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ABSTRACT
Co-occurrence relationships in PubMed between terms accelerate the recognition 

of term associations. The lack of manually curated relationships in vocabularies and 
the rapid increase of biomedical literatures highlight the importance of co-occurrence 
relationships. Here we proposed a framework to explore term associations based on 
a standard procedure that comprises multiple tools of text mining and relationship 
degree calculation methods. The text of PubMed were segmented into sentences by 
Apache OpenNLP first, and then terms of sentences were recognized by MGREP. After 
that two terms occurring in a common sentence were identified as a co-occurrence 
relationship. The relationship degree is then calculated using Normalized MEDLINE 
Distance (NMD) or relationship-scaled score (RSS) method. The framework was 
utilized in exploring associations between terms of Gene Ontology (GO) and Disease 
Ontology (DO) based on co-occurrence relationship. Results show that pairs of terms 
with more co-occurrence relationships indicate shared more semantic relationships 
of ontology and genes. The identified association terms based on co-occurrence 
relationships were applied in constructing a disease association network (DAN). The 
small giant component confirms with the observation that diseases in the same class 
have more linkage than diseases in different classes.

INTRODUCTION

A large number of biomedical terms occurs with 
the rapid development of researches and the increasement 
of the literatures. Associations between these terms play 
important roles in exploring literature and linking term-
related molecules [1, 2]. e.g. Medical Subject Headings 

(MeSH) [3] classified biomedical terms in 16 categories 
based on set inclusion relationship between terms for 
easing store and retrieve literatures [3]. After applying 
annotating the function of molecules, the advantages 
of associations between terms gradually appears. 
Recent studies have utilized these term associations in 
constructing functional similarity network of non-coding 
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RNAs (ncRNAs) [4, 5], predicting novel disease related 
ncRNAs [5], and so on.

Term associations can often be reflected by 
the manually curated relationships between terms in 
ontologies or their annotating genes. Terms of a domain 
are collected as a biomedical ontology or a category of 
an ontology. For example, terms of biological process 
(BP), molecular function (MF) and cell component (CC) 
were organized in three categories of Gene Ontology 
(GO) [6]. ‘IS_A’ relationships between terms of sub-
categories of GO form a directed acyclic graph (DAG). 
The DAG was frequently used in calculating similarity of 
pair-wise terms, and the high similarity scores represent 
the association between terms [7–9]. Currently, Wang et 
al.’s method [4, 10] was validated suitable in biomedical 
ontologies, such as GO, disease ontology (DO) [11], 
and so on. Because no relationships between different 
terms across ontologies exist, it is not easy to explore 
associations between terms across ontologies based on the 
DAG of ontology completely. Fortunately, the functional 
annotations of genes help for this. To explore associations 
between terms across ontologies, three methods involving 
Vector Space Model (VSM) [12], Association Rule 
Mining (ASR) [13], and Cross-Category Gene Ontology 
Measurement (CroGO) methods [14] were designed.

Two terms occurs in common sentence, abstract, 
documents of a literature is deemed as co-occurrence 
relationships. The co-occurrence relationships occur 
widely in common literatures of PubMed. In comparison 
with DAG and term gene relationship, these relationships 
were easier to be ignored for exploring term associations. 
Currently, four methods involving Normalized MEDLINE 
Distance (NMD) [15], relationship-scaled score (RSS) 
[16], extensional Mutual Information (EMI) [17], and 
adjusted RSS based on information content (ARSSIC) 
methods [18] were presented based on co-occurrence 
relationships. NMD method is based on Normalized 
Google Distance (NGD) method [19], which is 
implemented in google search engine for calculating the 
relationship degree of two search terms based on their 
co-occurrence relationships. RSS and EMI methods are 
designed based on MI (Mutual Information) [20] to rank 
relativities between terms in literature. Compared with 
other three methods, ARSSIC method incorporates DAG 
of ontology and the co-occurrence relationships.

Although multiple methods have been presented 
for exploring associations between terms based on their 
co-occurrence relationships in PubMed, two issues limit 
the application of these methods. One issue is that two 
terms occurring in common abstract of literature were 
extracted for co-occurrence relationships. Obviously, two 
terms occurring in common sentence of abstract should 
be more likely to have potential linkages. The other 
issue is that no procedure was presented to extract co-
occurrence relationships between terms from literature. 
To solve these two issues, here we designed a framework 

to annotate literature with biomedical ontologies and 
explore term associations. First, the abstract of literatures 
were segmented into sentences. And then the terms of 
sentences were mapped to biomedical ontology terms. 
Finally, the similarity based on co-occurrence relationships 
was calculated based on existing methods to reflect the 
relationship degree of pair-wise terms.

RESULTS

Co-occurrence relationships between GO and 
DO terms in PubMed

Terms with co-occurrence relationships were 
extracted based on our framework in February 2017. After 
removing the annotations without more than two terms in 
a sentence, 2,057 CC terms (52.65%–2057/3907), 3,708 
MF terms (37.12%–3708/9988), 9,588 BP terms (33.95%–
9588/28245), and 5,291 DO terms (76.46%–5291/6920) 
in 15,922,610 sentences of abstracts were left. Totally, a 
larger number of BP terms are related with other terms, 
and the highest proportion of disease terms is analyzed 
with other terms. It is rational that disease domain 
deserves more attention.

The more detailed annotation results are shown 
in Figure 1. In all 1,453,119 pairs of terms with co-
occurrence relationships were obtained. Among them, 
43,840 CC term pairs, 57,876 MF term pairs, 230,367 BP 
term pairs, 298,523 DO term pairs have co-occurrence 
relationships, and larger number of relationships across 
ontologies were extracted. In comparison with the number 
of ‘IS_A’ relationships from ontology, more relationships 
exist in PubMed. e.g. almost 8 times the number of 
relationships between CC terms (7.80–43840/5618) occur 
in PubMed. Therefore, it is very important to access co-
occurrence relationships to aid to explore the association 
between terms of an ontology. Since few number of 
manually curated relationships were provided between 
terms across ontologies, co-occurrence relationship plays 
important roles in exploring term associations across 
ontologies across ontologies.

Related terms based on co-occurrence 
relationships indicate shared semantic 
relationships of ontology

In order to assess the performance of term relativity 
based on co-occurrence relationships in PubMed, we 
compared the correlation between term relativity with 
structure-based term similarity. The term similarity based 
on ontology performs well and is widely used in biomedical 
domain as best of our knowledge. Thus, the correlation can 
show the performance of term relativity. Because RSS and 
NMD methods [15, 16] are two typical methods based on 
MI and NGD respectively, these two methods are used for 
calculating relative degree of pair-wise terms here. Wang’s 
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method completely depends on the structure of ontology. 
Therefore, Wang’s method was utilized for calculating term 
similarity of BP, MF, CC and DO.

Figure 2A shows the scatter plot of the distribution 
of RSS score and similarity score of DO term pairs. The 
Pearson correlation coefficient is 0.3796 (p < 2.2e–16). The 
validation result demonstrates that the related terms based 
on co-occurrence relationships achieve high similarity 
scores based on ontology. The same comparison was 
practiced on three sub-categories of GO. And the Pearson 
correlation coefficient is 0.2284, 0.3572 and 0.3392 for BP, 
MF and CC term pairs, respectively (Figure 2B). These 
results indicate the performance of RSS score is stable 
for exploring term associations of different ontologies. 
In comparison with three categories of GO, the highest 
proportion of DO terms have co-occurrence relationships 
in PubMed. Correspondingly, the highest correlation was 
obtained between RSS relative score and similarity score 
of DO term pairs. On the contrary, the lowest proportion of 
BP terms have co-occurrence relationships, and the lowest 
correlation was obtained between RSS relative score and 
similarity score of BP term pairs.

We also compared the correlation between NMD 
score and similarity score of ontology term pairs. The 
results are shown in Figure 2B. The Pearson correlation 
coefficient is 0.3804, 0.0734, 0.1460 and 0.1693 for DO, 
BP, MF and CC term pairs, respectively. In all, the results 
based on NMD score are in accordance with the results 

based on RSS score. And the correlation based on NMD 
score is slightly less than the correlation based on RSS 
score. Since both RSS and NMD methods are based on 
co-occurrence relationships, the reliability of the relative 
terms based on PubMed are further validated. Considering 
they are two different types of methods, the results in 
Figure 2 show that the performance of RSS method is a 
litter better than NMD method.

Related terms based on co-occurrence 
relationships indicate shared genes

Semantic relationships between different terms 
mainly occur in single ontology. Hence, it is not easy to 
assess the co-occurrence relationships based on structure 
of existing ontologies. Since DO and GO terms are 
frequently used for annotating the function of genes  
[9, 21], the similarity between terms across DO and GO 
terms can be calculated using ASR method [13] based on 
their annotated genes. In order to assess the performance 
of term relativity across ontologies, we compared the 
correlation between term relativity with gene-based term 
similarity. 

The scatter plot of the distribution of RSS score 
and ASR score of DO-BP term pairs is shown in Figure 
3A (Pearson correlation, g2 = 0.3796 p < 2.2e–16). 
This result demonstrates that the related terms across 
ontologies based on co-occurrence relationships achieve 

Figure 1: The number of pair-wise terms of ontologies with co-occurrence relationships.
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high similarity scores based on their annotated genes. The 
further validation is performed on DO-MF, DO-CC, BP-
MF, BP-CC, and MF-CC term pairs, the corresponding 
Pearson correlation coefficient is 0.2703, 0.1573, 0.4247, 
0.2725, and 0.1995, respectively. It show that related terms 
across ontologies based on co-occurrence relationships 
indicate shared genes. In consideration of the above results 
on single ontology, all of these results in Figure 3 verify 
that the RSS score based on co-occurrence relationship is 
suitable for exploring associated term pairs.

The NMD score of terms across ontologies was 
also compared with ASR score. The Pearson correlation 
coefficient is 0.3087, 0.1897, 0.2167, 0.1167, 0.2207, 
and 0.1225 for DO-BP, DO-MF, DO-CC, BP-MF, BP-
CC, and MF-CC term pairs, respectively (Figure 3B). On 
the whole, both NMD score and RSS score achieve high 
correlation between terms across GO and DO. Among 
them, the correlation based on NMD score of DO-CC 
term pairs is slightly higher than that based on RSS score. 
And the correlation based on NMD score of DO-BP, DO-
MF, BP-MF, BP-CC, and MF-CC term pairs is lower 
than based on RSS score. These results in Figure 3 are 

consistent with results in Figure 3, which validates that 
RSS method achieves better performance than NMD 
method.

Case study of constructing disease association 
network

In order to show the utilization of associated terms 
in PubMed, we constructed a term association network. 
In the network, a node represents a term, and two nodes 
are linked by an edge if the relative score of them is equal 
or larger than a threshold of relative score. Considering 
the highest proportion of DO terms has co-occurrence 
relationships in PubMed, a disease association network 
(DAN) was established based on the related disease 
pairs. In addition, because RSS method accesses higher 
performance than NMD method, RSS score between DO 
terms was calculated for this purpose.

The threshold of relative score is accessed based 
on the distribution of the RSS scores of all DO term 
pairs, which is shown in Figure 4A. The number of links 
dramatically decreases when the threshold increases from 

Figure 2: The correlation between co-occurrence based term relativity and structure-based term similarity. (A) The 
distribution of the term similarity by Wang’s method. (B) Pearson correlation coefficient between relative degree score and similarity score.

Figure 3: The correlation between co-occurrence based term relativity and gene-based term similarity. (A) The 
distribution of the term similarity by ASR method. (B) Pearson correlation coefficient between relative degree score and ASR score.
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20 to 60. It means that the edges with score lower than 20 
and higher than 60 are seldom. According to the previous 
validation, term pairs with the larger score can be more 
likely to be associated with each other. In addition, when 
the threshold is equal or larger than 60, the link numbers 
remain relatively stable. Hence, we choose 60 as the 
threshold to set up DAN.

8,531 associations between 4,241 diseases were 
utilized in constructing the DAN (Supplementary 
Figure 1). We then analyzed the degree of the network. 
Figure 4B demonstrates the histogram of the number of 
diseases in the network linked with the other diseases. 
1,014 (23.91%–1014/4241) diseases are connected 
with only one disease. In comparison, 2,508 (59.14%–
2508/4241) diseases are adjacent with three or more 
diseases. ‘eccrine porocarcinoma (DOID:7566)’ and 
‘osteochondrodysplasia (DOID:2256)’ are the hub 
diseases in the network, which contains the most number 
of associated diseases (24). According to the previous 
study [22], diseases of Online Mendelian inheritance 
in man (OMIM) [23] are categorized into 22 classes. 
And diseases in the same class have more linkage 
than diseases in different classes. Therefore, the giant 
component of DAN should be smaller than the random 
network. Actually, the giant component of our network 
contains 3,885 diseases (9.999e-05 – 1/10001), which 
is the least number of diseases in the DAN compared 
to 10,000 random networks. The further examination 
of the degree distribution of the diseases in the DAN 
revealed a power-law distribution with R2 = 0.896 (Figure 
4B). This indicated that the network displayed scale-
free characteristics like many other biological networks  
[22, 24, 25].

DISCUSSION

In this article, we designed a framework to explore 
associations between biomedical terms in PubMed. Tools 
for extracting co-occurrence relationships and methods for 

calculating relationship degree are two main issues for this 
purpose. Unlike the previous methods in describing the 
co-occurrence relationship, we define it as the occurrence 
of two terms in common sentence. Obviously, our co-
occurrence relationship shows stronger relationship degree 
than that of the occurrence of two terms in common 
document. To extract the co-occurrence relationship, text 
of PubMed should be segmented into sentences by Apache 
OpenNLP first, and then annotated by term recognition 
tool MGREP. Subsequently, the relationship degree can 
be calculated by existing methods based on co-occurrence 
relationships.

The framework was utilized for establishing the 
association between terms of DO and GO. As a result, 
a large number of relationships between ontology terms 
were extracted from PubMed. Experiments validated 
that related terms based on co-occurrence relationships 
indicate shared semantic relationships of ontology and 
shared genes. The framework was easily to be extended 
for exploring terms of other biomedical ontologies as 
expected. Therefore, our framework can be regarded 
as a complement to the manually curated relationships 
between terms. The case study of established DAN shows 
an application of the identified associated terms. The 
network confirms with the observation that diseases in the 
same class have more linkage than diseases in different 
classes. This further validates the reliability of the term 
associations. The identified term associations can also be 
utilized for constructing network for BP, MF, CC and other 
ontologies.

The relative score based on co-occurrence is one 
type of relationship between terms. There are also other 
types of relationships between terms, such as structure-
based and gene-based. Therefore, the Pearson correlation 
coefficient among these different associations cannot 
decide the performance of each type of relationships 
among terms. Here, we investigated correlations among 
different types of relationships between terms to illustrate 
their associations.

Figure 4: Constructing and characteristics of the disease association network. (A) Cumulative distribution of the edges 
between diseases when using various similarity thresholds. (B) Degree distribution for diseases in the DAN.
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MATERIALS AND METHODS

Tools

Two tools involving Apache OpenNLP [26] and 
MGREP [27] are used for sentence segmentation and term 
recognition. Apache OpenNLP is an open source project 
for natural language processing (NLP) tasks. It contains 
a tool named OpenNLP Sentence Detector for sentence 
segmentation. The tool can detect whether a punctuation 
character marks the end of a sentence or not. In this sense 
a sentence is defined as the longest white space trimmed 
character sequence between two punctuation marks. 
MGREP is a NLP tool for mapping medical free text 
to formal medical terms [27]. Because it implements a 
novel radix-tree-based data structure that enables fast and 
efficient matching of text against a set of dictionary terms, 
the tool performs slightly better in terms of accuracy and 
speed typical tool for term recognition [28]. MGREP 
was utilized as a mapping tool by Open Biomedical 
Annotator (OBA) [29], which automates the process of 
extracting terms from text that are available on the web. 
However, it is not an easy way for us to extract terms of 
text in PubMed. Thus, we contact with Dai et al to get the 
MGREP binary and run it locally.

Vocabularies and literature set and ontology 
annotations

Two vocabularies including GO and DO were 
downloaded from open source repositories (Table 1), 
which provided manually curated ‘IS_A’ relationships 
between terms. Currently, a total of 12,174 ‘IS_A’ 
relationships between 9,988 MF terms, 54,502 ‘IS_A’ 
relationships between 28,245 BP terms, 5,618 ‘IS_A’ 
relationships between 3,907 CC terms, and 7,124 ‘IS_A’ 

relationships of 6,920 DO terms were included in these 
ontologies. Literature set was obtained from PubMed 
(Table 1). Currently, it contains tens of millions of 
literatures which were documented in XML format.

GO annotations (GOA) [30] of human genes were 
accessed from GO Consortium (Table 1). After removing 
annotations of inferred from electronic annotation (IEA), 
38,205 annotations between 3,217 MF terms and 14,435 
human genes, 94,779 annotations between 9,032 BP 
terms and 14,272 human genes, and 46,968 annotations 
between 1,323 CC terms and 14,625 human genes were 
obtained. DO Annotations (DOA) [31] were sourced from 
the annotations of GeneRIF [32]. After removing the 
duplication records, 98,008 associations between 2,576 
diseases and 9,991 genes were obtained.

The framework for exploring term associations

Here we extracted the terms from abstract of 
literature of PubMed and established the associations 
between these terms based on their co-occurrence 
relationships. The framework for exploring term 
associations is shown in Figure 5. The details is described 
as following.

Mapping terms of PubMed to vocabularies

First, a script was implemented for extracting 
abstracts of literatures from PubMed. Next, the abstract 
of each literature was segmented into several sentences 
based on OpenNLP. Then, the terms of sentences were 
mapped to GO and DO using MGREP. As a result, the 
terms with co-occurrence relationships in the common 
sentences were extracted from PubMed. Certainly the 
terms of sentence could be mapped to other biomedical 
ontologies as expected.

Figure 5: The framework for exploring term associations.
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Exploring associations

The co-occurrence degrees between terms were 
calculated based on RSS or NMD methods. In theory 
the four methods involving RSS, EMI, NMD, ARSSIC 
methods could be selected as expected. Because ARSSIC 
method incorporate semantic relationships between terms, 
it is not suitable for exploring term associations based on 
co-occurrence relationships completely. Since both RSS 
and EMI methods are based on MI, the performance of 
these two methods are similar. Considering of validating 
the term associations based on co-occurrence relationships 
is independent of the different types of methods, here we 
selected RSS and NMD methods.

We define occurrence value (OV) to represent how 
much a term t related to a sentence s as following:

1 if occurs in .
( , )

0 if doesn't occur in .
t s

OV t s
t s


= 
  (1)

Based on equation 1, the OV of t in s is zero if t 
doesn’t occur in s. Consequently, a co-occurrence value 
(COV) between a pair of terms t1 and t2 is defined as 
follows:

1 2 1 2
0

( , ) ( ( , ) ( , )),
n

i i
i

COV t t OV t s OV t s
=

= ⋅∑
 (2)

where n represents the total number of co-occurring 
literature of t1 and t2, and si indicates the ith sentence. 
The COV is then utilized to calculate and normalize RSS 
in equation 3 and 4.

1 2
1 2 10

1 1 2 2

( , )( , ) log ( ),
( , ) ( , )
COV t tRSS t t

COV t t COV t t
=

⋅  (3)
1 2 min

1 2
max min

99*( ( , ) )( , ) 1 ,
( )N

RSS t t RSSRSS t t
RSS RSS

−
= +

−  (4)

where RSS(t1, t2) and RSSN(t1, t2) represent the RSS 
and the normalized RSS between t1 and t2, respectively; 
RSSmax and RSSmin represent the maximum and the 
minimum RSS, respectively. As a result, RSS score of 
term pairs ranges from 1 to 100.

Based on NMD method, the distance between term 
t1 and t2 is defined in Equation 5.

1 2 1 2
1 1

1 2

1 2
1 1

max(log ( , ),log ( , )) ( , )
( , ) ,

log | | min(log ( , ),log ( , ))

M M

i i
M M

i i

OV t l OV t l COV t t
NMD t t

M OV t l OV t l

= =

= =

−
=

−

∑ ∑

∑ ∑
 (5)

where M is the total number of literatures. Because 
the relationship degree is inversely proportional to the 
term distance, the relationship degree between t1 and t2 
based on NMD method is defined in Equation 6.

1 2 1 2
1 1

1 2

1 2
1 1

max(log ( , ),log ( , )) ( , )
( , ) .

log | | min(log ( , ),log ( , ))

M M

i i
NMD M M

i i

OV t l OV t l COV t t
Sim t t

M OV t l OV t l

= =

= =

−
=

−

∑ ∑

∑ ∑  (6)
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