplan-Meier curves along with the two-
sided Log Rank (Mantel-Cox) test were used to evaluate overall survival. We found 
the gene expression profiles of gliomas between those patients received radiotherapy 
and those patients without received radiotherapy were quite different. A 20-gene 
signature was identified, which was associated with radiotherapy.Furthermore, a 
novel 5-gene signature (HOXC10, LOC101928747, CYB561D2, RPL36A and RPS4XP2) 
as an independent predictor of glioma patients’ prognosis was further derived from 
the 20-gene signature. These findings provided a new insight into the molecular 
mechanism of radioresistance in gliomas. The 5-gene signature might represent 
therapeutic target for gliomas.

INTRODUCTION

Glioma is one of the most common primary brain 
tumors in adults and malignant gliomas, accounting for 
approximately 70% of malignant primary brain tumors [1, 
2]. According to the World Health Organization (WHO) 
classification based on four main features: nuclear atypia, 

mitoses, microvascular proliferation, and necrosis, 
gliomas are classified as: grade I (pilocytic astrocytomas, 
PA), grade II (low grade), grade III (anaplastic) and 
grade IV (glioblastoma, GBM) [3]. Recently, there have 
been important advances in understanding the molecular 
pathogenesis of malignant gliomas [4] and significant 
progress in its treatment [5]. However, the overall survival 
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of gliomas remains poor. The median survival time is only 
12 to 15 months for patients with GBM and 2 to 5 years 
for patients with anaplastic gliomas [1]. Radiotherapy with 
ionizing radiation (IR) is used for the treatment of low 
grade gliomas [6] and GBM [7]. However, its efficacy is 
often limited by the occurrence of radioresistance [8] and 
the heterogeneity of gliomas with different histological 
subtypes and grades [9]. Furthermore, the molecular 
mechanism responsible for the radioresistance of human 
gliomas is still unclear. Exploration of the molecular 
alterations after radiotherapy may provide comprehensive 
understanding of radioresistance in gliomas. In this 
study, we attempt to find a gene signature associated with 
radiotherapy and prognosis in gliomas. After downloading 
microarray data sets of gliomas from the Gene Expression 
Omnibus (GEO) database and TCGA database, and 
analyzing the differentially expressed genes (DEGs) with 
different classifiers between glioma samples that received 
radiotherapy and that did not receive radiotherapy, we 
successfully obtained a 20-gene signature that was 
associated to radiotherapy. Then we further identified a 
5-gene signature from the 20-gene signature which was 
predictive for the prognosis of glioma patients in different 
data sets.

RESULTS

A 20-gene signature associated with radiotherapy 
in gliomas

To explore gene markers associated with 
radiotherapy in gliomas, data mining was conducted. Three 
data sets were divided into a training set (GSE13041) 
including 218 patients and 2 validation sets (GSE7696 
and TCGA cohort) including 628 patients. First, we used 5 
different classifiers to re-classify the clinical samples into 
radiation group and no radiation group in the training set. 
As a result, we identified a 20-gene signature (ANAPC1, 
BTBD7, CA11, CYB561D2, DRD5, FKBP6, HOXC10, 
LAMB4, LOC101928747, PADI1, PAX3, PF4, PYGM, 
QPCTL, RPL36A, RPS4XP2, SLC18A1, TP53TG3, 
USB1, ZNF280A in Supplementary Table 1) that was 
associated with radiotherapy in gliomas. In detail, the 20-
gene signature could re-classify the two groups with high 
accuracy between 78% and 87%, high specificity between 
0.796 and 0.928, and high negative predictive value (NPV) 
between 0.851 and 0.917 in different classifiers (Table 1), 
indicating relative high efficiency of this gene signature 
to distinguish glioma patients receiving radiotherapy from 
patients not receiving radiotherapy. When the hierarchical 
clustering analysis was conducted, we also found different 
expression pattern of the 20 genes between radiation group 
and no radiation group (Figure 1A). Furthermore, we used 
the receiver operating characteristic (ROC) curves to 
evaluate the comprehensive ability of this gene signature 

in the 2 linear classifiers (Compound Covariate classifier 
and DLDA classifier) to separate these two groups. As 
a result, the 20-gene signature could separate these two 
groups with AUC value of 0.773 in Compound Covariate 
classifier (Figure 2A) and 0.753 in DLDA classifier 
(Figure 2B), respectively. This result further indicated 
moderate ability of this gene signature to separate these 
two groups in the training set. Afterwards, we used the 
validation sets to verify the result derived from the training 
set. We also found high accuracy between 66% and 88% 
in different classifiers in the TCGA cohort, and high 
accuracy between 66% and 99% in different classifiers in 
the GSE7696, respectively (Table 2). In the hierarchical 
clustering analysis, we found similar differential 
expression pattern of the 20 genes between radiation 
group and no radiation group in the TCGA cohort as that 
in the training set (Figure 1B). Also, moderate ability of 
the 20-gene signature to separate these two groups was 
detected in the TCGA cohort with AUC value of 0.749 in 
Compound Covariate classifier (Figure 2C) and 0.790 in 
DLDA classifier (Figure 2D), respectively.

Identification of a 5-gene signature related to 
prognosis of glioma patients

A 20-gene signature associated with radiotherapy in 
gliomas has been identified, suggesting that the expression 
changes of these genes in gliomas might be induced by 
radiotherapy. We further hypothesize that some of them 
might be associated with radioresistance in gliomas 
and thus could influence the prognosis of the patients. 
Next, we tried to screen genes which were related to the 
prognosis of glioma patients from the 20-gene signature. 
In order to achieve this goal, GSE13041 was also used 
as the training set while GSE7696, GSE16011 and the 
TCGA cohort were used as the validation sets. First, 
when univariable Cox proportional hazards regression 
analysis was used in the training set, we obtained 5 genes 
(HOXC10, LOC101928747, CYB561D2, RPL36A and 
RPS4XP2) which were highly associated with patients’ 
prognosis from the 20-gene signature (Table 3). The 
random survival forests algorithm further validated that all 
the 5 genes were important for survival of glioma patients 
when the cut value of relative importance was set as 0.1 
(Figure 3 and Table 3). Then we successfully constructed 
a risk score model according to the expression levels of 
these 5 genes as follows: Risk score = 0.469×CYB561D2 
+ 0.197×HOXC10 - 0.066×RPS4XP2 - 0.506×RPL36A - 
0.645×LOC101928747. Next, all patients in the training 
set and the validation sets were divided into the high-risk 
group and the low-risk group according to the median risk 
score. The distribution of risk scores and the survival status 
of all the patients in the 4 data sets were showed in Figure 
4A, 4B. We found that the radio of alive patients over 
dead patients at the endpoint of follow-up in the low-risk 
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Figure 1: Hierarchical clustering analysis of GSE13041 and the TCGA cohort. (A) Result of GSE13041. (B) Result of the 
TCGA cohort. Rows represent genes, and columns represent patients. Red, high expression; blue, low expression, according to Z scores.

Table 1: The ability of the 20-gene signature in separating the radiation group from the no radiation group in 
different classifiers in the training set GSE13041

Classifier Sensitivity Specificity PPV NPV Accuracy(%)

Compound 
covariate 0.541 0.928 0.606 0.908 86

DLDA 0.459 0.928 0.567 0.894 85

1-Nearest 
Neighbor 0.243 0.884 0.300 0.851 78

3-Nearest 
Neighbor 0.270 0.917 0.400 0.860 81

Nearest Centroid 0.622 0.851 0.460 0.917 81

Bayesian CCP 0.432 0.796 0.302 0.873 87

DLDA: Diagonal Linear Discriminant Analysis; PPV: positive predictive value; NPV: negative predictive value.
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group was significantly higher than that in the high-risk 
group (Likelihood ratio test, p=9.138e-05). When Kaplan-
Meier curves were used to further evaluate the difference 
of overall survival (OS) between the two groups, we found 
patients in the high-risk group had significantly shorter OS 
than those in the low-risk group (Log Rank test, P=0.011 
in GSE13041, P<0.0001 in GSE7696, GSE16011, and the 
TCGA cohort) (Figure 5A, 5B). These results indicated 

that the 5-gene signature was indeed associated with the 
prognosis of glioma patients.

Prognosis prediction by the 5-gene signature is 
independent of clinical and pathological factors

To assess whether the prognosis prediction 
ability of the 5-gene signature is independent of other 

Figure 2: Comprehensive ability of the 20-gene signature to separate radiation group and no radiation group in 
GSE13041 and the TCGA cohort. The ROC curves were used in 2 different linear classifiers (DLDA classifier and Compound 
Covariate classifier). (A) ROC curve for Compound Covariate classifier in GSE13041. (B) ROC curve for DLDA classifier in GSE13041. 
(C) ROC curve for Compound Covariate classifier in the TCGA cohort. (D) ROC curve for DLDA classifier in the TCGA cohort.
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clinical or pathological factors of the patients with 
gliomas, univariate and multivariable Cox regression 
analysis was performed in GSE13041, GSE7696, 
GSE16011 and the TCGA cohort. As shown in Table 4, 
univariable and multivariable Cox regression analysis 
both indicated that the risk score was significantly 
associated with poor prognosis of glioma patients in 
most data sets (GSE7696, GSE16011 and the TCGA 
cohort) (for GSE7696, HR=13.20, 95% CI 2.58 to 67.57, 
P=0.0020 in univariable model, and HR=21.61, 95% CI 
2.99 to 156.07, P=0.0020 in multivariable model; for 
GSE16011, HR=3.27, 95% CI 2.24 to 4.97, P=9.80×10-
10 in univariable model, and HR=2.16, 95% CI 1.19 to 
3.90, P=0.0010 in multivariable model; for the TCGA 
cohort, HR=2.23, 95% CI 1.51 to 3.30, P=9.33E-05 
in univariable model, and HR=1.69, 95% CI 1.08 to 
2.63, P=0.022 in multivariable model), though not 
significantly in GSE13041 (HR=0.946, 95% CI 0.392 
to 2.281, P=0.901 in univariable model, and HR=0.75, 
95% CI 0.28 to 2.04, P=0.58 in multivariable model). 
These results indicated that the risk score based on the 
5-gene signature might be an independent predictor of 
glioma patients’ survival.

Identification of the 5-gene signature associated 
biological pathways and processes by GSEA

To identify the 5-gene signature associated 
biological pathways and processes, Gene Set Enrichment 
Analysis (GSEA) was performed in the GSE13041 
cohort. The gene expression profile in the high-risk group 
and low-risk group were compared. As a result, several 
cancer related pathways or processes such as p53 signaling 
pathway and peroxisome were enriched in the high-risk 
group, while cancer related pathways or processes such as 
hedgehog signaling pathway and retinol metabolism were 
enriched in the low-risk group (Figure 6).

DISCUSSION

In this study, we examined the gene profiles of 
glioma tissues from patients receiving or not receiving 
radiotherapy and identified a 20-gene signature associated 
with radiotherapy in gliomas. Furthermore, a 5-gene 
signature associated with the prognosis of glioma patients 
was identified from the 20-gene signature. This 5-gene 
signature is also an independent predictor of glioma 
patients’ survival. Malignant tumors show massive 
molecular alterations including gene mutations and 

Table 2: The accuracy of the 20-gene signature in separating the radiation group from the no radiation group in 
different classifiers in the validation sets (GSE7696 and the TCGA cohort)

Classifier
The TCGA cohort GSE7696

Accuracy(%) Accuracy(%)

Compound covariate 84 66

DLDA 66 99

1-Nearest Neighbor 86 86

3-Nearest Neighbor 88 88

Nearest Centroid 88 80

Bayesian CCP 86 95

Table 3: A 5-gene signature identified from the 20-gene by univariable Cox proportional hazards regression analysis 
and the random survival forests algorithm

Gene
Univariable Cox proportional hazards regression 

analysis The random survival forests algorithm

Parametric P-value FDR Hazard ratio Variable importance Relative importance

HOXC10 < 1×10-7 < 1×10-7 1.521 0.0094 0.2614

LOC101928747 < 1×10-7 1×10-6 0.423 0.036 1

CYB561D2 6×10-7 4×10-6 2.247 0.0063 0.175

RPL36A 9×10-7 4.5×10-6 0.542 -0.0045 -0.1253

RPS4XP2 2×10-6 8×10-6 0.605 -0.0061 -0.1701
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abnormal gene expression. The differentially expressed 
genes between tumors and normal tissues could be used 
as biomarkers of malignant tumors. However, single-
gene biomarkers may result in low reproducibility across 
different data sets, while gene signature with a panel of 
genes may be superior to single-gene biomarkers [10]. 
In fact, the potential of gene signatures as biomarkers 
of malignant tumors have been widely explored since 
the pioneering study of molecular classification in acute 
myeloid leukemia (AML) [11]. In the following studies, 
gene signatures as classification markers [12, 13], 
diagnosis markers [14, 15], prognosis predictors [15–20] 
and markers of treatment response [21–23] were identified 
in different kinds of malignant tumors. As for gliomas, 
gene signatures were also identified for classification [24] 
and prognosis prediction [25]. However, few biomarkers 
are specific to radiotherapy or can indicate response to 
radiotherapy for glioma patients. In this study, we obtained 
a radiotherapy-specific 20-gene signature in gliomas, and 
further identified a 5-gene signature with prognostic value 

from the 20-gene signature, which may be used as new 
biomarkers for glioma patients receiving radiotherapy. As 
previously reported [10], the criteria to establish a gene 
signature as a marker of a particular treatment method or a 
prognosis predictor are as follows. First, the gene signature 
shows specific association with this treatment or patients’ 
prognosis. Second, the accuracy and reproducibility of 
the gene signature are demonstrated in independent data 
sets. Third, the gene signature is independent of other 
clinical factors in a multivariate analysis. Here, we first 
identified a 20-gene signature associated with radiotherapy 
in glioma patients. Then a 5-gene signature associated 
with patients’ survival was generated from the 20-gene 
signature. Both the association between the 20-gene 
signature and radiotherapy, and the prognostic value of 
the 5- gene signature were validated in training set and 
several validation sets. Moreover, the risk score based on 
the 5-gene signature was still significantly associated with 
poor prognosis of glioma patients in most data sets by in 
univariable and multivariable Cox regression analysis. 

Figure 3: Result of the random survival forests algorithm in GSE13041. Left: Error rate of the function tree; Right: variable 
importance values for each of the 5 gene.
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Figure 4: Risk score analysis of GSE13041, GSE7696, GSE16011 and the TCGA cohort. The distribution of risk score based 
on the 5-gene signature, patients’ survival status and the 5-gene expression profiles were analyzed in each of the 4 data sets. (A) Risk score 
distribution of all the patients in the 4 data sets; (B) patients’ survival status and time of all the patients in the 4 data sets; (C) heatmap of the 
5-gene expression profiles. Rows represent genes, and columns represent patients. Red, high expression; blue, low expression, according 
to Z scores. The black dotted line represents the median risk score. According to the median risk score, patients were divided into lowrisk 
and high-risk groups.
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Therefore, we identified promising and stringent gene 
signatures which could be used as reliable biomarkers in 
gliomas. Besides, single bioinformatics model is usually 
prone to false-positive candidate genes lacking real 
biological relevance or less clinical utility [26]. Also, the 
FDR (False Discovery Rate) can be very high when the 
study is based on small-size samples (often less than 50 

patients) [26]. To improve the reliability of our results, we 
chose data sets with more than 50 patients (in particular, 
the largest data set, the TCGA cohort includes a total of 
548 patients), used 5 different classifiers during the data 
mining and carefully validated the results in different 
data sets. The 5-gene signature consists of CYB561D2, 
HOXC10, RPL36A, RPS4XP2 and LOC101928747. 

Figure 5: Kaplan-Meier analysis of OS of patients in the low-risk group and the high-risk group in GSE13041, 
GSE7696, GSE16011 and the TCGA cohort. (A) Kaplan-Meier curves in GSE13041 (high risk=8, low risk=32). (B) Kaplan-Meier 
curves in GSE7696 (high risk=14, low risk=66). (C) Kaplan-Meier curves in GSE16011 (high risk=34, low risk=226). (D) Kaplan-Meier 
curves in the TCGA cohort (high risk=230, low risk=229). The tick marks on the Kaplan-Meier curves represent the censored subjects.
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Among them, CYB561D2 is a member of the cytochrome 
b561 family, being a hydrophobic, transmembrane heme 
protein. It is capable of oxidationreduction reaction and 
is a candidate tumor suppressor gene [27, 28]. HOXC10 
belongs to the homeobox family which encodes a highly 
conserved family of transcription factors that play an 
important role in morphogenesis, cell differentiation and 
proliferation. HOXC10 dys-function is found in thyroid 

cancer [29], breast cancer [30] and cervical squamous cell 
carcinomas [31]. RPL36A encodes a ribosomal protein 
that is a component of the 60S subunit of cytoplasmic 
ribosomes. The protein, which shares sequence similarity 
with yeast ribosomal protein L44, belongs to the L44E 
(L36AE) family of ribosomal proteins. RPL36A over-
expression is found in hepatocellular carcinoma [32]. For 
RPS4XP2 and LOC101928747, their function is almost 

Table 4: Results of univariate and multivariable Cox regression analysis of GSE13041

Parameters
Univariable model Multivariable model

HR 95%CI of HR P value HR 95%CI of HR P value

GSE13041

 Risk_score 546.45 0-38801829122.39 0.49 0.75 0.28-2.04 0.58

 Age 1.01 0.99-1.03 0.36 1.03 1.00-1.05 0.056

 HC 0.96 0.66-1.39 0.83 0.91 0.64-1.30 0.61

 HC_coded 0.48 0.23-0.99 5.00×10-2 0.36 0.16-0.81 0.013

 Gender 0.68 0.33-1.38 0.28 0.49 0.22-1.06 0.069

  Chemotx_administered_
prior_to_tumor_resection 1.08 0.47-2.50 0.85 1.56 0.51-4.75 0.43

  Temodar_administered_
prior_to_tumor_resection 1.22 0.62-2.40 0.56 1.47 0.58-3.70 0.42

 FUFA 2.90 0.39-21.35 0.30 8.09 0.96-68.00 0.054

GSE7696

 Risk_score 13.20 2.58-67.57 0.0020 21.61 2.99-156.07 0.0020

 Disease_status 0.15 0.019-1.20 0.074 0.13 0.011-1.48 0.10

 Age 1.04 0.96-1.13 0.32 1.09 0.99-1.21 0.095

 Gender 0.35 0.095-1.27 0.11 0.41 0.077-2.18 0.30

 Mgmt 2.12 0.22-20.73 0.52 12.44 0.65-238.48 0.094

GSE16011

 Risk_score 3.27 2.24-4.79 9.80×10-10 2.16 1.19-3.90 0.0010

 Gender 1.08 0.82-1.42 0.60 0.82 0.55-1.22 0.33

 Histological diagnosis 0.86 0.81-0.92 3.44×10-6 0.84 0.76-0.94 0.011

 Age 1.04 1.03-1.05 1.01×10-6 1.03 1.01-1.04 0.046

 KPS score 0.98 0.97-0.99 1.61×10-7 0.98 0.97-0.99 0.0030

 Chemotherapy 0.81 0.57-1.13 0.21 0.94 0.53-1.65 0.82

 IDH1_mutation 0.55 0.41-0.75 1.17×10-4 0.62 0.41-0.95 0.026

The TCGA cohort

 Risk_score 2.23 1.51-3.30 0 1.69 1.08-2.63 0.022

 Gender 1.08 0.87-1.35 0.47 1.11 0.86-1.43 0.42

 KPS score 0.99 0.98-0.99 0.0060 0.99 0.98-1.00 0.063

 Age 1.02 1.01-1.03 5.24×10-7 1.02 1.01-1.03 0.0010
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unknown. The biological function of these 5 genes in 
gliomas might be of great importance for understanding 
the molecular mechanisms of radioresistance and 
potential biomarkers in predicting prognosis in gliomas. 
Taken together, it suggests that both tumor suppressors 
and oncogenes may affect the prognosis of gliomas. 
In summary, we have shown that the gene expression 
profiles of glioma tissues are different between patients 
that received radiotherapy and patients that didn’t 

received radiotherapy. Furthermore, we obtained a 20-
gene signature associated with radiotherapy in gliomas 
and a 5-gene signature as an independent predictor of 
glioma patients’ prognosis. One limitation of this study 
is that treatment response was not evaluated because this 
information was not available in most cases. The potential 
of the 5-gene signature as a biomarker for radioresistance 
in gliomas deserves validation in the future study.

Figure 6: Gene set enrichment analysis reveals the 5-gene signature associated biological pathways and processes in 
the GSE13041 cohort. GSEA validated (A) p53 signaling pathway and (B) peroxisome were enriched in the high-risk group, and (C) 
hedgehog signaling pathway and (D) retinol metabolism were enriched in the low-risk group.
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MATERIALS AND METHODS

Data sets of gliomas

A total of 4 independent data sets of gliomas 
including GSE13041 [33], GSE7696 [34], GSE16011 [35] 
and the TCGA cohort [36] were downloaded and analyzed. 
Among them, GSE13041, GSE7696 and GSE16011 were 
downloaded from the GEO database (Gene Expression 
Omnibus, http://www.ncbi.nlm.nih.gov/geo/), and the 
TCGA cohort was downloaded from the TCGA database. 
GSE13041 has 2 subsets. One subset with 23 patients 
receiving radiotherapy and 168 patients not receiving 
radiotherapy was profiled with Affymetrix Human 
Genome U133A Array [HGU133A] platform. The other 
one with 17 patients receiving radiotherapy and 10 patients 
not receiving radiotherapy was profiled with Affymetrix 
Human Genome U133 Plus 2.0 Array [HG-U133_Plus_2] 
platform. The clinical outcome information of the 23 
patients receiving radiotherapy in the [HG-U133A] 
subset and the 17 patients receiving radiotherapy in the 
[HG-U133_Plus_2] subset was available. GSE7696 was 
profiled with [HG-U133_Plus_2] platform and included 
70 radiosensitive patients and 10 radioresistant patients. 
The clinical outcome information of all the 80 patients was 
available. GSE16011was profiled with [HGU133_Plus_2] 
platform and it was used only for the prognosis analysis 
with a total of 260 patients. The TCGA cohort was profiled 
with [HG-U133A] platform and included 460 patients 
receiving radiotherapy and 88 patients not receiving 
radiotherapy. The clinical outcome information of 459 of 
the 460 patients receiving radiotherapy was available. The 
status of radiotherapy is shown in Supplementary Table 2.

Data processing

After the CEL file of each data set was downloaded, 
the background was corrected. The raw probe intensities 
were normalized with the Robust Multichip Average 
(RMA) [37] method and converted into standardized 
expression data. Then, we found 13238 common genes 
among the two platforms and they were used to screen 
markers of gliomas in subsequent analysis. For genes 
with more than one probe, the average probe intensity of 
the same gene was used to calculate its expression value. 
In order to avoid the systematic error between different 
platforms, each data set was standardized independently 
by transforming the expression of each gene to a mean 
of 0 and SD of 1. The expression profiles were pooled 
together and then considered them as a single data set [38].

Identification of a gene signature associated with 
radiotherapy

GSE13041 was defined as the training set, while 
GSE7696 and the TCGA cohort were defined as the 

validation sets. First, 5 different classifiers including 
Compound Covariate classifier [39], Diagonal Linear 
Discriminant Analysis (DLDA) classifier [40], Bayesian 
CCP classifier, Nearest Neighbor classifier (1-Nearest 
Neighbor & 1-Nearest Neighbor) [41] and Nearest Centroid 
classifier, were used to re-classify patients receiving 
radiotherapy (radiation group) and patients not receiving 
radiotherapy (no radiation group) for exploring specific gene 
markers that could efficiently separate radiation group from 
the no radiation group. Among the 5 classifiers, Compound 
Covariate classifier and DLDA are linear classifiers. During 
this process, “leave one out cross validation” was used to 
increase the accuracy and stability of the results. With this 
method, a total of 20 genes with classification error rate 
less than 0.16 were identified as genes that were associated 
with radiotherapy in gliomas in the training set. Then, the 
accuracy, sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV) of the 20-
gene signature in separating the radiation group from the 
no radiation group in different classifiers were calculated. 
The hierarchical clustering analysis [42] was performed to 
visually evaluate the expression of the 20-gene signature 
between these two groups. Hierarchical clustering analysis 
of gene expression profiles was done based on centered 
correlation metric and average linkage method. Also, 
to evaluate the comprehensive ability to separate these 
two groups, the receiver operating characteristic (ROC) 
curves were graphed and area under the curve (AUC) 
was calculated in these two linear classifiers. Next, two 
validation sets were used to validate the results in the 
training set. Moreover, the ability of the 20-gene signature 
in separating these two groups was evaluated by calculating 
the accuracy in different classifiers, hierarchical clustering 
analysis and ROC curves.

Identification of a gene signature associated with 
prognosis of glioma patients

A total of 4 datasets were divided into the 
training set (GSE13041) and validation sets (GSE7696, 
GSE16011, and the TCGA cohort). The training set was 
used to detect a gene signature associated with prognosis 
of glioma patients, and the validation sets were used to 
verify the reliability of this gene signature. In the training 
set, univariable Cox proportional hazards regression 
analysis [43] was used. When random permutation test 
was used and genes with P values less than 0.001 were 
selected, we obtained a 5-gene signature from the above 
20-gene signature. Then, the random survival forests 
algorithm [44–46] was performed to evaluate the relative 
importance of each gene to further screen genes associated 
with the survival of the patients from the 5-gene signature. 
In this process, number of trees (N tree) was set as 1000, 
and genes with relative importance more than 0.1 were 
selected. In fact, the 5 genes were all confirmed to have 
relative importance more than 0.1. Thus, all the 5 genes 
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were included for subsequent analysis. Then, a risk score 
model as described previously [46] was constructed using 
a multivariable Cox regression model based on the 5-gene 
signature. Risk score of each patient in the training and 
validation sets was calculated. Patients in the training set 
and the validation sets were divided into highrisk and 
low-risk groups using the median risk score as the cut-
off. Then the Kaplan-Meier curves were used to further 
evaluate the difference of overall survival between the 
two groups, and the hierarchical clustering analysis was 
performed to visually evaluate the expression of the 
5-gene signature between these two groups. Differences in 
survival time between the low-risk and high-risk groups in 
each data set were then compared using the two-sided Log 
Rank (Mantel-Cox) test. Finally, the risk score, together 
with other clinicopathological parameters were analyzed 
in univariate and multivariable Cox regression model to 
verify whether the risk score based on the 5-gene signature 
is an independent predictor of glioma patients’ prognosis 
in the training set and the validation sets.

Gene set enrichment analysis (GSEA)

GSEA was performed using MSigDB C2 CP: 
Canonical pathways gene set collection. Biological 
pathways and processes with relative high NES values 
were considered to be significantly enriched. Enrichment 
Map was used for visualizing the GSEA results.

Statistical analysis

The data mining was performed with R software, 
while other statistical analysis was performed by SPSS 
(version 17.0). The ROC curves were used to evaluate the 
ability of the gene signature to separate the radiotherapy 
group from the no radiotherapy group and AUC of each 
curve was calculated. The Kaplan-Meier curves were used 
to evaluate overall survival of the high-risk group and 
the low-risk group, along with the two-sided Log Rank 
(Mantel-Cox) test to determine if the difference between 
the two groups was significant. Other statistical methods 
included the Cox proportional hazard models, univariate 
and multivariable Cox regression model. In this study, 
all statistical tests were two-tailed and differences were 
considered statistically significant if P-values<0.05.

Abbreviations

acute myeloid leukemia (AML); area under the 
curve (AUC); differentially expressed genes (DEGs); 
Diagonal Linear Discriminant Analysis (DLDA); False 
Discovery Rate (FDR); Gene Expression Omnibus (GEO); 
glioblastoma (GBM); ionizing radiation (IR); negative 
predictive value (NPV); overall survival (OS); positive 
predictive value (PPV); Robust Multichip Average 
(RMA); receiver operating characteristic (ROC); World 
Health Organization (WHO).

Author contributions

SL, HG, YY, QC, ZZ, XW, BL, LM, JZ and PZ 
performed the data mining and analysis. HH, BT and SL 
conceived the study and wrote the manuscript. All authors 
read and approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare that they have no competing 
interests.

FUNDING

This work was supported by by Anhui Provincial 
College Key Foundation for Outstanding young talent 
(gxyqZD2016172) and The Provincial College Quality 
Project for Anhui Province (2016jxtd127). This work was 
also supported by NSFC81302187 and CWS14C063.

REFERENCES

1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J 
Med. 2008; 359:492-507.

2. DeAngelis LM. Brain tumors. N Engl J Med. 2001; 
344:114-123.

3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger 
PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO 
classification of tumours of the central nervous system. Acta 
Neuropathol. 2007; 114:97-109.

4. Bralten LB, French PJ. Genetic alterations in glioma. 
Cancers (Basel). 2011; 3:1129-1140.

5. Norden AD, Wen PY. Glioma therapy in adults. Neurologist. 
2006; 12:279-292.

6. Pedersen CL, Romner B. Current treatment of low grade 
astrocytoma: a review. Clin Neurol Neurosurg. 2013; 
115:1-8.

7. Omuro A, DeAngelis LM. Glioblastoma and other 
malignant gliomas: a clinical review. JAMA. 2013; 
310:1842-1850.

8. Noda SE, El-Jawahri A, Patel D, Lautenschlaeger T, Siedow 
M, Chakravarti A. Molecular advances of brain tumors in 
radiation oncology. Semin Radiat Oncol. 2009; 19:171-178.

9. Ohgaki H, Kleihues P. Population-based studies on 
incidence, survival rates, and genetic alterations in 
astrocytic and oligodendroglial gliomas. J Neuropathol Exp 
Neurol. 2005; 64:479-489.

10. Chibon F. Cancer gene expression signatures - the rise and 
fall? Eur J Cancer. 2013; 49:2000-2009.

11. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek 
M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri 
MA, Bloomfield CD, Lander ES. Molecular classification 
of cancer: class discovery and class prediction by gene 
expression monitoring. Science. 1999; 286:531-537.



Oncotarget88986www.impactjournals.com/oncotarget

12. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen 
H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen 
T, Quist H, Matese JC, et al. Gene expression patterns 
of breast carcinomas distinguish tumor subclasses with 
clinical implications. Proc Natl Acad Sci U S A. 2001; 
98:10869-10874.

13. Ross-Adams H, Lamb AD. The genetic classification of 
prostate cancer: what’s on the horizon? Future Oncol. 2016; 
12:729-733.

14. Schneider J, Ruschhaupt M, Buness A, Asslaber M, 
Regitnig P, Zatloukal K, Schippinger W, Ploner F, Poustka 
A, Sultmann H. Identification and meta-analysis of a small 
gene expression signature for the diagnosis of estrogen 
receptor status in invasive ductal breast cancer. Int J Cancer. 
2006; 119:2974-2979.

15. Francis P, Namlos HM, Muller C, Eden P, Fernebro J, 
Berner JM, Bjerkehagen B, Akerman M, Bendahl PO, 
Isinger A, Rydholm A, Myklebost O, Nilbert M. Diagnostic 
and prognostic gene expression signatures in 177 soft tissue 
sarcomas: hypoxia-induced transcription profile signifies 
metastatic potential. BMC Genomics. 2007; 8:73.

16. Patsialou A, Wang Y, Lin J, Whitney K, Goswami S, Kenny 
PA, Condeelis JS. Selective gene-expression profiling of 
migratory tumor cells in vivo predicts clinical outcome in 
breast cancer patients. Breast Cancer Res. 2012; 14:R139.

17. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart 
AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, 
Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, et 
al. Gene expression profiling predicts clinical outcome of 
breast cancer. Nature. 2002; 415:530-536.

18. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh 
van Waalwijk van Doorn-Khosrovani S, Boer JM, Beverloo 
HB, Moorhouse MJ, van der Spek PJ, Lowenberg B, Delwel 
R. Prognostically useful gene-expression profiles in acute 
myeloid leukemia. N Engl J Med. 2004; 350:1617-1628.

19. Spentzos D, Levine DA, Ramoni MF, Joseph M, Gu X, 
Boyd J, Libermann TA, Cannistra SA. Gene expression 
signature with independent prognostic significance in 
epithelial ovarian cancer. J Clin Oncol. 2004; 22:4700-4710.

20. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. 
A signature of chromosomal instability inferred from gene 
expression profiles predicts clinical outcome in multiple 
human cancers. Nat Genet. 2006; 38:1043-1048.

21. Torres-Roca JF, Eschrich S, Zhao H, Bloom G, Sung J, 
McCarthy S, Cantor AB, Scuto A, Li C, Zhang S, Jove R, 
Yeatman T. Prediction of radiation sensitivity using a gene 
expression classifier. Cancer Res. 2005; 65:7169-7176.

22. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati 
P, Becette V, Andre S, Piccart M, Campone M, Brain E, 
Macgrogan G, Petit T, Jassem J, et al. A stroma-related gene 
signature predicts resistance to neoadjuvant chemotherapy 
in breast cancer. Nat Med. 2009; 15:68-74.

23. Del Rio M, Molina F, Bascoul-Mollevi C, Copois V, Bibeau 
F, Chalbos P, Bareil C, Kramar A, Salvetat N, Fraslon C, 

Conseiller E, Granci V, Leblanc B, et al. Gene expression 
signature in advanced colorectal cancer patients select drugs 
and response for the use of leucovorin, fluorouracil, and 
irinotecan. J Clin Oncol. 2007; 25:773-780.

24. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross 
JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, 
Batchelor TT, Black PM, von Deimling A, Pomeroy SL, 
et al. Gene expression-based classification of malignant 
gliomas correlates better with survival than histological 
classification. Cancer Res. 2003; 63:1602-1607.

25. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, 
Cloughesy T, Liau LM, Mischel PS, Nelson SF. Gene 
expression profiling of gliomas strongly predicts survival. 
Cancer Res. 2004; 64:6503-6510.

26. Michiels S, Koscielny S, Hill C. Interpretation of 
microarray data in cancer. Br J Cancer. 2007; 96:1155-1158.

27. Recuenco MC, Fujito M, Rahman MM, Sakamoto 
Y, Takeuchi F, Tsubaki M. Functional expression and 
characterization of human 101F6 protein, a homologue of 
cytochrome b561 and a candidate tumor suppressor gene 
product. Biofactors. 2008; 34:219-230.

28. Lerman MI, Minna JD. The 630-kb lung cancer 
homozygous deletion region on human chromosome 
3p21.3: identification and evaluation of the resident 
candidate tumor suppressor genes. The International Lung 
Cancer Chromosome 3p21.3 Tumor Suppressor Gene 
Consortium. Cancer Res. 2000; 60:6116-6133.

29. Feng X, Li T, Liu Z, Shi Y, Peng Y. HOXC10 up-regulation 
contributes to human thyroid cancer and indicates poor 
survival outcome. Mol Biosyst. 2015; 11:2946-2954.

30. Pathiraja TN, Nayak SR, Xi Y, Jiang S, Garee JP, Edwards 
DP, Lee AV, Chen J, Shea MJ, Santen RJ, Gannon F, 
Kangaspeska S, Jelinek J, et al. Epigenetic reprogramming 
of HOXC10 in endocrine-resistant breast cancer. Sci Transl 
Med. 2014; 6:229ra241.

31. Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble 
CL, Fearon ER, Cho KR. Gene expression analysis of 
preinvasive and invasive cervical squamous cell carcinomas 
identifies HOXC10 as a key mediator of invasion. Cancer 
Res. 2007; 67:10163-10172.

32. Kim JH, You KR, Kim IH, Cho BH, Kim CY, Kim DG. 
Over-expression of the ribosomal protein L36a gene is 
associated with cellular proliferation in hepatocellular 
carcinoma. Hepatology. 2004; 39:129-138.

33. Lee Y, Scheck AC, Cloughesy TF, Lai A, Dong J, Farooqi 
HK, Liau LM, Horvath S, Mischel PS, Nelson SF. Gene 
expression analysis of glioblastomas identifies the major 
molecular basis for the prognostic benefit of younger age. 
BMC Med Genomics. 2008; 1:52.

34. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, 
Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven 
MC, Hainfellner JA, Heppner FL, Dietrich PY, et al. Stem 
cell-related “self-renewal” signature and high epidermal 
growth factor receptor expression associated with resistance 



Oncotarget88987www.impactjournals.com/oncotarget

to concomitant chemoradiotherapy in glioblastoma. J Clin 
Oncol. 2008; 26:3015-3024.

35. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi 
JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten 
LB, Kloosterhof NK, De Moor B, Eilers PH, van der Spek 
PJ, et al. Intrinsic gene expression profiles of gliomas are 
a better predictor of survival than histology. Cancer Res. 
2009; 69:9065-9072.

36. Cancer Genome Atlas Research Network. Comprehensive 
genomic characterization defines human glioblastoma genes 
and core pathways. Nature. 2008; 455:1061-1068.

37. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, 
Antonellis KJ, Scherf U, Speed TP. Exploration, 
normalization, and summaries of high density 
oligonucleotide array probe level data. Biostatistics. 2003; 
4:249-264.

38. Woo HG, Park ES, Cheon JH, Kim JH, Lee JS, Park BJ, 
Kim W, Park SC, Chung YJ, Kim BG, Yoon JH, Lee 
HS, Kim CY, et al. Gene expression-based recurrence 
prediction of hepatitis B virus-related human hepatocellular 
carcinoma. Clin Cancer Res. 2008; 14:2056-2064.

39. Huang CC, Cutcliffe C, Coffin C, Sorensen PH, Beckwith 
JB, Perlman EJ. Classification of malignant pediatric renal 
tumors by gene expression. Pediatr Blood Cancer. 2006; 
46:728-738.

40. Lin WJ, Chen JJ. Class-imbalanced classifiers for high-
dimensional data. Brief Bioinform. 2013; 14:13-26.

41. Ay A, Gong D, Kahveci T. Network-based prediction of 
cancer under genetic storm. Cancer Inform. 2014; 13:15-31.

42. Liu CH, Li M, Feng YQ, Hu YJ, Yu BY, Qi J. Determination 
of ruscogenin in Ophiopogonis Radix by high-performance 
liquid chromatography-evaporative light scattering detector 
coupled with hierarchical clustering analysis. Pharmacogn 
Mag. 2016; 12:13-20.

43. Milione M, Maisonneuve P, Spada F, Pellegrinelli A, 
Spaggiari P, Albarello L, Pisa E, Barberis M, Vanoli 
A, Buzzoni R, Pusceddu S, Concas L, Sessa F, et 
al. The clinicopathologic heterogeneity of grade 3 
gastroenteropancreatic neuroendocrine neoplasms: 
morphological differentiation and proliferation identify 
different prognostic categories. Neuroendocrinology. 2017; 
104:85-93.

44. Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Wang S, 
Zhou F, Shi S, Feng X, Sun N, Liu Z, Skogerboe G, et al. 
LncRNA profile study reveals a three-lncRNA signature 
associated with the survival of patients with oesophageal 
squamous cell carcinoma. Gut. 2014; 63:1700-1710.

45. Li X, Zhang Y, Ding J, Wu K, Fan D. Survival prediction of 
gastric cancer by a sevenmicroRNA signature. Gut. 2010; 
59:579-585.

46. Meng J, Li P, Zhang Q, Yang Z, Fu S. A four-long non-
coding RNA signature in predicting breast cancer survival. 
J Exp Clin Cancer Res. 2014; 33:84.


