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ABSTRACT
Here we present an innovative computational-based drug discovery strategy, 

coupled with machine-based learning and functional assessment, for the rational 
design of novel small molecule inhibitors of the lipogenic enzyme stearoyl-CoA 
desaturase 1 (SCD1). Our methods resulted in the discovery of several unique 
molecules, of which our lead compound SSI-4 demonstrates potent anti-tumor activity, 
with an excellent pharmacokinetic and toxicology profile. We improve upon key 
characteristics, including chemoinformatics and absorption/distribution/metabolism/
excretion (ADME) toxicity, while driving the IC50 to 0.6 nM in some instances. This 
approach to drug design can be executed in smaller research settings, applied to a 
wealth of other targets, and paves a path forward for bringing small-batch based 
drug programs into the Clinic.

INTRODUCTION

Increased fatty acid metabolism is a hallmark of 
oncogenesis [1-3], and subsequently targeting constituents 
of lipid biosynthesis is a new focus for developing new 
anti-cancer therapies. Unlike normal tissues, which 
rely on exogenous uptake of free fatty acids (FA) from 
the bloodstream [4], de novo lipogenesis contributes a 
significant portion of the energy requirement needed for 
tumor growth. Therefore, targeting metabolic enzymes 

that are critical for cancer cell fatty acid metabolism, but 
not essential in normal cells, represent a new strategy for 
cancer therapies. Here, we present a novel computational 
strategy to aid the synthesis of unique compounds that 
target stearoyl CoA desaturase 1 (SCD1), a rate-limiting 
lipogenic enzyme that catalyzes the synthesis of Δ-9 
monounsaturated fatty acids (MUFA) oleic acid (OA) 
and palmitoleic acid (PA)[5]. SCD1 overexpression 
is observed in a multitude of aggressive malignancies 
[6-8], and targeted inhibition of this enzyme has been 
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previously shown to impair tumor cell proliferation, and 
produce tumor-specific cellular stress and apoptosis in 
representative tumor models [6, 8].

Although different SCD1 inhibitors have been 
identified using high-throughput screening methods 
[9, 10], this strategy often relies on structure-based 
approaches, where both the target and ligand structures 
need to be present. On the other hand, discovery of SCD1 
inhibitors such as MF-438, MK-8245, and SAR707 
required the manipulation of the medicinal scaffold of 
known SCD1 inhibitors [11-13]. In both circumstances, 
the quality of the final drug is limited by the availability 
of compound libraries or existing inhibitors. We propose 
a simple, cost-effective, bottom-up strategy that combines 
the benefit of having a wealth of ligand information 
for generating novel compounds, and then screening 
these compounds in a series of reductive filters using 
structure-based information, such as, shape, docking, and 
3D quantitative structure-activity relationship (QSAR) 
modeling [14-16]. This approach of virtual exhaustive 
derivatization followed by functional screening allows for 
the examination of all structural possibilities to identify 
novel compounds. Furthermore, results of functional 
testing can be used to modify the 3D-QSAR in a machine-
based learning feedback strategy to more definitively 
ascertain relevant functional groups necessary for inhibitor 
function, and improving the selection of second generation 
inhibitors.

To demonstrate the applicability of our drug 
development platform, we generated several highly 
potent, targeted inhibitors of SCD1. Pharmacokinetic 
analysis of our lead compound, SSI-4, demonstrates 
excellent oral bioavailability as well as anti-tumor activity 
when tested in patient-derived xenograft (PDX) models 
of clear cell renal cell carcinoma (ccRCC). We show that 
the streamlined process from initial compound design to 
biological validation can produce unique molecules with 
desirable pharmacological properties that are not available 
in existing compounds. This approach to rational drug 
design thus provides an efficient way to develop new 
small molecule inhibitors targeting a variety of potential 
therapeutic targets.

RESULTS

Compound library generation

To identify a pool of unique compounds, we 
combined computational-based screening methods, 
including multiple rounds of filtration with biological 
analysis to determine candidate functionality (Figure 1, 
Figure 2a). The de novo ligands were first decomposed 
from A939572, MF-238 and SAR707, which had the 
cores stripped away and only the periphery/”edges” 

retained (Figure 1). The deconstructed cores are allowed 
to sample from a variety of pools to get novel chemical 
structures that adhere to the driving force of the algorithms 
employed and subsequently feed into the z-scoring matrix, 
as described in the Methods. Shape filtering was employed 
to pare down the database of compounds with poor shape 
metrics to known inhibitors, which we compared using 
either A939572 or SAR707 (Supplementary Figure 1a-1b). 
Each ligand was allowed to generate 100s of conformers 
for maximal shape overlay between the candidate and 
existing compounds. Despite the uniqueness of each 
parent compounds core, the overall best fit was with 
SAR707 (Figure 2b), which has low nanomolar inhibitory 
concentration with human liver cell-derived SCD1. Over 
800 novel compounds were retained after this initial 
filtering step, reduced from several 1000’s (Table 1, 
Supplementary Table 1). Top inhibitor shape scores were 
0.513, 0.881, 0.803, 0.660, and 0.642, for SSI-1, SSI-2, 
SSI-3 and SSI-4, respectively (Table 2).

Candidate inhibitors have excellent predicted 
binding affinity for SCD1 

In order to estimate the affinity of the compounds 
for SCD1 binding region as compared with that of over 
20 known inhibitors, including A939572, SAR707, 
and MF-438, docking with over 500 top generated 
compounds was performed using the “Scaffold/Core 
Hopping” technology [17-22]. The binding pocket for 
SCD1 is a long funnel-shape (Figure 2b), which can easily 
accommodate stearoyl-CoA. Using the Virtual Screening 
Workflow (VSW) docking process, we proceeded through 
the highest level of Glide precision, XP level docking 
[23, 24]. Also implementations of novel conformational 
sampling algorithms were utilized; our methods have been 
previously described [25-29]. As shown in Figure 2b-c, 
the region of SCD1 is highly alpha-helical in nature and 
has indicated electrostatic distribution for lipid binding. In 
order to illustrate candidate inhibitor docking poses (pink 
wire frame) throughout the identified binding pocket of 
SCD1, we overlaid their distribution with all commercial 
inhibitors (licorice style CPK molecules), which include 
A939572, GSK993, MF-438, ChemBL375265, and 
SAR707 (Figure 1b). Also included in the overlay are 
the 41 compounds we had synthesized (green stick 
rendering) (Figure 2b). To better illustrate the position 
of the 41 synthesized compounds relative to the known 
inhibitors A939572 (cyan) (human IC50=37 nM) and 
ChemBL375265 (orange) (human IC50 =400 nM), we 
showed the docking poses of this group independently 
(Figure 2c). ChemBL375265 binds deep at the base of the 
pocket, whilst A939572 is seen closer to the opening of 
the binding pocket (Figure 2c). We predict that relative 
binding position of the inhibitors may alter substrate 
kinetics, thus affecting inhibitory concentration needed. 
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Figure 1: De novo compound library design and in silico scoring pipeline. a. Core, or scaffold, hopping generation for three 
known commercial SCD1 inhibitors (SAR707, A939572, and MF-438) is shown. The central scaffold is separated from the compound 
(“core separation”) leaving the binding features from the edge of each compound. The core library generator then inserts new cores fuses 
the edges, minimizes the structure energy, and prepares the ligands (LigPrep). The de novo ligands are then pooled and screened for 
reactive functional groups. The final set of compounds is then fed into our reductive Z-scoring filter. b. Structure-based reductive filter for 
SCD1 specific compounds. The Z-scoring filter operates in three iterative steps: Shape filter, Docking filter, and QSAR filter. The shape 
filter generates 100s of conformers for each of the thousands of compounds generated to best fit either SAR707 or A939572. Best fit of 
compounds with SAR707 had most surviving compounds (>800), thus selected for next filter, docking. Docking filter was applied to >800 
compounds from the shape filter. Glide-XP docking retaining top 50% and addition of known inhibitors yields a pool of 286 compounds for 
QSAR filtering. A QSAR model was made from over 20,000 pharmacophore hypotheses based on a set of 32 known compounds ranging 
from low nanomolar activity to high milimolar (no activity). The QSAR model trained on this dataset generating a final pool of compounds 
with good predicted IC50. The algorithm for ranking these final 242 compounds is shown. A subset of 38 compounds from the Z-score 
filtering was selected for synthesis and testing. Compounds were then tested with cell-based assay and enzymatic assay for activity and 
specificity. Optimization for these compounds may proceed as needed.
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Table 1: Comparison of QSAR results with experimental findings for activity.

Ligand Name
Rank 1 
pIC50 Single Pt Act (10μM) Known IC50 (nM) pIC50 (nM) <500 nM? MW

DaiichiSankyo[50] 
3nM 1 NA 3 1.87 Y 452.45

CVT-12-012 36nM 2 NA 36 13.52 Y 434.42
SAR707[12] 8nM 3 NA 8 14.49 Y 466.46
TC03.10 4 No  30.98 Y 537.58
TC03.48 5 No  40.83 Y 538.57
Abbott 10b[51] 6 NA 58 52.61 Y 464.32
Abbott 7c[51] 7 NA 51 67.77 Y 419.87
TC03.1 8 Not tested  70.96 Y 469.46
TC03.100 Blind 
Control 10-40 nM 
SAR707

9 NA  72.62 Y 418.90

TC03.18 10 No  72.62 Y 519.54
Abbott 10g[51] 11 NA 100 91.42 Y 436.44
SetA.70 12 No  91.42 Y 408.90
TC03.4 13 Y  104.71 N 456.46
TC03.14 14 No  109.91 Y 483.49
SSI-3 15 Y  126.19 Y 498.50
TC03.6 16 No  129.13 Y 495.50
TC03.37 17 Y  155.25 Y 539.56
Analog3[52] 18 NA 107 170.23 Y 443.43
SetB.74 19 No  170.23 Y 420.43
DaiichiSankyo[53] 20 NA 100 178.25 Y 514.63
Xenon LCF369 21 NA 120 182.40 Y 465.45
TC03.61 22 Y  191.00 Y 510.56
TC03.8 23 No  219.30 Y 523.55
SetA.69 24 Y  224.40 Y 394.87
MerckFrost     MF-
152 25 NA 100 240.45 Y 384.38

TC03.15 26 Y  246.05 Y 483.49
SetB.68 27 No  282.51 Y 392.38
SetB.73 28 No  289.09 Y 406.40
SetA.61 29 No  302.71 Y 395.86
TC03.46 30 No  302.71 Y 483.49
SetB.70 31 No  331.92 Y 407.39
SSI-4 32 Y 7 339.65 Y 388.85
A939572 37nM 33 NA 37 372.42 Y 387.87
SSI-2 34 Y  381.09 Y 484.48
Abbott 10e[51] 35 NA 470 447.74 Y 405.40
TC03.5 36 Y  468.85 Y 470.49
TC03.66 37 Y  468.85 Y 523.55
TC03.23 38 Y  479.77 Y 526.51
SetB.52 39 No  479.77 Y 473.49
SetB.61 40 No  550.85 N 484.48
TC03.31 41 No  632.46 N 497.52
SetB.66 42 No  709.63 N 406.40
TC03.53 43 No  726.16 N 524.54
Abbott[54] 44 NA 400 833.74 N 353.42
TC03.47 45 No  853.16 N 533.56
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To identify which structural components of our 
experimental inhibitors are important for protein binding 
to SCD1, we interrogated SCD1 amino acid R-group 
interactions with our active designer small molecules SSI-
1, SSI-2, SSI-3, and SSI-4. Within the tunnel-like crevice 
of the enzyme where each of these inhibitors fit, Met79, 
Val339, Ile115, Thr231, Leu232, Tyr334, Ala343, Arg347, 
and Ile348 all approach within 4.5 Å of these inhibitors 
(Figure 2d). Additionally, we calculate the nitro-groups 
from all 4 top hits participate in electrostatic interactions 
with the Arg residues, and transient π-cloud interactions 
occur with the phenyl-substituted rings from SSI-3 (Figure 
2d). Further stabilizing interactions likely occur between 
the hydrophobic residues and aliphatic atoms from all four 
top hits (Figure 2d).

The outcome of our docking analyses is a set of 286 
compounds with docking scores ranging from -12.55 kca/
mol to -7 kcal/mol, including our top scoring ligands SSI-1 
(-9.92 kcal/mol), SSI-2 (-9.0 kcal/mol), SSI-3 (-10.38 kcal/
mol), and SSI-4 (-10.91 kcal/mol) (Supplementary Table 
2). Previous docking-only based compound screening fell 
short of our desired screening and design expectations 
(data not shown), which encouraged our use of a Z-scoring 
method for combining Shape and QSAR with Docking 
into a rubric for synthesis selection to predict inhibitory 
concentrations of candidate small molecules.

Predicted SCD1-inhibitory activity of lead 
compounds

To further refine the selection of inhibitors and 
identify appropriate candidates for synthesis, the top 
286 compounds from docking were fed into the QSAR 
modeling program within 3D-QSAR Schrödinger program 
[30, 31]. Here the QSAR is built on pharmacophore 
hypotheses (PPHs) generated for a wide range of IC50 

values published for chemical inhibitors of SCD1 (2 nM 
to >10,000 nM). In total we took 32 compounds over 
this range to generate a training set and create >20,000 
pharmacophore models. Each known compound was then 
fitted to the best PPH that fit all the data (Supplementary 
Figure S1c-e). As an example, the aromatic ring structures 
of our lead compound SSI-4 align more closely with the 
predicted PPH model AAAHHR.4452 (where spatial 
orientation of the aromatic ring structures as predicted by 
the PPH model are shown as orange rings) (Supplementary 
Figure 1f) as compared to A939572, SAR707, and 
ChemBL375265 (Supplementary Figures S1c-e). Using all 
of these PPHs, we were able to establish a good activity to 
predicted activity linearity (Figure 3a). Then, the top 286 
compounds were tested with the QSAR filter. The output 
of the 3D-QSAR measurements gave predicted IC50’s for 
all tested compounds, determining approximately 140 
compounds worth testing (Table 1, Supplementary Table 
3). 

From these 140 compounds, the top 45 were 
selected through a second Z-filter comprised by 
combined normalized scoring. The final Z-score 
for each compound was determined as: (1) 

Zscr =
(Shapenorm + Docknorm +QSARnorm )

3 , which 
takes the average of the sums of the Shape scores that 
were normalized to the top performing compound 
(Shapenorm), the Dock scores that were normalized with the 
best docking compound (-12.55 kca/mol) (Docknorm), and 
the 3D-QSAR normalized to the best predicted IC50 value 
(QSARnorm). The top 40-45 compounds were selected 
for synthesis and testing, from the 140 compounds that 
entered the Z-scoring matrix (Table 2). Additionally, 
we performed a chemoinformatics assessment for all de 
novo compounds to determine whether the compound 
was ‘drug-like’ or ‘lead-like’ in terms of violations of 
Lipinski or Jorgensen Rules before proceeding (Table 3, 

SetA.100 Blind 
Control 400 nM 
(28c, Abbott 
ChemBL375265)

46 NA 400 873.03 N 389.84

SetB.49 47 No  957.26 N 469.48
Abbott 10a[51] 48 NA 6000 1099.08 N 385.42
SSI-1 49 Y  1099.08 N 449.43
TC03.56 50 N  1177.69 N 483.49
SetA.68 51 Y (no rescue)  1321.39 N 397.88
TC03.41 52 Y  1352.17 N 497.52
SetA.1 53 No  1482.62 N 385.85
SetB.69 54 No  1482.62 N 420.43
SetB.34 55 No  2760.77 N 392.38
Abbott 10h[51] 56 NA 10000 5508.46 N 397.43
SetB.75 57 No  5902.42 N 463.46
Analog2[52] 58 NA 2680 49094.18 N 381.35
Analog1[52] 59 NA 10000000 166352.75 N 367.33
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Table 2: Composite Z-score for modeling of all de novo ligands designed using Docking, Shape, and QSAR for ligand-
guided predictions of high affinity drug-like compounds.

Drug candidate  Sub-metrics  ComboScore

RANK NAME docking 
(normalized)

Shape Sim 
(normalized)

QSAR 
(normalized)

Z-score sub 
=Di+Si+Qi Avg Z-score

1 SSI-2‡ 0.99 0.77 0.90 2.67 0.89
2 TC03.18 0.91 0.77 0.96 2.64 0.88
3 SSI-3‡ 0.88 0.81 0.94 2.62 0.87

4 SAR707 8nM 
(TC03.100) 0.63 1.00 0.96 2.59 0.86

5 TC03.14 0.84 0.79 0.95 2.58 0.86
6 TC03.46 0.92 0.81 0.85 2.58 0.86
7 TC03.10 0.84 0.74 0.98 2.56 0.85
8 TC03.37 0.85 0.71 0.92 2.48 0.83
9 TC03.1 0.78 0.71 0.96 2.45 0.82
10 TC03.6 0.73 0.76 0.94 2.42 0.81
11 TC03.23 0.90 0.72 0.76 2.37 0.79
12 TC03.48 0.57 0.80 0.98 2.34 0.78
13 TC03.61 0.72 0.80 0.81 2.33 0.78
14 TC03.31 0.91 0.71 0.68 2.31 0.77
15 TC03.5 0.84 0.70 0.77 2.30 0.77
16 SetB.74 0.78 0.57 0.91 2.27 0.76

17 Abbott 10g phenoxyl 
100nM 0.77 0.54 0.95 2.26 0.75

18 TC03.15 0.63 0.74 0.88 2.25 0.75

19 Abbott 7c 
2chlorophenoxyl 51nM 0.85 0.43 0.97 2.24 0.75

20 SSI-4‡ 0.78 0.62 0.83 2.23 0.74
21 SetB.73 0.78 0.60 0.86 2.23 0.74
22 DaiichiSankyo 3nM [50] 0.67 0.64 0.91 2.23 0.74
23 SetB.7 0.77 0.58 0.88 2.23 0.74
24 TC03.53 0.84 0.71 0.64 2.19 0.73

25 Merck Inhibitor <100 
nM 0.70 0.47 1.00 2.16 0.72

26 TC03.47 0.89 0.68 0.57 2.15 0.72
27 SetB.61 0.69 0.62 0.82 2.13 0.71
28 TC03.7 0.80 0.73 0.55 2.08 0.69
29 TC03.8 0.44 0.73 0.89 2.07 0.69
30 SetA.69 0.74 0.42 0.89 2.05 0.68
31 SetB.6 0.68 0.58 0.74 2.00 0.67
32 SetB.52 0.57 0.64 0.76 1.96 0.65
33 SetB.66 0.71 0.60 0.65 1.95 0.65
34 TC03.66 0.52 0.65 0.77 1.93 0.64
35 TC03.56 0.86 0.65 0.41 1.92 0.64
36 SetA.61 0.67 0.40 0.85 1.92 0.64
37 SetA.70 0.55 0.39 0.95 1.89 0.63
38 SetB.69 0.82 0.62 0.26 1.70 0.57

39 SetA.100 control 
(400nM) 0.72 0.40 0.56 1.68 0.56

40 SetB.49 0.57 0.57 0.52 1.67 0.56
41 SSI-1‡ 0.60 0.61 0.45 1.66 0.55
42 TC03.41 0.57 0.72 0.32 1.62 0.54
43 SetA.68 0.74 0.38 0.34 1.46 0.49
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44 SetA.59 0.72 0.40 0.31 1.42 0.47

45 DaiichiSankyo IC50 100 
nM[53] 0.87 0.52 0.00 1.39 0.46

46 Abbott 10d phenoxyl 
51nM 0.85 0.45 0.00 1.30 0.43

47 Abbott 10c phenoxyl 
38nM 0.81 0.42 0.00 1.23 0.41

48 SetA.1 0.54 0.39 0.26 1.19 0.40
49 SetB.34 0.80 0.56 -0.38 0.98 0.33
50 SetB.75 0.57 0.58 -1.05 0.09 0.03

Figure 2: Discovery of SSI-1, SSI-2, SSI-3, and SSI-4 as novel inhibitors of SCD1. (a) Schema of in silico modeling strategy, 
where compounds are identified through core, or scaffold-hopping generation, followed by QSAR pharmacophore shape matching after 
identification of reactive functional groups. Top hits are then validated through functional screening to identify novel lead compounds. (b) 
Docking of novel generated compounds with SCD1 protein is given. The binding pocket is shown with the electrostatic colored surface. 
Binding poses for all compounds that survived the shape filter to docking filtration. Docking poses for all good scoring compounds (docking 
score < -8.0) are rendered in pink wire frame. Two known inhibitors are shown in cyan (A939572) and orange (ChemBL375265) CPK 
rendering. Structures shown in green licorice rendering represent the top 282 compounds from docking. (c) Docking of 38 synthesized 
compounds (green sticks) is shown with two known compounds (A939572 and ChemBL375265). The surface of the binding pocket reveals 
a very deep tunnel for substrate binding with electrostatic charge distribution shown on the surface. SCD1 helical regions are rendered as 
red ribbons. (d) Ligand interaction map for three top de novo inhibitors is given. Rendered as licorice models, SSI-1, SSI-3, and SSI-4 are 
shown in yellow, green, and blue. Adjacent residues within 5Å of the inhibitors are rendered in standard color (carbon-gray, oxygen-red, 
nitrogen-blue) with the alpha-helical region rendered in transparent red ribbons for clarity of view. 
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Supplementary Table 4).

SSI-(1-4) are novel inhibitors of SCD1 enzymatic 
activity

After synthesis feasibility and cost analysis, we 
synthesized 38 of the selected compounds. Utilizing a 
high-throughput proliferative screen with 4 ccRCC cell 
lines, we identified 5 compounds that produced a >40% 
decrease in proliferation in at least 2/4 cell lines: SSI-
1, SSI-2, SSI-3, SSI-4, and SetA.68 (-9.34 kcal/mol) 
(Supplementary Figure 2a). Using linear regression 
modeling generated from dose-response curves, 
proliferative inhibitory concentrations (IC50) of these 5 
compounds were established (Figure 3b, Supplementary 
Figure 2b-2f). To evaluate inhibition of SCD1 by these 
molecules, we used LC/MS to quantify changes in SCD1-
catalyzed conversion of stearoyl-CoA to oleoyl-CoA in 
response to drug treatments in vitro using SCD1 protein 
extracted from murine liver (Figure 3c, Supplementary 
Figure 2g). SetA.68 did not inhibit oleoyl-CoA conversion, 
and was excluded from further analysis. Of note, the 
experimental IC50 determined for MF-438 (1.1 nM), 
included as a positive control, corresponds well with the 
published IC50 (2.3 nM) [11]. The chemical structures for 
the novel SCD1 inhibitors SSI-1, SSI-2, SSI-3, and SSI-4 

are shown in Figure 3d. Synthesis routes and spectral data 
including NMR and MS are also provided (Supplementary 
Figures 3-6).

SSI-(1-4) reproduce known biological stress 
responses in tumor cells 

To further confirm SCD1 target specificity for SSI-
(1-4), we repeated the proliferative challenge in RCC cell 
lines in the presence of exogenous oleic acid (OA), which 
demonstrates rescue of the cytotoxic defects induced by 
SCD1 inhibitors [6]. OA fully restored proliferation in all 
cells treated with proliferative IC50 dose of MF-438 and 
ChemBL375265 controls, as well as SSI-(1-4) (Figure 
4a). Induction of the unfolded protein response (UPR) is 
a known biological response to SCD1 inhibition in tumor 
cells [6, 8]. SSI-(1-4) were each able to significantly 
induce luciferase activity in either A498 or ACHN cells 
expressing an ATF6-UPRE luciferase-reporter (Figure 
4b), where activating transcription factor 6 (ATF6) is a 
key regulator of the UPR [32]. The addition of exogenous 
OA was sufficient to reverse the activation of ATF6 
(Figure 4b). Moreover, exogenous OA inhibited SSI-(1-4) 
mediated upregulation of the UPR markers BiP (heat shock 
70 kDa protein) and CHOP (damage inducible transcript 
3) protein levels in both A498 and ACHN cells (Figure 

Figure 3: Inhibitory activity of SSI-1, SSI-2, SSI-3, and SSI-4. (a) Result of QSAR model for the top pharmacophore hypothesis 
is shown with the linear correlation of phase predicted activity versus known activity for commercially available compounds that range 
in low activity to high activity level. (b) IC50 values of known and novel SCD1 inhibitors generated using linear regression modeling. 
(c) Summary of enzymatic dose-response curves for known and experimental SCD1 inhibitors generated by in vitro SCD1 enzymatic 
inhibition assays as determined by LC/MS. Error bars indicate standard deviation for n=2 replicates. (d) The chemical structures of SSI-1, 
SSI-2, SSI-3, and SSI-4 are shown.
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4c). Collectively these findings confirm that SSI-(1-4) 
reliably recapitulates the biological responses observed in 
tumor cells treated with known SCD1 inhibitors. Given 
that SSI-4 exhibited the most potent enzymatic inhibitory 
efficacy against SCD1 (Figure 3b-3c), we performed a full 
kinome scan to test for potential off-target effects in vitro 
via non-specific binding to 468 known kinases. Binding to 
just 1 of 403 non-mutant kinases (CDKL2) was observed 
with SSI-4 at a concentration of 100 nM, and none at 10 
nM. Thus, SSI-4 is not predicted to have any major off-
target effects through kinase inhibition (Supplementary 
Figures 7 and 8).

SCD1 expression correlates with poor cancer 
patient outcomes as evidenced by decreased survival 
in multiple cancers including gastric, lung, ovarian and 
renal cell carcinoma (Figure 5a-5b, Supplementary 
Figure 9a-9b). We found that SSI-(1-4) impaired tumor 
cell proliferation in 15/19 different tumor cell lines 
representing a broad spectrum of cancers, while normal 
cells remained unaffected (Figure 4d). The inhibitors 
showed no activity against H1792 cells, which do not 
express SCD1 (Supplementary Figure 9a). However, 
for tumor cells that express SCD1, the anti-proliferative 
effects of SSI-(1-4) did not necessarily correlate with its 
expression levels (Figure 4d, Supplementary Figure 9c). 
This suggests that while SSI-(1-4) require the presence of 
SCD1 to produce anti-tumor effects, their potencies are 
likely dependent on multiple factors beyond the simple 
expression levels of the enzyme, such as the presence 
of compensatory mechanisms for fatty acid metabolism 
[33]. Our findings in thyroid carcinoma similarly present 
discordancy between tumor response to SCD1 inhibitors 
and SCD1 expression [7]. SSI-4 was tested in vivo for 
anti-tumorigenic activity. Oral administration of SSI-
4 resulted in growth inhibition of A498 ccRCC tumors 
(Figure 5c). SSI-4 treatment also reduced pulmonary 
metastasis formation of ACHN ccRCC (Figure 5d). These 
data support the notion that SCD1 represents an actionable 
target for the treatment of metastatic ccRCC. 

SSI-4 exhibits favorable pharmacokinetic and 
toxicological profile

To assess whether SSI-4 possesses a good 
pharmacokinetic profile, we measured the serum 
concentration of the compound after oral (PO) and 
intravenous (IV) administration in rat. We observed high 
levels of SSI-4 in serum after oral administration (Figure 
6a-6d) of approximately 4,323ng/mL, 15,900ng/mL, 
and 43,267ng/mL after 10mg/kg, 30mg/kg, and 100mg/
kg doses, respectively (Figure 6e). The median serum 
terminal half-life (T1/2) for each dose ranged from 2.71-
3.94 hours (Figure 6g). Absolute bioavailability after 
oral administration was determined as 119%, 152%, and 
212% for 10, 30, and 100mg/kg, respectively (Figure 6f-

Table 3: SCD1 inhibitor’s “druglikeness” for each 
candidate based # violations of to Lipinski’s Rule of 5 
and Jorgensen’s Rule of 3.
Drug candidate 
Compound Rule of 5 Rule of 3

TC03.1 1 1
TC03.10 2 1
TC03.14 1 1
TC03.15 1 1
SSI-2‡ 1 1
TC03.18 2 1
TC03.23 1 1
TC03.31 1 1
TC03.32 1 1
TC03.33 2 1
TC03.37 1 1
TC03.4 1 1
TC03.41 1 1
SSI-3‡ 1 1
TC03.46 1 1
TC03.47 1 1
TC03.48 2 1
TC03.5 1 1
TC03.53 2 1
TC03.56 1 1
TC03.6 1 1
TC03.60 1 1
TC03.61 1 1
TC03.66 2 1
TC03.8 2 1
SetA.100 control 0 1
SSI-4‡ 0 0
SetA.59 0 0
SetA.61 0 0
SetA.68 0 0
SetA.69 0 0
SetA.70 0 0
SSI-1‡ 0 1
SetB.34 0 1
SetB.49 0 0
SetB.52 0 1
SetB.6 0 1
SetB.61 0 1
SetB.66 0 1
SetB.69 0 1
SetB.7 0 1
SetB.73 0 1
SetB.74 0 0
SetB.75 0 0
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g). These data support that SSI-4 demonstrates a favorable 
drug-like profile, with excellent oral absorption. 

Toxicological study demonstrated minimal changes 
in body weight (<10%) in male mice treated daily with 
oral dose of 300mg/kg of SSI-4 for one week, while no 
significant changes were observed in females at all doses 
tested (Figure 7a-7b). No abnormalities in liver enzymes 
were found at all doses tested in both males and females 
(Figure 7c-7d). Chronic treatment at the highest dose 
in tumor-bearing animals appeared to be well tolerated, 
with ‹10% reduction in body mass even at the highest 
dose of 600mg/kg after 4.5 weeks of daily treatment 

(Supplementary Figure S9d). Ocular changes including 
bilateral squinting were observed as the primary adverse 
events, and these were reversible upon discontinuation of 
therapy. 

DISCUSSION

An increasing trend for the use of computational, 
structure-based studies for accelerating drug discovery 
and leapfrogging multiple chemical syntheses, with 
guided 3D-QSAR, or Field-based QSAR, have improved 
medicinal chemistry studies for drugs [12, 14, 30, 34-40] 

Figure 4: Experimental SCD1 inhibitors induce tumor endoplasmic reticulum stress. (a) Results of 72 hour proliferation 
assay in 3 ccRCC cell lines treated with the IC50 of known or experimental SCD1 inhibitors, along with adjuvant exogenous oleic acid 
(5µg/mL). (b) ATF6-UPRE luciferase reporter assay of A498 and ACHN cells treated with the IC50 dose of ChemBL375265 or SSI-(1-4), 
+/- OA supplementation (5µg/mL). Results are presented as relative bioluminescence (BLI). (c) Western blot for protein expression of UPR 
markers BiP and CHOP in A498 and ACHN cells treated with the IC50 doses of ChemBL375265, and SSI-(1-4) +/- OA supplementation 
(5µg/mL). Beta-actin is used as a loading control. (d) Proliferative response in patient-derived normal cells, and established tumor cell lines 
to treatment with MF-438 or SSI-(1-4).
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such as MK-8931 or SAR707. From virtual screening to 
de novo design, evaluation of drug-likeness, and further 

optimization of drug candidate for improved Pk/Pd and 
oral bioavailability, in silico methods have been useful 

Figure 5: SSI-4 attenuates tumor progression. Kaplan Meier survival analysis of indicated subtypes of (a) gastric and (b) lung 
cancer patients sorted into high versus low SCD1 mRNA expression, for multiple disease subtypes. Patient risk assessment at indicated 
mean follow-up is shown. (c) Tumor volume (mm3) in athymic nude mice bearing subcutaneous A498 xenograft doses with SSI-4 (n=10 per 
group). (h) Tumor burden of ACHN pulmonary metastasis in response to SSI-4 treatment (180mg/kg) measured by ex vivo bioluminescent 
flux, given in photons/second (n=5 per group). (d) Tumor burden of ACHN pulmonary metastasis as determined by H&E staining of lungs 
from (h). 



Oncotarget14www.impactjournals.com/oncotarget

Figure 7: SSI-4 has a favorable toxicity profile (a-b) Weight changes in male or female Sprague Dawley rats treated daily 
with indicated doses of SSI-4 for seven days (n=3 per group). (c-d) Serum profile of indicated enzymes measured on day 8 in male 
or female Sprague Dawley rats treated daily with indicated doses of SSI-4 for seven days (n=3 per group). (BUN= blood urea nitrogen; 
AST= aspartate aminotransferase; ALT= alanine aminotransferase; ALK/Phos= alkaline phosphatase).

Figure 6: SSI-4 demonstrates excellent bioavailability. Serum concentration at different time points after drug delivery following 
(a) IV or (b-d) oral administration, at indicated concentrations. (e) Maximum serum concentration (Cmax) of SSI-4 before the administration 
of a second dose. (f) AUC curve to infinite time.  (g) Summary of pharmacokinetics for SSI-4, where absolute bioavailability (%) is 
quantitated with AUC0-last and nominal dose. 
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tools for speeding results and saving research dollars[14, 
40]. The role of computer-aided drug discovery includes 
both structure-based and ligand-based methods. For 
structure-based approaches, which in comparison to high-
throughput screening, both the target and ligand structure 
are present, while for ligand-based only the examination 
of the ligand’s information is used for predicting activity. 

Here, our method utilizes both existing ligand 
information in combination with predictive structure 
modeling, emancipating the limitations for the high-
throughput screen to available drug libraries. We create 
unique structure-based reductive filters that allow us to 
better predict inhibitory efficacy as well as drug-likeness, 
improving the probability of successfully identifying 
novel targeted inhibitors. The results of functional testing, 
such as experimental IC50, can be deposited within the 
QSAR modeling to modify screening parameters in a 
machine-learning based feedback mechanism. This will 
improve the PPHs used to score candidate inhibitors, 
enhancing the selection of further generations of inhibitors 
and potentially a rapid and cost effective strategy for 
developing new classes of molecules. 

Aberrant SCD1 expression is commonly observed 
in aggressive malignancies, and negatively correlates 
with patient outcomes, generating a clear prospective for 
targeted therapy of this enzyme. Using SCD1 inhibitors 
as our model for drug development, our method allowed 
successful identification of four unique small molecules, 
SSI-1, SSI-2, SSI-3, and SSI-4, whose biological efficacy 
rivals that of leading pharmaceutical grade competitors. 
Each of these represents novel compounds with new 
scaffolds and formally unique structures that have not been 
previously synthesized or tested. This method has broad 
applicability as it may be used for the discovery of new 
classes of inhibitors, improving synthesis efficiency, or 
to strategically manipulate drug analogs that are essential 
for the generation of optimized variants. Furthermore, it 
is feasible to execute in smaller research settings that may 
not have access to existing compound libraries or high-
throughput screening tools.

MATERIALS AND METHODS

Compounds

A939572 was purchased from BioFine International. 
MF-438 (2-methyl-5-(6-(4-(2-(trifluoromethyl)phenoxy)
piperidin-1-yl)pyridazin-3-yl)-1,3,4-thiadiazole) was 
synthesized by the medicinal chemistry group at Sanford-
Burnham according to the published procedure, and was 
determined to by >95% pure by LC-MS. All experimental 
compounds, as well as ChemBL375285, were synthesized 
by Enamine. All compounds were validated with LCMS 
and/or 1H NMR to meet the minimum requirement of 90% 

purity.

Tissues and cell lines

All patient tissue used throughout the course of 
this study were procured from de-identified patients. 
This study has been approved by the Mayo Institutional 
Review Board. Human cell lines including: A498, ACHN, 
Caki1, Caki2, MDA-MB-231, CaCo-2, HT-29, SNU-449, 
A549, A375, MiaPaca2, DU-145, LNCaP, and T24 were 
purchased from the American Type Culture Collection 
(ATCC). HovTax2, THJ16T, THJ29T, and Mela15 were 
established in the Copland laboratory. OVCA420, was a 
gift from Dr. Robert C. Bast Jr. (University of Texas MD 
Anderson Cancer Center). All mortal normal cells were 
derived from primary patient tissue. Thyroid cells were 
grown in RPMI (Cellgro) containing 5% FBS (Hyclone) 
and 1x penicillin-streptomycin (Invitrogen), at 37o C in 
humidified conditions with 5% CO2. All other cells were 
cultured in DMEM medium (Cellgro) containing 5% FBS 
(Hyclone) and 1x penicillin-streptomycin (Invitrogen), at 
37o C in humidified conditions with 5% CO2. 

DNA isolation and STR analysis

Genomic DNA was extracted from previously 
established cell lines (MDA-MB-231, CaCo2, HT-29, 
SNU-449, A549, A375, HovTax2, OVCA420, MiaPaca2, 
DU-145, LNCAP, T24), and cell lines established in the 
Copland laboratory (THJ16T, THJ29T, and Mela15) using 
PurelinkTM Genomic DNA mini kit (Invitrogen). Sixteen 
STR markers were PCR amplified using fluorescently 
labeled primers from ABI (Applied Biosystems), and were 
analyzed using ABI 3130 (Applied Biosystems). Peak 
sizes were calculated versus a co-injected size standard 
using Gene Marker (Soft Genetics), performed by the 
Mayo Medical Genome Facility Genotyping Core. 

Growth assays

Cells were seeded at 5,000 cells/well in clear-bottom 
96-well plates in triplicate. Drug treatment was applied 
at 1:1000 in reduced serum conditions (3%). After 72 
hours, cells were washed with PBS, and stored at -80oC 
prior to analysis using CyQuant® Proliferation Analysis 
Kit (Invitrogen) er manufacturers’ protocol for relative 
fluorescence units. Alternatively, cells were plated 2x105/
well in 12-well plates (Genesee Scientific) in triplicate 
prior to drug treatment. After 120-hour treatment, cell 
number was established using a Coulter Particle Counter 
(Beckman). Oleic acid-albumin (Sigma Aldrich) was 
added to media at 5µM, and was applied adjuvant to drug 
treatment. Drug stocks were prepared in DMSO (Sigma) 
at 1000x. IC50 dosing per cell line was calculated using 
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CalcuSyn analytical software.

Luciferase assay

A498, Caki1, and ACHN cells were transiently 
transfected with p5xATF6-GL3 UPR luciferase reporter 
(Addgene plasmid#11976) and pRL-CMV-renilla 
(Promega) using Lipofectamine 2000 (Invitrogen). Cells 
were treated with indicated inhibitor (10µM) with or 
without OA (5µg/mL) for 24H prior to collection and 
analysis using Promega Dual Luciferase assay kit per 
manufacturer’s specifications. Luciferase activity was 
measured using Veritas Luminometer (Promega); results 
are reported as relative bioluminescence units (BLU).

Western blot analysis

Protein extraction and western blot analysis 
was performed as previously described [41]. Primary 
antibodies included SCD1 (Sigma-Aldrich, HPA012107), 
BiP (Cell Signaling, 3183), CHOP (Cell Signaling, 2895), 
CYP3A5 (Lifespan, ls-c96732), and β-actin (Sigma-
Aldrich, A5441). 

Meta-analysis

Relationship between SCD1 expression and patient 
survival in different cancer subtypes was determined using 
KMPlotter, for gastric [42], lung [43], and ovarian [44] 
cancer. Affymetrix probe ID 200832_s_at was identified 
as optimal probe for SCD1 analysis using jetset [45], 
analysis was performed for relapse-free survival, patients 
split by median expression with best cutoff selected, no 
censoring for follow up threshold selected. For ccRCC 
meta-analysis, cBioPortal [46] was used to query the 
relationship between patient survival and SCD mRNA 
expression z-scores (RNA Seq V2 RSEM) using the 
dataset established by TCGA [47], where ~5% of patients 
demonstrated upregulated SCD mRNA.

IVIS bioluminescent imaging

ACHN cells were infected with pSIN Luc Ub 
Emerald GFP lentivirus construct, a kind gift from Dr. 
Yasuhiro Ikeda (Mayo Clinic). Lentivirus was prepared 
in 293FT viral progenitor cells (ATCC) with ViraPowerTM 
using the transfectant Lipofectamine 2000 (Invitrogen) per 
the manufacturer protocol. Cells were sorted based upon 
GFP expression using BD FACSAria II flow cytometry 
cell sorter (BD Biosciences), yielding a 90% GFP-positive 
population. Bioluminescent imaging of ex vivo tissue 
bearing pSIN Luc Ub Emerald GFP expressing tumors 
was performed using IVIS® Spectrum (Perkin Elmer). 
D-Luciferin (GoldBio) was given at 30mg/mL, 0.1mL/

mouse via intraperitoneal injection prior to lung tissue 
harvest and imaging. Lesion width was calculated as the 
mean of all nodules measured (7-12 per mouse), identified 
by H&E staining.

In vivo tumor studies

A498 cells were injected subcutaneously in the flank 
of athymic nude mice at 1x106/mouse. Once tumor burden 
reached >50mm3, SSI-4 treatment was administered at 
60, 180, or 600 mg/kg in custom AIN76 animal chow 
(Research Diets, Inc.), given continuously for 4.5 weeks. 
Tumor burden was measured using calipers. For the lung 
tumor study, 2 million ACHN- pSIN Luc Ub Emerald 
GFP cells were injected intravenously in 50µL of PBS in 
athymic nude mice. 54 days after implantation, animals 
began SSI-4 treatment (180 mg/kg, chow, continuous) 
for 28 days. Once therapy was completed, lung tissue 
was harvested and analyzed for tumor burden via ex vivo 
bioluminescent imaging, and hematoxylin and eosin 
(H&E) staining of formalin-fixed, paraffin-embedded 
lung tissue. 20× images were obtained using Scanscope 
XT and Imagescope software. ACHN-bearing animals 
demonstrated a decreased rate of consumption, and 
corrected dosing was calculated to be 20mg/kg.

In vitro evaluation of SCD1 inhibition by LC/MS

Microsomes were isolated from murine liver using 
Microsome Isolation Kit (BioVision) per the manufacturer 
protocol. Successful isolation of the microsome fraction 
was validated by enrichment of cytochrome P450 3A5 
(CYP3A5), an endoplasmic reticulum resident protein, 
detected via western blot. Each assay (100 μL) contained 
50 μg of microsomes, 1 μL of DMSO (for no drug 
controls) or DMSO-solubilized SCD1 inhibitor, 1 mM 
reduced NADH, 60 μM coenzyme A, 1 mM ATP, 1 mM 
DTT, and 5 mM MgCl2 in 100 mM sodium phosphate 
buffer (pH 7.4), analogous to earlier work [48]. Assays 
were incubated for five minutes at 25 °C and then 
supplemented with 30 µM 13C18-stearoyl CoA lithium salt 
(Sigma #675776) to initiate SCD1-catalyzed conversion to 
13C18-oleoyl CoA. For each evaluated compound (i.e. SSI-
1-4 and known inhibitor control MF-438), assays were 
conducted in duplicate at eight concentrations ranging 
from 0.125 nM to 500 nM. Following incubation at 37 °C 
for 30 min, enzymes were inactivated and precipitated by 
adding two volumes (200 µL) of acetonitrile and samples 
supplemented with 1 µM heptadecaonyl CoA (Sigma 
H1385) internal standard (I.S.) for LC/MS analyses. 
Samples were centrifuged at 13,000 rpm for 10 min. To 
quantify biotransformation of 13C18-stearoyl CoA to 13C18-
oleoyl CoA for drug treatments relative to vehicle controls, 
supernatants were evaluated using the LC/MS2 acyl CoA 
quantitation method of Magnes et al. [49] and adapting 
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selected reaction monitoring (SRM) for isotope-labeled 
acyl CoAs. Specifically, SRM was executed for 13C18-
stearoyl CoA (m/z 1052 → 545), 13C18-oleoyl CoA (m/z 
1050 → 543), and heptadecanoyl CoA I.S. (m/z 1020 → 
513). LC/MS2 was conducted using a Thermo LTQ mass 
spectrometer interfaced with a Dionex UltiMate 8000 LC 
system. SRM signal areas for isotope-labeled acyl CoAs 
were measured relative to the heptadecanoyl CoA I.S. 
using XCalibur software (Thermo), and percent enzyme 
inhibition determined by comparing 13C18-oleoyl CoA 
quantities between treatment and DMSO control assays. 
Dose-response curves were prepared using GraphPad 
Prism.

Preclinical pharmacokinetics

Pharmacokinetic assessment was performed 
for SSI-4 administered to fasted male C57BL/6 mice 
either intravenously (IV) or by oral gavage (PO) in 
DMSO:PEG400:water (10:70:20) as a clear solution at 5 
mg/mL (IV dosing), and 1,3 or 10 mg/mL (respectively 
for the PO dosing). Serum analysis was performed by 
LC-MS-MS. PK calculation settings were obtained 
using the Phoenix WinNonlin 6.3 program, using either 
the Noncompartmental model 201 (IV bolus input) or 
Noncompartmental model 200 (extravascular input). 

Toxicology analysis

Sprague dawley rats (6-8 weeks old M/F) were 
orally gavaged with SS1-4 at the indicated dose daily, 
for a duration of seven days. For each dose levels 3 
male and 3 females were placed on study. Rats were 
clinically observed and weighed daily. On day 8 rats were 
euthanatized and blood was collected by cardiac puncture. 
Blood chemistry was measured by STAT Veterinary 
laboratory (San Diego CA). 

Statistical analysis

ANOVA was used to determine the statistical 
significance of the differences between experimental 
groups, where p<0.05 as indicated by asterisk (*). 
Kaplan-Meier survival plots were generated using either 
KMPlotter or cBioPortal, with logrank P value calculated 
by host software. 
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