
Oncotarget96013www.impactjournals.com/oncotarget

Radial gradient and radial deviation radiomic features from 
pre-surgical CT scans are associated with survival among lung 
adenocarcinoma patients

Ilke Tunali1,3,4, Olya Stringfield1, Albert Guvenis3, Hua Wang5, Ying Liu5, Yoganand 
Balagurunathan1, Philippe Lambin6, Robert J. Gillies1 and Matthew B. Schabath2

1Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
2Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
3Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
4Faculty of Biomedical Engineering, Namik Kemal University, Tekirdag, Turkey
5Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of 
Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China

6Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht, The Netherlands

Correspondence to: Matthew B. Schabath, email: Matthew.Schabath@Moffitt.org
Keywords: radiomics; radial gradient; radial deviation; lung adenocarcinoma; quantitative imaging
Received: March 12, 2017    Accepted: August 26, 2017    Published: October 06, 2017
Copyright: Tunali et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

ABSTRACT

The goal of this study was to extract features from radial deviation and radial 
gradient maps which were derived from thoracic CT scans of patients diagnosed with 
lung adenocarcinoma and assess whether these features are associated with overall 
survival. We used two independent cohorts from different institutions for training (n= 
61) and test (n= 47) and focused our analyses on features that were non-redundant 
and highly reproducible. To reduce the number of features and covariates into a 
single parsimonious model, a backward elimination approach was applied. Out of 48 
features that were extracted, 31 were eliminated because they were not reproducible 
or were redundant. We considered 17 features for statistical analysis and identified a 
final model containing the two most highly informative features that were associated 
with lung cancer survival. One of the two features, radial deviation outside-border 
separation standard deviation, was replicated in a test cohort exhibiting a statistically 
significant association with lung cancer survival (multivariable hazard ratio = 
0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological 
underpinnings of these features and found radial gradient and radial deviation image 
features were significantly associated with semantic radiological features.

INTRODUCTION

Lung cancer is the second most common cancer 
and is the leading cause of cancer-related death in the 
United States. Lung cancer accounts for more deaths than 
prostate, breast, colon, and pancreatic cancer combined 
[1]. Despite improvements in survival for many other 
cancer types over the last several decades, there has been 
little improvement in lung cancer patient survival, mainly 
because of the fact that by the time a diagnosis is made, the 

cancer is often in advanced stages and treatment options 
are limited. The five-year survival rate for all lung cancers 
(non-small cell lung carcinoma [NSCLC] and small cell 
lung cancer combined) is only 17%; and among NSCLC 
diagnoses, the five-year relative survival rate is 21% [2].

Pathologic staging is the most important prognostic 
factor for lung cancer survival [3]. However, there is 
marked variability in patient outcomes and survival 
among patients with the same stage of disease, which 
suggests that other factors contribute to NSCLC prognosis. 
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These prognostic factors include sex, histology, genetic 
alterations in oncogenes and tumor suppressor genes, 
co-morbidities, and patient performance status [4–9]. 
Additionally, there is emerging evidence that radiological 
and quantitative image features are associated with 
patient outcomes independent of clinical covariates and 
patient characteristics [2, 10–14]. As diagnostic computed 
tomography (CT) scans are routinely obtained during the 
workup of lung cancer patients, image features can provide 
valuable and readily available complementary decision 
support information which could have translational 
implications for improved prediction of patient outcomes 
and further patient stratification.

With high-throughput computing, it is now possible 
to rapidly extract a large number of quantitative image 
features from standard-of-care imaging such as CT. The 
conversion of digital medical images into mineable high-
dimensional data is a process that is known as radiomics. 
Radiomics is motivated by the premise that biomedical 
images contain information that reflects the underlying 
pathophysiology of the region of interest (i.e., lung 
tumor) and that these relationships can be revealed via 
conversion of images to structured data, data-mining, 
and statistical analysis [15]. In this study, we analyzed a 
set of image features extracted from radial gradient (RG) 
and radial deviation (RD) maps generated from thoracic 
CT images. For each voxel in the volume of interest 
(VOI), a radial deviation and a radial gradient value was 
calculated which in-turn formed the radial gradient and 
radial deviation maps. Each voxel in the radial deviation 
map is defined as the angle between a voxel’s gradient 
vector and its radial vector which points towards the 
center of mass of the segmented lesion, whereas each 
voxel in the radial gradient map specified the magnitude 
of gradient along that voxel’s radial vector. Using these 
maps, we generated radial gradient and radial deviation 
features which represent voxel-by-voxel gradient changes 
in the VOI. As such, we expected that these features will 
be sensitive to changes in tumor shape that occur along 
radial directions, such as lobulation and border definition, 
which are important predictive and prognostic features in 
lung cancer [11, 16, 17].

To date there have been very few studies on image 
features derived from radial gradient and radial deviation 
maps [18–20]. Features extracted from radial gradient 
and radial deviation maps were first used in a computer-
aided detection (CADe) system for eliminating false 
positive pulmonary nodule candidates on chest X-ray 
[18]. Messay et al. [19] used these features in a computer-
aided diagnosis system (CADx) to discriminate between 
benign and malignant nodules. In another study from 
this group, radial gradient and radial deviation image 
features were utilized to optimize free parameters of a CT 
pulmonary nodule segmentation system [20]. As such, 
the goal of this study was to extract features from radial 
deviation and radial gradient maps from pre-surgical 

contrast-enhanced thoracic CT scans among patients with 
lung adenocarcinoma and assess whether these features 
were associated with clinical outcomes. Additionally, we 
explored the potential biological underpinnings of these 
features by analyzing the association between radial 
gradient and radial deviation image features with semantic 
radiological features.

RESULTS

Patient demographics

Among the 61 patients in the training cohort, 50.8% 
were male, 67.2% were aged above 65 years at the date of 
diagnosis, and 72.1% were either stage I or II. Among the 
image acquisition parameters, 93.4% of the CT scans were 
acquired with 120 kVp, 34.4% used B41f as a convolution 
kernel, 65.6% had an interpolated slice thickness of 2.5 
mm, and 34.4% had a pixel resolution ≥ 0.7785 (third 
quartile). The median time to event (overall survival) was 
33.5 months for this cohort (Table 1).

In test cohort, there were a total of 47 patients of 
which 53.2% were male, 46.8% were aged above 65 years 
at the date of diagnosis, and 68.1% were either stage I or 
II. Among the image acquisition parameters, 85.1% of the 
CT scans were acquired with 120 kVp, 48.9% used A or 
B as a convolution kernel, 61.7% had an interpolated slice 
thickness of 2.5 mm, and 78.7% had a pixel resolution ≥ 
0.7785 (third quartile). The median time to event (overall 
survival) was 32.0 months for this cohort (Table 1).

Univariable analyses

After eliminating the redundant (n = 15) and non-
reproducible features (n = 16), we calculated the log-rank 
p-values for the remaining 17 features. Out of these 17 
features, two features (radial deviation outside-border 
separation standard deviation (SD) and radial gradient 
outside-border separation SD 2-dimensional (2D)) 
were statistically significantly associated with overall 
survival, (log-rank p-value ≤ 0.05) and three features 
(radial gradient border SD, radial gradient outside-tumor 
separation mean, and radial deviation tumor SD) were 
marginally (log-rank p-value ≤ 0.1) associated with 
overall survival (Table 2). The log-rank p-values for 
all 17 features assessed are presented in Supplementary 
Table 1.

The Kaplan-Meier survival curves using a median 
cutoff for the five features are presented in Figure 1A 
to 1e and the 5-year survival rates are presented in 
Supplementary Table 2. For the two features that were 
significantly associated with overall survival, tumors with 
high (≥ median) radial deviation outside-border separation 
SD (Figure 1C, Hazard Ratio [HR] = 0.36; 95% CI 
0.16-0.81, p = 0.013) and radial gradient outside-border 
separation SD (Figure 1D, HR = 0.43; 95% CI 0.20-0.94, 



Oncotarget96015www.impactjournals.com/oncotarget

Table 1: Patient characteristics in the training and test cohorts

Characteristic Training cohort (N = 61) Test cohort (N = 47) 

Age at diagnosis, N (%)     

  < 65 20 (32.8) 25 (53.2)

  ≥ 65 41 (67.2) 22 (46.8)

Sex, N (%)     

  Female 30 (49.2) 22 (46.8)

  Male 31 (50.8) 25 (53.2)

Stage, N (%)     

  I and II 44 (72.1) 32 (68.1)

  III and IV 17 (27.9) 15 (31.9)

Tumor volume, mean cm3 (SD) 19.5 (29.0) 52.4 (130.0)

Tumor max diameter, mean mm (SD) 31.6 (13.8) 38.0 (21.5)

Overall Survival, median months 33.5  32.0  

Image acquisition parameters, N (%)     

 Voltage, kVp   

  120 57 (93.4) 40 (85.1)

  130 or 140 4 (6.6) 7 (14.9)

 Convolution kernel     

  A,B 0 (0) 23 (48.9)

  B30s,B60f,B70s 2 (3.3) 5 (10.7)

  B30f 8 (13.1) 0 (0)

  B40f 19 (31.2) 15 (31.9)

  B41f 21 (34.4) 0 (0)

  Other 11 (18.0) 4 (8.5)

 Interpolated slice thickness     

  1.5 mm 0 (0) 2 (4.3)

  2.0 mm 8 (13.1) 13 (27.7)

  2.5 mm 40 (65.6) 29 (61.7)

  3.0 mm 13 (21.3) 3 (6.3)

 Pixel resolution (mm), tertiles     

  < 0.6926 20 (32.8) 6 (12.8)

  ≥ 0.6926 to < 0.7785 20 (32.8) 4 (8.5)

  ≥ 0.7785 21 (34.4) 37 (78.7)
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p = 0.035) were associated with improved overall survival 
(Table 2). For the three features which were marginally 
significant for overall survival, tumors with high radial 
gradient border SD (Figure 1A, HR = 1.92; 95% CI 0.90-
4.11, p = 0.092) and radial deviation tumor SD (Figure 
1E, HR = 2.00; 95% CI 0.92-4.34, p = 0.078) were 
associated with poor overall survival while high radial 
gradient outside-tumor separation mean was associated 
with improved overall survival (Figure 1B, HR = 0.48; 
95% CI 0.22-1.06, p = 0.068).

In an exploratory analysis, we found low correlation 
between the features that were previously published in 
these cohorts (entropy ratio and convexity) [2] to radial 
deviation and gradient features in this analysis (Pearson 
correlation coefficient < 0.35 for all features). Hence, the 
radial gradient and deviation features provide orthogonal 
information to previously identified features.

Multivariable analyses

To reduce the number of image features to the most 
meaningful subset associated with overall survival, we 
applied a stepwise backward elimination model using 
a threshold of 0.01 to identify a parsimonious model. 
All five features and tumor volume were considered for 
the inclusion in the final model. The two features that 
remained in a feature-only multivariable model were 
radial deviation outside-border separation SD (HR = 
0.25; 95% CI 0.11-0.58, p = 0.001) and radial gradient 

outside-tumor separation mean (HR = 0.29; 95% CI 0.12-
0.66, p = 0.003). To control for potential confounding, 
these two features were included in a multivariable 
Cox Model that included age, sex, and stage; and both 
features remained statistically significant (Table 2). We 
further analyzed these two features by demographics and 
imaging parameters and generated contingency tables. In 
the training cohort, none of the demographics or imaging 
parameters were significantly associated with radial 
deviation outside-border separation SD and radial gradient 
outside-tumor separation mean (Table 3).

To determine if these findings could be replicated in 
an external patient cohort, we analyzed these two features 
in a test cohort (Table 2) using the median threshold values 
obtained from the training cohort and found that radial 
deviation outside-border separation SD was statistically 
significant (Supplementary Figure 1B, HR = 0.36; 95% 
CI 0.16-0.81, p = 0.014) but radial gradient outside-
tumor separation mean was not found to be statistically 
significant (Supplementary Figure 1A, HR = 0.75; 95% 
CI 0.28-2.03 p = 0.575) (Table 2). However, for both 
features, the point estimates were inversely associated 
with risk of death. When these two features were included 
in a multivariable Cox model that included age, sex and 
stage, radial deviation outside-border separation SD was 
statistically significant (HR = 0.40; 95% CI 0.17-0.97, p = 
0.042) along with age (HR = 2.65; 95% CI 1.07-6.60, p = 
0.035) and stage (HR = 3.35; 95% CI 1.34-8.36, p = 0.010) 
(Table 2). Additionally, among early stage lung cancer 

Table 2: Log-rank tests and Cox proportional hazards model for overall survival in the training and test cohorts

 Covariate

 Training cohort N = 61  Test cohort N = 47

Log-
rank 

P-value1

Univariable 
model2 

OR (95% CI)
P-value

Multivariable 
model3 

OR (95% CI)
P-value

Multivariable 
model4 

OR (95% CI)
P-value

Multivariable 
model5 

OR (95% CI)
P-value

Multivariable 
model6  

OR (95% CI)
P-value

Radial gradient border SD  
(feature 20) 0.084 1.92 (0.90 - 4.11) 0.092 . . . . . . . .

Radial gradient outside-tumor  
separation mean (feature 35) 0.061 0.48 (0.22 - 1.06) 0.068 0.29 (0.12- 0.66) 0.003 0.31 (0.13 - 0.72) 0.006 0.75 (0.28 - 2.03) 0.575 0.48 (0.17 - 1.37) 0.172

Radial deviation outside-border  
separation SD (feature 42) 0.009 0.36 (0.16 - 0.81) 0.013 0.25 (0.11 - 0.58) 0.001 0.24 (0.10 - 0.58) 0.001 0.36 (0.16 - 0.81) 0.014 0.40 (0.17 - 0.97) 0.042

Radial gradient outside-border  
separation SD (2D) (feature 48) 0.029 0.43 (0.20 - 0.94) 0.035 . . . . . . . .

Radial deviation tumor  
SD (feature 2) 0.071 2.00 (0.92 - 4.34) 0.078 . . . . . . . .

Age 0.439 1.38 (0.60 - 3.16) 0.444 . . 0.83 (0.34 - 2.05) 0.690 . . 2.65 (1.07 – 6.60) 0.035

Sex 0.694 1.16 (0.54 - 2.49) 0.696 . . 1.05 (0.47 - 2.35) 0.906 . . 1.43 (0.53 – 3.82) 0.476

Stage 0.085 1.95 (0.90 - 4.23) 0.093 . . 2.14 (0.91 - 5.03) 0.082 . . 3.35 (1.34 – 8.36) 0.010

Tumor volume 0.044 2.23 (1.00 - 4.97) 0.051 . . . . . . . .

SD = standard deviation; OR = odds ratio; CI = confidence interval
Bold values are statistically significant.
1Log-rank p-value for each covariate for overall survival right censored at 5-years. The radiomic features were dichotomized at the median value and the clinical covariates were dichotomized based on Table 
1. The univariable analyses were based on 62 patients. But, due to missing patient data (age and sex), the total sample size for the multivariable analyses was 61 patients.
2The independent main effect ORs for each covariate
3The ORs for the two image features in a single model following backward elimination that considered all features and tumor volume.
4The ORs for both image features identified from backward elimination adjusted for clinical covariates.
5The ORs for from the two image features identified in training cohort from backward elimination
6The ORs for both image features identified from backward elimination in training cohort adjusted for clinical covariates
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Figure 1: Kaplan-Meier survival curves for the following features. (A) Radial gradient border standard deviation in the training 
cohort. (B) Radial gradient outside-tumor separation mean in the training cohort. (C) Radial deviation outside-border separation standard 
deviation in the training cohort. (D) Radial gradient outside-border separation standard deviation (2D) in the training cohort. (E) Radial 
deviation tumor standard deviation in the training cohort. (F) For the combination of radial gradient outside-tumor separation mean 
(RGOTSM) and radial deviation outside-border separation standard deviation (RDOBSSD) features in the training cohort. Hazard ratio 
with 95% confidence interval is calculated for the entire cohort (HR = 3.65; 95% CI (1.89–7.05)). (G) For the combination of radial gradient 
outside-tumor separation mean (RGOTSM) and radial deviation outside-border separation standard deviation (RDOBSSD) features in the 
test cohort.
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Table 3: Demographics and imaging parameters by image features in training cohort

 Covariate
 Radial gradient outside-tumor  

separation mean
Radial deviation outside-border  

separation SD

LOW HIGH P- Value LOW HIGH P- Value

Sex, N (%)       

 Female 14 (45.2) 16 (53.3) 0.612 13 
(43.3) 17 (54.8) 0.446

 Male 17 (54.8) 14 (46.7)  17 
(56.7) 14 (45.2)  

Age, N (%)       

 < 65 8 (25.8) 12 (40.0) 0.283 8 (26.7) 12 (38.7) 0.416

 ≥ 65 23 (74.2) 18 (60.0)  22 
(73.3) 19 (61.3)  

Stage, N (%)       

 I/II 21 (67.8) 23 (77.4) 0.570 23 
(77.4) 21 (67.7) 0.570

 III/IV 10 (32.2) 7 (22.6)  7 (22.6) 10 (32.3)  

5- year survival, % 37.4% 65.3% 0.061 34.9% 67.7% 0.009

Voltage, kVp, N (%)       

 120 28 (90.3) 29 (96.7) 0.612 26 
(86.7) 31 (100.0) 0.053

 130 or 140 3 (9.7) 1 (3.3)  4 (13.3) 0 (0)  

Convolution kernel, N (%)       

 A,B 0 (0) 0 (0) 0.270 0 (0) 0 (0) 0.700

 B30s,B60f,B70s 2 (6.7) 0(0)  1(3.2) 1(3.3)  

 B30f 6 (20.0) 2 (6.4)  3 (9.7) 5 (16.7)  

 B40f 7 (23.3) 12 (38.7)  12 
(38.7) 7 (23.3)  

 B41f 10 (33.3) 11 (35.5)  9 (29.0) 12 (40.0)  

 Other 5 (16.7) 6 (19.4)  6 (19.4) 5 (16.7)  

Interpolated slice thickness, N (%)       

 1.5 mm 0 (0) 0 (0) 0.189 0 (0) 0 (0) 0.861

 2.0 mm 5 (16.1) 3 (10.0)  3 (10.0) 5 (16.1)  

 2.5 mm 17 (54.8) 23 (76.7)  20 
(66.7) 20 (64.5)  

 3.0 mm 9 (29.1) 4 (13.3)  7 (23.3) 6 (19.4)  

Pixel resolution, tertiles N (%)       

 < 0.6926 mm 7 (22.6) 13 (43.3) 0.146 7 (23.3) 13 (41.9) 0.172

 ≥ 0.6926 and < 0.7785 mm 10 (32.3) 10 (33.3)  13 
(43.3) 7 (22.6)  

 > 0.7785 mm 14 (45.1) 7 (23.4)  10 
(33.4) 11 (35.5)  

1Numbers inside parenthesis are the percentage values.
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Table 4: Association between semantic features and radial gradient and radial deviation features

 Feature No. Feature name
 Lobulation 

Absent Present  P- Value

48 Radial gradient outside-border separation SD (2D), N (%) 

 LOW 27 (60.0) 4 (23.5)  0.021

 HIGH 18 (40.0) 13 (76.5)   

   Pleural attachment

   Absent Present   

20 Radial gradient border SD, N (%) 

  LOW 28 (62.2) 3 (17.7)  0.004

  HIGH 17 (37.8) 14 (82.3)   

   Border definition

   Well defined Poorly defined Other1  

20 Radial gradient border SD, N (%) 

  LOW 13 (81.3) 8 (42.1) 10 (37.0) 0.015

  HIGH 3 (18.7) 11 (57.9) 17 (63.0)  

       

42 Radial deviation outside-border separation SD2, N (%)

 LOW 4 (25.0) 9 (47.4) 18 (66.7) 0.029

 HIGH 12 (75.0) 10 (52.6) 9 (33.3)  

       

48 Radial gradient outside-border separation SD (2D), N (%)

 LOW 4 (25.0) 14 (73.7) 13 (48.2) 0.018

  HIGH 12 (75.0) 5 (26.3) 14 (51.8)  

1Tumor with neither a well or poorly-defined border.
2This feature was replicated and found to be statistically significantly associated with survival in both the training cohort 
and test cohort.

patients (stage I and II), we found that radial deviation 
outside-border separation SD was statistically significantly 
associated with survival in the training cohort (log-rank 
p-value = 0.031) and marginally significant in the test 
cohort (log-rank p-value = 0.097). None of the patient 
demographics or imaging parameters were significantly 
associated with radial gradient outside-tumor separation 
mean and radial deviation outside-border separation SD 
except pixel resolution was found to be significantly 
associated with radial gradient outside-tumor separation 
mean in test cohort (p = 0.010, Supplementary Table 3).

Combinatorial analyses

In exploratory analyses, we assessed the 
combinatorial effects of radial deviation outside-
border separation SD and radial gradient outside-tumor 
separation in the training and test cohorts (Figure 1F and 

1G, respectively and Supplementary Table 2). In both 
cohorts we found that patients who had high values (> 
median) for both features had statistically significantly 
better survival compared to patients who had low values 
(≤ median) for both features. We also explored the subset 
of early stage patients (stage I and II) and found that the 
combinatorial effect was also statistically significant for 
overall survival in the training cohort (Log-rank P-value 
= 0.020). Although the survival pattern was similar in the 
test cohort, it did not reach statistical significance (Log-
rank P-value = 0.19).

Associations with semantic radiological features

We found three RD/RG radiomic features that were 
statistically significantly associated with three semantic 
features (Table 4): lobulation, pleural attachment, and 
border definition. Importantly, the replicated feature 
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was significantly associated with border definition. 
Specifically, cancers with a well-defined border were 
significantly more likely to have high (> median) radial 
deviation outside-border separation SD. These analyses 
were restricted to the training cohort only.

DISCUSSION

In this study we extracted radial gradient and 
radial deviation image features to determine whether 
they are associated with lung cancer patient survival. 
Of the 48 features that were extracted, 31 features were 
eliminated because they were not reproducible or they 
were redundant. The remaining 17 features were subjected 
to statistical analysis resulting in a parsimonious model 
containing two highly informative features associated 
with lung cancer survival. One of the two features (radial 

deviation outside-border separation SD) was replicated 
and found to be statistically significantly associated with 
overall survival in a separate external cohort (test cohort) 
of lung cancer patients.

Radiomics is motivated by the premise that 
quantitative image features reflect the underlying 
pathophysiology of tumors. In Figure 2A and 2B we 
present the volume of interest (VOI) and corresponding 
radial deviation maps for two patients with substantially 
different clinical outcomes. The patient (Figure 2A) with 
short survival was deceased after 9 months and had a low 
(< median) radial deviation outside-border separation SD 
value while the second patient (Figure 2B) was still alive 
after 60 months had a high (>median) radial deviation 
outside-border separation SD value. In the original CT-
image, both patients have similarly-sized tumors that are 
speculated; however, the VOI for each radial deviation 

Figure 2: Volume of interests (VOI) for two lung cancer patients with extreme differences in clinical outcomes. Radial 
deviation image features for the corresponding VOIs for these lung cancer patients. The top row (A) is a tumor of a patient (Patient ID 
[PID]: 33) who deceased after 9 months and the second row (B) is a patient (PID: 75) with who had an ongoing survival after 60 months.
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Figure 3: Cartoon image of the four tumor masks. The region inside the black line is the tumor mask, the yellow area is the core 
mask, the red area is the border mask, and the region outside the black line is the outside mask (combination of the half part of red region 
and whole blue region).

image have considerably different heat map appearances. 
By quantifying and analyzing these differences, as 
performed in this study, we have shown that RD/RG 
features may have clinical utility by differentiating 
patients with an aggressive disease and poor patient 
outcomes versus patients with more indolent disease 
and improved outcomes. Additionally, by analyzing the 
correlations of RD/RG features with semantic radiological 
features, we may have revealed their potential biological 
underpinnings. Specifically, we found three radial gradient 
and radial deviation features that were significantly 
associated with tumor lobulation, pleural attachment, 
and border definition (Table 4). The replicated feature, 
which was associated with lung cancer survival in both 
cohorts, was statistically significantly associated with 
border definition which has been previously reported to 
be a prognostic factor in lung cancer [11]. In the current 
analysis, patients who had well defined border definition 
were significantly associated with high radial deviation 
outside-border separation SD. As such, these analyses 
suggest that radial gradient and radial deviation features 
may be capturing clinically and biologically relevant 
radiological information of lung cancer tumors.

Radial image features have been previously applied 
in chest CT CAD systems to discriminate benign and 
malignant nodules, and optimize free parameters of tumor 
segmentation [19, 20]. However, in these previous studies, 
[19, 20] means and standard deviations were calculated 
from two different masks (region inside tumor and region 
outside tumor) on the radial gradient and radial deviation 
maps. By contrast, we calculated means and standard 
deviations from four different masks (tumor mask, border 
mask, core mask, and outside mask). To the best of our 
knowledge, the current study is the first to analyze RD/
RG features for their association with lung cancer survival 
and their association with radiological semantic features.

In this study, we extracted and analyzed unique 
and new features from available training and test cohorts 
originally published by Grove et al. [2]. In the previous 
study, Grove et al. [2] reported that convexity and 
entropy ratio features were significantly associated with 
overall survival in the training cohort. Thus, we analyzed 
a model that included the convexity and entropy ratio 
features, RD/RG features, and patient characteristics and 
found that radial deviation outside-border separation SD 
(HR = 0.21), radial gradient outside-tumor separation 
mean (HR = 0.21), and entropy ratio (HR = 3.28) were 
statistically significantly associated with overall survival 
in the training cohort. However, when the remaining 
three features were analyzed in the test cohort, only radial 
deviation outside-border separation SD (HR = 0.34) was 
found to be statistically significant.

Quantitative image features have the potential to 
complement and improve current precision medicine. 
Limitations of tumor-based biomarkers are: they can be 
subjective to sampling bias due to the heterogeneous 
nature of tumors, the requirement of tumor specimens 
for biomarker testing, where the assays can be timely and 
expensive [2, 15, 21]. In contrast, radiomic features can 
be extracted in real-time from standard-of-care images, do 
not require timely and often expensive laboratory testing, 
are not subject to sampling bias and artifact, and are non-
invasive. Importantly, radiomic analyses do not subject 
patients to additional radiation exposure since standard-of-
care images are utilized, and radiomic features represent 
the phenotype of the entire tumor in 3D and not just the 
portion that was subjected to biomarker testing. Indeed, 
there is precedence that quantitative image features 
provide valuable and potentially translational information 
in lung cancer patient outcomes. Previous studies have 
shown that tumor shape and density are related to lung 
cancer survival [2, 13, 21, 22]. Additionally, as tumor 
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Figure 4: Examples of radial deviation (middle column) and radial gradient (right column) maps. (A) An example of a 
tumor which yields high contrast to the lung field and a round shape and hence has lower radial deviation angles pointing to the center of 
mass (PID: 150). (B) The standard deviation of radial deviation around border and outside regions are both high, making the separation 
value between them small (PID: 144). (C) The tumor shown has a round shape and has low radial deviation angle on border regions near 
the lung parenchyma but has heterogeneous values on the border to the lung wall (PID: 108). (D) Example tumor with an irregular shape 
making the radial deviation and radial gradient values heterogeneous (PID: 69).
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shape becomes more eccentric, it has a higher probability 
of metastatic disease [2], and solid lesions that are 
differentiable from their outside environment and have 
high contrast edges and tend to be less aggressive [21]. 
Furthermore, tumors that are connected to lung wall are 
also associated with poor prognosis [21, 23].

We acknowledge some limitations and strengths to 
this study. First, we utilized an available set [2] of modestly 
sample sized training and test cohorts. However, we 
extracted and analyzed features that are unique from the 
prior work [2] and, importantly found an image feature 
to be significant in both the training and test cohorts. We 
applied a rigorous feature reduction approach to eliminate 
correlated and non-reproducible features, and we utilized 
a backward reduction approach to identify a single 
parsimonious model containing the most important features. 
We acknowledge in the combinatorial analyses that there 
were limited numbers of patients in the subgroups and we 
do not have disease-free survival data for these cohorts. A 
potential limitation of radiomic studies is the range of image 
acquisition parameters and modalities used [24] which can 
make it difficult to standardize image features and limit the 
robustness of computer-extracted features. In future studies, 
we will investigate interpolation methods to harmonize all 
data to a smaller range of slice thickness and pitch, which 
we hypothesize, will reduce some acquisition associated 
variability. However, we found that the image acquisition 
parameters were not associated with radial deviation 
outside-border separation SD for either cohort (Table 3 and 
Supplementary Table 3). Despite the fact that the study was 
limited to patients with lung adenocarcinoma, we removed 
potential histological differences in our analyses and we 
believe that this study had numerous strengths that outweigh 
the potential limitations.

In conclusion, this study identified a radial gradient 
and radial deviation image feature that was statistically 
significantly associated with lung cancer survival in both 
training and test cohorts even after adjusting for clinical 
covariates. Our analyses also revealed a novel combinatorial 
association of two features which differentiates patients with 
aggressive disease versus patients with indolent disease, and 
this was replicated in the test cohort. As such, these findings 
may have clinical utility to sub-stratify patients based on 
clinical outcome and identify patients that may need more 
aggressive treatment such as neo-adjuvant chemotherapy 
and aggressive follow-up and management. These features 
will require confirmation in additional studies and lung 
cancer patient cohorts.

MATERIALS AND METHODS

Lung cancer patients

This retrospective study was approved by the 
Institutional Review Boards at the University of South 
Florida and Maastricht University Medical Centre. There 

were two separate cohorts used in this study that have 
been described elsewhere [2]. Briefly, the training cohort 
included 61 patients from the H. Lee Moffitt Cancer Center 
(MCC) & Research Institute, Tampa, Florida and the test 
cohort included 47 patients from the Maastricht Radiation 
Oncology Clinic (MAASTRO), Maastricht, Netherlands. 
All patients were diagnosed with lung adenocarcinoma 
and underwent surgical resection as first course of therapy. 
Pre-treatment contrast enhanced CT scans were acquired 
within two months prior to surgery. Both cohorts included 
diagnostic pre-treatment contrast-enhanced CT scans 
acquired between 2006 and 2009 and clinical data including 
demographics, histology, stage, and vital status information. 
Follow-up for vital status information occurs annually 
through passive and active methods.

Patient data

For the training cohort, clinical data were obtained 
from Moffitt’s Cancer Registry, which abstracts self-
reported patient data and clinical information from 
patient medical records. Follow-up information for 
vital status occurs annually through passive and active 
methods. For this analysis, vital status was updated for 
the Moffitt patients since the previously published report 
[2]. Pathologic TNM staging was utilized when available 
and clinical stage was used if pathologic staging was 
unknown. Smoking status was categorized as ever smoker 
(current or former smoker) or never smoker. Similar data 
were abstracted and databased from MAASTRO for the 
test cohort patients.

Tumor segmentation

All tumors were segmented using an in-house 
single-click ensemble segmentation algorithm on the 
Lung Tumor Analysis (LuTA) software program platform 
(Definiens Developer XD©, Munich, Germany) [25]. After 
applying the single click approach, the tumor delineations 
were inspected and edited if needed by a resident expert 
radiologist. The lung and tumor mask images obtained 
from LuTA software program were then imported into 
MATLAB® (Mathworks, Natick, MA) for image feature 
extraction as described below.

Radial gradient and radial deviation maps and 
features

Development of the radial gradient and radial 
deviation image features has been previously described 
[18, 19]. In our study, after the tumors were segmented and 
center of mass of the tumor was automatically detected, 
48 features were extracted from the radial gradient and 
radial deviation maps (Supplementary Table 4) bounded 
by different masks (described below) which were derived 
from tumor delineation masks using morphological 



Oncotarget96024www.impactjournals.com/oncotarget

operations. Since there were variations in image acquisition 
parameters, we performed tri-linear interpolation by a 
factor of two for scans acquired with a slice thickness 
of ≥ 4 mm on the z-axis to create homogeneous spacing 
between scans. Additionally, pixels were interpolated tri-
linearly in x and y directions to 2.50 mm x 2.50 mm.

The masks used were ‘tumor mask’, ‘border mask’, 
‘core mask’, and ‘outside mask’. The tumor mask was 
the region that was delineated semi-automatically using 
Definiens Developer XD© software (Definiens, Inc., 
Cambridge, MA). The border mask is a “doughnut-
shaped” region that was created by subtracting the two 
masks which are formed by a dilation operation followed 
by an erosion operation on the tumor mask. The region 
obtained after the erosion operation is the core mask. 
Structural elements radii used for dilation and erosion 
morphological operations were 7.5 mm and 12.5 mm 
for smaller tumors (major axis length (2D) <100 mm) 
and 10.0 mm and 15.0 mm for larger sized tumors 
(major axis length (2D) ≥ 100 mm). The outside mask 
was created by implementing dilation to the tumor mask 
followed by the subtraction of the tumor mask from 
the dilated region. The structural element used for the 
dilation morphological operation was 17.5 mm pixels 
for smaller tumors and 22.5 mm for larger sized tumors 
(Figure 3). All masks were additionally bounded to the 
lung parenchyma mask so that the VOIs did not exceed 
outside of the lung region.

The features were created using the four masks for 
both 2-dimensional and 3-dimensional. All 2-dimensional 
(2D) features were computed on the slice which 
included the center of mass of the segmentations. The 
3-dimensional features were a natural extension of the 
2D features and were calculated after the first and the 
last slices of the tumor segmentations were removed in 
order to reduce the partial volume effects. The separation 
features were calculated as the difference divided by the 
sum inside the analyzed masks (e.g., the radial deviation 
mean outside-border separation feature is the difference 
of outside radial deviation mean and the border radial 
deviation mean divided by the sum of the two).

Example radial gradient and radial deviation maps 
for the slices that contain the center of mass of tumors 
are presented in Figure 4. The radial deviation values 
along the border lines are close to 0° when the tumors 
have a more spherical shape (both vectors point the 
same direction) and they are higher when the tumor 
is irregularly shaped (Figure 4A and 4D). The radial 
gradient values are also affected by shape along with the 
gradient contrast that the tumors have in respect to their 
microenvironment (outside region). As a result, round 
shaped lesions tended to have lower radial deviation 
values while irregularly-shaped lesions have higher radial 
deviation values (Figure 3A and 3D). When the lesions are 
attached to the lung wall, despite the fact that tumor shape 
along the border is restricted to a rounder shape, the low 

gradient on the intersection of the wall to the tumor creates 
deviating radial deviation values and diverges (Figure 4B 
and 4C). The magnitude of the gradient along the lung 
wall is close to zero (no gradient), as such radial gradient 
values are also lower along the lung wall. Radial gradient 
along the border is also affected by the shape of tumor, 
but it is furthermore influenced by how solid the tumor is 
in respect to its outside microenvironment. Solid tumors 
favor higher gradient values on border regions while semi-
solid tumors have lower values (Figure 4A and 4D).

Elimination of redundant and non-reproducible 
features

To eliminate the non-reproducible features we 
used the Reference Image Database to Evaluate Therapy 
Response (RIDER) dataset and calculated concordance 
correlation coefficient (CCC) between test-re-test 
scans. The RIDER dataset is a National Cancer Center 
(NCI) sponsored project for the guidance of integrating 
quantitative features across different institutions. The 
dataset is publicly available in National Biomedical 
Imaging Archive [26]. A total of 32 patients with 
unenhanced test-retest chest CT scans were acquired 
within 15 minutes of each other. The CCCs were 
calculated to quantify the reproducibility between 
consecutive scans for patients. Theoretically, CCC values 
range from -1 to 1, where 1 indicates a perfect correlation 
between two variables.

We calculated the CCCs for the 48 radial features 
and eliminated features that had a CCC < 0.80. As a 
result, 15 were features were dropped and the remaining 
33 features were assessed for correlation using Pearson’s 
correlation coefficient. When two or more features 
resulted in a Pearson’s correlation coefficient greater than 
0.80, we eliminated the feature(s) with the higher absolute 
column-wise correlation mean. Subsequently, 16 features 
were eliminated and the remaining 17 features enumerated 
in Supplementary Table 4 were subjected to statistical 
analysis.

Radiological semantic features

Radiological semantic features for the training cohort 
were extracted by a clinical radiologist (YL with more 
than 7 years of experience) who was blinded to survival 
status and RD/RG status of the patients. Supplementary 
Table 5 contains the 13 radiological semantic features that 
were extracted from the CT scans of the subjects. Briefly, 
in terms of morphologic characteristics, the presence or 
absence of fissure attachment (defined as a tumor that 
attaches to the fissure; tumor’s margin is obscured by the 
margin), pleural attachment (defined as tumor attaches to 
the pleura other than fissure; tumor’s margin is obscured 
by the pleura), lobulation, concavity, air bronchogram [27], 
calcification, attachment to vessel, and pleural retraction 
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were assessed. We also evaluated the following features, 
which have been defined elsewhere: dominant attenuation 
pattern [27], shape, border definition, spiculation [28, 29], 
bubble-like lucency [28], cavitation [30].

Statistical analyses

All statistical analyses were performed using 
Stata/MP 14.2 (StataCorp LP, College Station, TX). All 
image features were dichotomized at their median value. 
Differences in image features by demographic features and 
semantic features were tested using Fisher’s exact test for 
categorical variables and Student’s t-test for continuous 
variables. Survival analyses were performed using Cox 
Proportional Hazard Regression, Kaplan-Meier curves, 
and log-rank tests. All survival data were right-censored 
at 5 years. To reduce the number of features and covariates 
to a single parsimonious model, a backward elimination 
approach was applied. The features that were identified 
as the most informative in the training cohort were then 
tested in the test cohort.
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