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ABSTRACT

It has long been proposed that the gut microbiome contributes to breast 
carcinogenesis by modifying systemic estrogen levels. This is often cited as a possible 
mechanism linking breast cancer and high-fat, low-fiber diets as well as antibiotic 
exposure, associations previously identified in population-based studies. More recently, 
a distinct microbiome has been identified within breast milk and tissue, but few studies 
have characterized differences in the breast tissue microbiota of patients with and 
without cancer, and none have investigated distant body-site microbiomes outside of 
the gut. We hypothesize that cancerous breast tissue is associated with a microbiomic 
profile distinct from that of benign breast tissue, and that microbiomes of more 
distant sites, the oral cavity and urinary tract, will reflect dysbiosis as well. Fifty-seven 
women with invasive breast cancer undergoing mastectomy and 21 healthy women 
undergoing cosmetic breast surgery were enrolled. The bacterial 16S rRNA gene was 
amplified from urine, oral rinse and surgically collected breast tissue, sequenced, and 
processed through a QIIME-based bioinformatics pipeline. Cancer patient breast tissue 
microbiomes clustered significantly differently from non-cancer patients (p=0.03), 
largely driven by decreased relative abundance of Methylobacterium in cancer patients 
(median 0.10 vs. 0.24, p=0.03). There were no significant differences in oral rinse 
samples. Differences in urinary microbiomes were largely explained by menopausal 
status, with peri/postmenopausal women showing decreased levels of Lactobacillus. 
Independent of menopausal status, however, cancer patients had increased levels 
of gram-positive organisms including Corynebacterium (p<0.01), Staphylococcus 
(p=0.02), Actinomyces (p<0.01), and Propionibacteriaceae (p<0.01). Our observations 
suggest that the local breast microbiota differ in patients with and without breast 
cancer. Cancer patient urinary microbiomes were characterized by increased levels of 
gram-positive organisms in this study, but need to be further studied in larger cohorts.
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INTRODUCTION

Although breast cancer is the most common cancer 
in women worldwide [1], more than half of all women 
who develop the disease have no known risk factors 
[2, 3]. Moreover, only a fraction of those who harbor a 
genetic predisposition to breast cancer or who are exposed 
to known environmental risk factors go on to develop 
disease [3]. Clearly, additional contributing factors need 
to be identified. One such element that has garnered 
recent attention is the human microbiome, a dynamic 
community of bacteria, viruses, archaea, and eukaryotes 
that colonize human tissue [4]. The perturbation of these 
microbial communities, known as dysbiosis, has been 
linked not only to acute disease, but also to chronic 
diseases and malignancy [5–7]. Examples of this include 
the well-described role of Helicobacter pylori in gastric 
adenocarcinoma [8], and the emerging role of specific 
microbiomic profiles in colorectal cancer [9].

Microbiomic analysis of both breast milk and tissue 
shows that the human breast harbors unique and diverse 
microbiota [10, 11], one that is at least partially derived 
from translocation of gut microorganisms [12]. In addition 
to modulating the immune system, these gut microbes are 
known to play a vital role in estrogen metabolism; the 
perturbation of this “estrobolome” has been shown to 
influence systemic levels of estrogen and its metabolites 
[5, 7, 13, 14]. In fact, increased antibiotic use has been 
linked to increased risk of incident and fatal breast cancer 
in a case-controlled study of over 2,000 women [15]. 
Local estrogen levels, in addition to circulating ones, also 
play a role in breast carcinogenesis [16]. Malignant tissue 
in estrogen receptor (ER) positive breast cancer contains 
higher levels of estrogen metabolites as compared to 
normal breast tissue, attributed in part to altered intracrine 
signaling [17]. What remains unknown is the breast tissue 
microbiome’s role in local estrogen metabolism and breast 
carcinogenesis, and whether the microbiomes of any other 
body sites, outside of the gut, are affected by the systemic 
hormonal and immunologic disturbances associated with 
breast cancer.

Most prior work investigating the microbiome of 
breast tissue describes a community characterized by a 
predominance of the phyla Proteobacteria [10, 11] and 
Firmicutes [18], with one study finding a predominance 
of Bacteroidetes and very little Proteobacteria [19]. 
These investigations are still in their infancy, and the 
evidence also remains mixed on whether a difference 
exists between tumor and adjacent histologically-normal 
tissue from cancer patients. Additionally, these studies 
utilize a wide range of extraction methods, amplification 
primers, sequencers, bioinformatics pipelines, and patient 
populations. Additional studies are needed to elucidate 
which associations are strong enough to pursue functional 
studies. Furthermore, distant body-wide microbiomes, 
apart from the gut, have not yet been examined in breast 

cancer patients, and could represent a potentially non-
invasive screening test.

In this study, we report on a prospectively accrued 
series of 57 patients with breast cancer and 21 healthy 
individuals undergoing breast surgery for cosmetic 
purposes. With these data, we correlate the microbiomic 
communities of breast tissue with breast cancer and its 
clinical-pathologic features in order to test the hypothesis 
that cancerous breast tissue has a distinct microbiome that 
is more pronounced in more aggressive disease, and that 
tumors of specific molecular subtypes may be associated 
with specific patterns as well. Furthermore, we compare, 
for the first time, the microbiomes of the oral cavity and 
urinary tracts in women with and without breast cancer.

RESULTS

Study population

Seventy-eight patients were enrolled in this study 
protocol. Among these, 57 underwent mastectomy for 
biopsy-proven invasive breast carcinoma. The other 21 
patients were non-cancer controls who underwent cosmetic 
procedures including bilateral reduction mammoplasty or 
mastopexy. For 13 breast cancer patients and 1 non-cancer 
patient, study tissue could not be obtained at the time 
of surgery, thus only their urine and oral rinse samples 
were used. For 2 breast cancer patients, urine and oral 
rinse samples were unable to be obtained, thus only their 
breast tissue samples were analyzed. Cancer patients had 
a significantly higher mean age compared to non-cancer 
patients (55 vs. 43, p = 0.002) [Table 1]. Furthermore, 
mean BMI (27 vs. 35, p < 0.001), race, menopausal status, 
and time of last drink/meal differed significantly between 
groups. Clinical-pathologic characteristics of the breast 
cancer patients are listed in Supplementary Table 1.

Breast tissue microbiome

Depth of coverage was set to 60 sequences or higher 
based on leveling off of the Shannon diversity index at 60 
reads. Due to this cutoff, a total of 39 cancer (17 tumor, 22 
normal) and 24 non-cancer samples were included in the 
final analysis. Read counts were not significantly different 
in tumor (median 119), histologically normal (median 
164), and non-cancer (median 379) samples (p = 0.12). 
Environmental controls, reagent, and no template controls 
clustered distinctly from patient samples by Principal 
Coordinates Analysis (PCoA) testing on unweighted 
UniFrac distances [Supplementary Figure 1].

We found no significant differences in mean overall 
diversity as measured by Shannon diversity index (H), 
or species richness as measured by number of observed 
OTUs (N) between tissue from cancer (H = 3.5 ± 0.7, N 
= 20.3 ± 6.4) and non-cancer (H = 3.2 ± 0.9, N = 19.6 ± 
7.0) patients (p = 0.28, 0.66) [Figure 1A]. We also found 
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no significant difference between tumor (H = 3.6 ± 0.6, 
N = 20.3 ± 4.7) and histologically normal (H = 3.3 ± 0.8, 
N = 20.4 ± 7.7) samples from cancer patients (p = 0.32, 
0.98) [Figure 1B]. However, self-reported non-alcohol 
consumers had significantly higher diversity: Frequent vs. 
None (H = 3.1 ± 0.9 vs. 3.8 ± 0.6, p = 0.02; N = 18.7 ± 8.0 
vs. 23.9 ± 5.9, p = 0.03), as well as Occasional vs. None 
(H = 3.2 ± 0.6 vs. 3.8 ± 0.6, p = 0.01; N = 18.1 ± 4.1 vs. 
23.9 ± 5.9, p < 0.01) [Figure 1C]. Additionally, among 
cancer patients, hormone receptor positive (H = 3.6 ± 0.8) 
samples had higher Shannon diversity relative to hormone 
receptor negative (H = 2.9 ± 0.6) samples (p = 0.03) 
[Figure 1D], but this only trended towards significance 
in the observed OTU count: hormone receptor positive 
vs. negative (N = 21.2 ± 6.4 vs. 16.5 ± 4.4, p = 0.08). 
In contrast, neither Shannon index nor observed OTU 
count significantly differed based on race, menopausal 
status, smoking history, last antibiotic use, last drink/
meal, patient presentation, pathologic T-stage, focality, 

histologic subtype, histologic grade, HER2 amplification 
status, lymphovascular invasion, or node positivity.

To test whether overall bacterial taxa composition 
was different between cancer and non-cancer tissue, we 
used principal coordinates analysis (PCoA) on unweighted 
UniFrac distances. We found that although the samples 
from cancer patients clustered significantly differently 
from those of non-cancer patients (p = 0.03, R2 = 0.03), 
the effect size was quite modest [Figure 2A]. Likewise, 
the distribution of unweighted UniFrac distances trended 
towards significance among patient samples from the 
same group vs. patient samples from different groups (p 
= 0.11) [Supplementary Figure 2]. Patient samples also 
clustered significantly by alcohol use (p < 0.01, R2 = 
0.06), but not by any other demographic factors such as 
age, BMI, race, smoking history, menopausal status, or 
last antibiotic use [Figure 2B]. Among cancer patients, 
tumor and histologically normal samples did not cluster 
distinctly (p = 0.92). However, samples did cluster 
by histologic grade (p = 0.02, R2 = 0.05) [Figure 2C], 

Table 1: Demographics of study patients

Variable Cancer (N=57) Non-cancer (N=21) P value

Age (years) 55 ± 14 43 ± 14 0.002

BMI 27 ± 6 35 ± 8 < 0.001

Race   0.013

 White 47 (82) 11 (52)  

 Black 9 (16) 9 (43)  

 Other 1 (2) 1 (5)  

Premenopausal 18 (32) 14 (67) 0.009

Smoking History   0.441

 Current 4 (7) 0 (0)  

 Past 23 (40) 7 (33)  

 Never 30 (53) 14 (67)  

Alcohol Use   0.388

 Frequent 23 (40) 5 (24)  

 Occasional 19 (33) 8 (38)  

 None 15 (26) 8 (38)  

Last Antibiotic Usea   0.105

 < 1 month ago 8 (15) 3 (16)  

 1 – 6 months ago 8 (15) 7 (37)  

 > 6 months ago 39 (71) 9 (47)  

 Unknown 2 2  

Values are presented as means ± standard deviations or number (percent).
a Data are missing for last antibiotic use for 4 patients. In these cases, percentages are calculated from denominator of 
samples with known data.
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presence of lymphovascular invasion (p = 0.02, R2 = 
0.08) [Figure 2D], HER2 amplification status (p = 0.02, 
R2 = 0.05) [Figure 2E]. In addition, samples clustered 
significantly by hormone receptor status on weighted (p = 
0.05, R2 = 0.05), but not unweighted (p = 0.17), UniFrac 
distances [Figure 2F]. Samples did not cluster by patient 
presentation, pathologic T-stage, tumor size, focality, 
histologic subtype, or node positivity.

Next, we compared the relative abundances of 
individual taxa between cancer and non-cancer patient 
samples, finding increased relative abundance of 6 
genera and 2 classes, and decreased relative abundance 
of 5 genera in cancer relative to non-cancer patients, out 

of a total of 165 taxa [Figure 3]. Of these differentially 
abundant taxa, only 2 genera were found to be 
significantly increased in patient relative to environmental 
control samples: genus Methylobacterium and an unknown 
genus of family Alcaligenaceae. Methylobacterium was 
decreased in cancer relative to non-cancer patient samples 
(median 0.10 vs. 0.24, p = 0.03). Additionally, although 
not statistically significant, histologically normal tissue 
from cancer patients had higher relative abundance of 
Methylobacterium compared to tumor tissue, but lower 
abundance compared to non-cancer patient tissue [Figure 
4A]. Alcaligenaceae was increased in cancer relative to 
non-cancer patient samples (median 0.00 vs. 0.00, p = 

Figure 1: Alpha diversity rarefaction curves for breast tissue samples. Rarefaction curves of Shannon diversity index up to 60 
reads in (A) cancer (orange) and non-cancer (blue) samples, (B) tumor (orange) and non-tumor (blue) samples from cancer patients, (C) 
self-reported frequent (blue), occasional (green), and none (orange) alcohol users, and (D) hormone receptor positive (orange) and hormone 
receptor negative (blue) samples. Error bars represent standard deviation.
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0.01), predominantly driven by high relative abundances 
in the top quartile of cancer patients (Q3-Q4 0.02-0.22 vs. 
0.00-0.01) [Figure 4B].

Lastly, relative abundances of Methylobacterium 
and Alcaligenaceae were not associated with any 
demographic features including age, BMI, race, 
smoking history, alcohol use, menopausal status, or last 
antibiotic use. While Alcaligenaceae was not associated 
with any clinical-pathologic features listed in Table 1, 
Methylobacterium was significantly decreased in hormone 
receptor-positive samples compared to hormone receptor-
negative samples (median 0.04 vs. 0.30, p = 0.02), and in 
samples with histo-pathologic evidence of lymphovascular 
invasion versus those without (median 0.00 vs. 0.16, p < 
0.01) [Figure 4C–4D].

Oral rinse microbiome

Depth of coverage for oral rinse samples was 
set to 20,000 sequences or higher based on this being 

the cutoff between environmental control samples and 
patient samples. All patient samples (55 cancer, 21 non-
cancer) were included in the analysis. Read counts were 
not significantly different in cancer (median 156,834) 
and non-cancer (median 152,922) patients (p = 0.52). 
We found no significant differences in mean measures of 
alpha diversity, overall community structure by PCoA, 
or relative abundances of individual taxa in oral rinses of 
cancer and non-cancer patients [Supplementary Figure 3].

Urine microbiome

Depth of coverage for urine samples was set to 
10,000 sequences or higher based on this being the cutoff 
between environmental control samples and patient 
samples. Due to this cutoff, a total of 46 cancer patient 
samples and 19 non-cancer samples were included in the 
analysis. Read counts were not significantly different 
in cancer (median 125,037) and non-cancer (median 
203,842) patients (p = 0.15).

Figure 2: Principal coordinates analysis plots on unweighted UniFrac distances of breast tissue samples. Overall 
oral microbiomic diversity of patient samples as represented by the first two principal coordinates on principal coordinates analysis of 
unweighted UniFrac distances. Each point represents a single sample, with plus sign and ellipses representing the fitted mean and 68% 
confidence interval of each group respectively. (A) Cancer samples (orange) clustered distinctly relative to non-cancer samples (blue), and 
(B) patient samples clustered by degree of alcohol use: none (orange), occasional (green), frequent (blue). Among cancer patients, samples 
clustered by (C) histologic grade: grade 1 (blue), grade 2 (green), grade 3 (orange), (D) presence of lymphovascular invasion: yes (orange), 
no (blue), (E) HER2 amplification status: positive (orange), negative (blue), and (F) hormone receptor status: ER/PR negative (orange), 
ER/PR positive (blue). For hormone receptor status, only weighted UniFrac distance comparisons were significant (p = 0.05, R2 = 0.05), 
but the unweighted plot is presented here for consistency.
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We observed that cancer patients (H = 3.0 ± 1.5) 
had significantly higher Shannon diversity relative to non-
cancer patient (H = 2.0 ± 1.3) urine samples (p = 0.01) 
[Figure 5A], but this only trended towards significance 
in the observed OTU count: cancer vs. non-cancer (N 
= 268.7 ± 126.2 vs. 211.4 ± 71.8, p = 0.07). However, 
menopausal status was also an important predictor of urine 
microbial diversity, with peri/postmenopausal samples 
(H = 3.2 ± 1.4) being more diverse than premenopausal 
samples (H = 2.0 ± 1.4) (p < 0.01) [Figure 5B]. Again 
this trended towards significance in the observed OTU 
count: peri/postmenopausal vs. premenopausal (N = 
273.0 ± 131.3, N = 220.2 ± 78.0, p = 0.07). When subset 
by menopausal status, cancer samples continued to have 
higher diversity relative to non-cancer patients, in both 

peri/postmenopausal and premenopausal subgroups, 
although this difference was no longer statistically 
significant [Figure 5C–5D]. No other demographic 
or clinical-pathologic features were associated with 
differences in alpha diversity.

Analysis of beta diversity by PCoA demonstrated 
that samples from cancer and non-cancer patients were not 
significantly different from one another (p = 0.09) [Figure 
6A]. Urine samples clustered significantly by menopausal 
status (p = 0.02, R2 = 0.02), age (p = 0.01, R2 = 0.02), and 
BMI (p < 0.01, R2 = 0.02), but not by other demographic 
factors [Figure 6B–6D]. When subset by menopausal 
status, BMI continued to account for significant clustering 
in both peri/postmenopausal (p = 0.02, R2 = 0.03) and 
premenopausal (p < 0.01, R2 = 0.05) samples [Figure 6E–

Figure 3: Cladogram of differentially abundant taxa in cancer and non-cancer patient breast tissue. Cladogram depicting 
phylogenetic relationship of taxa identified as significantly different (p < 0.05) by Wilcoxon rank-sum testing in cancer as compared to 
non-cancer patient samples. Each concentric ring of nodes represents a taxonomic rank, starting with phylum and ending with genus. Nodes 
highlighted in orange are increased in cancer relative to non-cancer samples, and nodes highlighted in blue are increased in non-cancer 
relative to cancer samples. Each bar in the circular bar plot surrounding the cladogram represents the difference in mean relative abundance 
of each genus in patient samples as compared to environmental controls, with a greater height indicating a larger difference. The color of the 
bars indicates the direction of the difference: higher in environmental samples (green), higher in patient samples (magenta). Black arrows 
indicate genera identified as significantly increased in patient samples as compared to environmental controls. Only Methylobacterium and 
an unknown genus of the family Alcaligenaceae were significantly differentially abundant in cancer and non-cancer samples, in addition to 
being significantly increased in patient samples above environmental controls.
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6F], but age did not. Among cancer samples, we observed 
no significant clustering by any clinical-demographic 
features.

Menopausal status was the largest driver of 
differences in relative abundances of individual taxa 
in our cohort. The microbiome of urine from peri/
postmenopausal women was characterized by decreased 
abundance of genus Lactobacillus, and increased 
abundances of numerous other genera, including 
but not limited to anaerobes such as Varibaculum, 
Porphyromonas, Prevotella, Bacteroides, and members of 
the class Clostridia [Figure 7]. Using LEfSe, we identified 
4 genera, 5 families, 2 orders, and 1 class (out of 258 

total taxa compared) that were significantly increased in 
cancer relative to non-cancer patient urine samples after 
controlling for menopausal status by subsetting [Figure 
8A–8B]. These differences were further confounded by the 
significant influence of BMI on taxa relative abundances 
as demonstrated by PCoA; higher BMI was associated 
with decreased genus Streptococcus (p = 0.05, R2 = 
0.06) and family Planococcaceae (p < 0.01, R2 = 0.31) 
[Supplementary Figure 4]. Overall, we observed increased 
levels of Corynebacterium, Staphylococcus, Actinomyces, 
and Propionibacteriaceae in cancer relative to non-cancer 
samples, independent of both menopausal status and BMI.

Figure 4: Relative abundances of Methylobacterium and Alcaligenaceae by sample type and clinical-pathologic 
features. Box plots representing (A) relative abundances of genus Methylobacterium by sample type: cancer (orange) and non-cancer 
(blue), (B) relative abundances of unknown genus of family Alcaligenaceae by sample type: cancer (orange), and non-cancer (blue), 
relative abundances of genus Methylobacterium by (C) hormone receptor status: ER/PR negative (orange), ER/PR positive (blue), and (D) 
lymphovascular invasion: no (blue), yes (orange). Dark horizontal lines represent the median, with the box representing the first (Q1) and 
third (Q3) quartiles, the outer fences representing 1.5 x interquartile range, and the black circles representing outliers.
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DISCUSSION

In this study, we sought to describe the microbiome 
of individuals with breast cancer, and to compare their 
microbiomes at different body sites with healthy controls. 
We hypothesized that breast carcinoma tissue would 
have a microbiome unique from that of surrounding 
normal parenchyma, that hormone receptor status of the 
carcinoma would be associated with microbes able to 
metabolize estradiol/progesterone, and that breast cancer 
patients would have altered microbiomes relative to 

healthy controls, both at the local tissue level and at more 
distant sites. The simple comparison of invasive carcinoma 
and paired normal tissue revealed no major shifts in 
overall diversity or microbiomic content. Similarly, oral 
rinse samples in cancer and non-cancer patients showed 
no large-scale differences. Notably, however, analysis of 
breast tissue revealed that cancer and non-cancer patients 
had significantly different microbiomes, a difference 
characterized largely by the decreased abundance of 
Methylobacterium in cancer patients. Urine sample 
analysis showed that while the biggest microbiomic 

Figure 5: Alpha diversity rarefaction curves for urine samples. Rarefaction curves of Shannon diversity index up to 1000 
reads in (A) cancer (orange) and non-cancer (blue) samples and (B) peri/postmenopausal (magenta) and premenopausal (green) samples 
from cancer patients. When stratified by menopausal status, Shannon index was no longer significantly different in cancer and non-cancer 
samples, in either (C) peri/postmenopausal patient samples: cancer (orange), non-cancer (blue), or (D) premenopausal patient samples: 
cancer (orange), non-cancer (blue). Error bars represent standard deviation.
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differences were due to menopausal status, cancer patients 
harbor urinary microbiomes with increased abundance of 
gram-positive bacteria associated with skin flora.

The observation that the overall diversity of tumor 
and paired normal tissue samples from breast cancer 
patients are largely similar imply that more similarities 
than differences exist between the overall breast tissue 
microbiomes of tumor and adjacent normal tissues from 
the same patient, consistent with Urbaniak et al.’s findings 
[18]. In contrast, another previous, smaller, study has 
suggested conflicting results when comparing tumor tissue 
to paired normal tissue in breast cancer patients [11]. Key 
differences may be that our tumor and “normal” tissue 
was histologically-verified at the time of extraction and 
reclassified, if warranted, and that we used flash-frozen 
aseptically collected tissue, as did Urbaniak et al. rather 
than formalin-fixed paraffin-embedded tissues. Still, our 
analyses may have been limited by being underpowered 
by both sample size and low read count, despite being 

larger than the previous. Due to risk of a false negative 
finding, larger studies will be needed in the future to 
confirm these findings. At least one other recent study, 
using fresh intraoperatively-collected tissue, has found 
tumor and adjacent benign breast tissue to be largely 
similar as well [18]. If adjacent benign breast tissue is 
truly more similar to that of carcinoma tissue than to breast 
tissue from women without cancer, it may imply a breast-
wide predisposition to carcinogenesis. Alternatively, these 
similarities may suggest that the microbial differences 
observed are secondary to the effect of the tumor rather 
than a causative agent.

Breast tissue is an inherently “low-biomass” body 
site, and the read counts obtained in this study are low 
compared to prior studies [10, 11]. This may be due 
to the fact that we used MO BIO extraction kits, and 
took precautions to keep samples in aseptic conditions 
until sequencing. MO BIO extraction kits have been 
shown to have the least contamination compared to 

Figure 6: Principal coordinates analysis plots on unweighted UniFrac distances of urine samples. Overall oral microbiomic 
diversity of patient samples as represented by the first two principal coordinates on principal coordinates analysis of unweighted UniFrac 
distances. Each point represents a single sample, with plus sign and ellipses representing the fitted mean and 68% confidence interval 
of each group respectively. While (A) cancer (orange) and non-cancer (blue) samples did not cluster distinctly, (B) peri/postmenopausal 
(magenta) and premenopausal (green) samples did cluster significantly differently. Additionally, urine samples separated by (C) age 
(younger to older: white to blue) and (D) BMI (younger to older: white to blue). Even when stratifying by menopausal status, urine samples 
continued to separate significantly by BMI in both (E) peri/postmenopausal and (F) premenopausal patients.
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other commercially available microbiome-focused 
DNA extraction kits [20]. Additionally, in an effort to 
minimize non-specific amplification, we size-selected the 
amplicon using gel-purification and limited the number of 
amplification cycles to 25. We acknowledge that the power 
to detect statistically significant differences in relative 
abundances is limited by the low read counts in this study. 
As such, the likelihood of false negatives in this study 
is quite high. However, there is evidence to suggest that 
useful comparisons can be made at this sequencing depth 
[21]. Indeed, prior studies have demonstrated that low 
numbers of reads can accurately characterize communities 
at the phylum-level, and be used to uncover large-scale 
differences between communities through analysis of beta-
diversity metrics [22–24].

Despite sample size and read count limitations, we 
found that the breast tissue microbiomes of cancer and 
non-cancer patients were significantly different from each 
other by the measure of UniFrac distances, albeit with 
modest effect size. While age, BMI, race, and menopausal 
status were significantly different in the cancer and 
non-cancer groups, they did not significantly contribute 
to variation in the PCoA plots. This suggests that the 
differences seen on beta diversity analysis are due to the 

cancer versus non-cancer groupings, not to demographic 
differences. Additionally, while PCoA identified 
differences based on hormone receptor and HER2 status 
in cancer samples, we were unable to resolve individual 
taxa that explained these differences due to small sample 
size and high background noise.

The primary bacterial genus driving the cancer-
versus-non-cancer breast tissue microbiomic separation 
is the genus Methylobacterium. Methylobacterium 
belongs to the phylum Proteobacteria, and while its 
main habitat is soil and water, certain species have 
been identified in the human oropharynx and foot [25, 
26]. Indeed, Methylobacterium has been identified as a 
known environmental contaminant, especially in low-
biomass samples [20]. However, we found that the levels 
of Methylobacterium detected in patient samples were 
far greater than levels detected in the environmental 
controls, making this finding unlikely to solely be due 
to environmental contamination. They are facultative 
methylotrophs, meaning that they are able to use methanol 
and methylamine as fuel, and have been shown to produce 
phytohormones like cytokinin and auxin [27]. In rare 
cases, they have been identified as human pathogens [28]. 
Some of these phytohormones have been described to 

Figure 7: Cladogram of differentially abundant taxa in peri/postmenopausal and premenopausal patient urine. 
Cladogram depicting phylogenetic relationship of taxa identified as significantly different (p < 0.05) by Wilcoxon rank-sum testing in peri/
postmenopausal and premenopausal patient urine samples. Each concentric ring of nodes represents a taxonomic rank, starting with phylum 
and ending with genus. Nodes highlighted in magenta are increased in peri/postmenopausal relative to premenopausal samples, and nodes 
highlighted in green are increased in premenopausal relative to peri/postmenopausal samples. The urine samples of peri/postmenopausal 
women is characterized by a loss of Lactobacillus, and a concomitant increase in taxa from most other phyla, particularly anaerobes.
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exert an anti-cancer effect [29, 30]. While this is certainly 
in line with our data that Methylobacterium is highest in 
non-cancer patients and lowest at the site of the tumor, 
and that it is associated with tumors with greater invasive 
potential, it is premature to suggest that local depletion of 
Methylobacterium increases malignant potential. Indeed, a 
prior study suggests that Methylobacterium radiotolerans 
is increased at the site of tumor [11]. However, this may be 
due to a myriad of differences between our studies (use of 
flash-frozen vs. formalin-fixed paraffin embedded tissue, 
type of extraction kit, 16S rRNA primers), or a matter of 
species specificity. In contrast, the family Alcaligenaceae 
was increased in cancer relative to non-cancer samples. 
Several members of this family are known human 
pathogens, for example, various species of Achromobacter 
and Bordetella, especially in immunocompromised 
hosts [31].

The secondary aim of our study was to identify 
possible sites of dysbiosis distant from the breast tissue 
that might serve as a non-invasive biomarker of breast 
carcinoma. Previous work in this area has concentrated on 

the gut microbiome. In 2011, Plottel et al. [7] extensively 
discussed the estrobolome, consistent of the enteric 
bacterial genes whose products metabolize estrogen and its 
metabolites. Perturbations in this collection of microbiota 
(e.g., via antibiotics) can lead to elevated levels of 
circulating estrogens, thereby increasing the risk of breast 
cancer. Indeed, clinical studies have identified associations 
between the gut microbiome and urinary estrogens and 
estrogen metabolites [13, 14]. Recently, a case-control 
study of 48 post-menopausal breast cancer patients and 48 
controls found the gut microbiome to be less diverse and 
compositionally distinct in the women with breast cancer 
[32]. Supporting this hypothesis, antibiotic use has been 
found to be associated with the risk of incident and fatal 
breast cancer in a dose-dependent matter [15].

While we did not investigate the gut microbiome 
in this study, as stool samples would have required an 
additional visit and inconvenience to our patients, we did 
examine more easily accessible sites such as the oral rinse 
and urinary microbiomes. In the oral rinse microbiome, 
we found no differences between cancer and non-cancer 

Figure 8: Relative abundances of differentially abundant taxa in cancer and non-cancer patient urine. (A) Box plots 
representing log relative abundances of taxa identified as significantly different (p < 0.05) by Wilcoxon rank-sum testing in cancer (orange) 
and non-cancer (blue) patient urine samples. Note that the x-axis is plotted on a logarithmic scale, with an axis break to allow for plotting of 
zero-values. (B) Stacked bar graph representing relative abundances of Corynebacterium (blue), Actinomyces (red), Staphylococcus (green), 
and Propionibacteriaceae (purple) in individual samples grouped by menopausal and cancer status. Streptococcus and Planococcaceae were 
not represented due to being significantly correlated with BMI [Supplementary Figure 3].
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patients despite epidemiologic data suggesting that 
periodontal disease was associated with increased breast 
cancer risk [33]. This is most likely due to the fact that 
the oral cavity is exposed to the environment through 
vocalization, air-exchange, and food and fluid ingestion 
on a constant basis. In fact, our data showed that relative 
abundances of Streptophyta and Streptococcus were 
significantly increased in patients who reported oral 
intake in the hour prior to their oral rinse. The levels of 
Streptophyta likely reflect chloroplasts from ingested plant 
material [34]. The relative increase in Streptococcus may 
be due to the ingestion of carbohydrates [35]. Thus, the 
microbes at this site are likely less permanent and more 
heavily influenced by the environment relative to internal 
factors than at sites like in the tissue and urinary tract.

Additionally, it is unclear whether oral rinse is the 
best method by which to capture the microbiota of the oral 
cavity; other studies have used swabs or saliva. Although 
there are likely no large differences in oral microbiome 
composition of breast cancer and non-cancer patients 
based on the negative findings in our study, we cannot 
exclude the possibility of small to moderate difference 
in microbial communities that would be detected in a 
larger cohort. While the way in which we collected the 
oral rinse samples most closely approximates what would 
be feasible for a non-invasive screening test in a clinical 
setting, our study is limited by the lack of control for diet 
and temporal variation. As such, there exists the risk of 
false negative findings in this study. Future studies on the 
oral microbiome in breast cancer should ideally control for 
oral intake and evaluate multiple samples from the same 
patient over a 24 hour period.

In the urine, we found microbiomic differences 
driven not only by the cancer versus non-cancer 
designation, but also by menopausal status and BMI. While 
increased overall diversity is associated with health and 
decreased diversity with colorectal cancer in the context 
of the gut microbiome [36], the opposite is true of the 
urogenital tract. For example, the vaginal tract microbiome 
in premenopausal women has been described to be less 
diverse, characterized by a relative overabundance of 
Lactobacillus relative to postmenopausal women [37], 
and can be at least partially restored in patients taking 
exogenous estrogens [38, 39]. It is no surprise, then, that 
our urine results reflect this difference, although this is, to 
the authors’ knowledge, the first time it has been reported 
in the urine. These findings could be due to contamination 
with vaginal or skin flora at time of collection (despite 
mid-stream clean catch protocol), or to colonization of 
the urethra and bladder by vaginal or skin flora [40]. This 
caveat may be less plausible because we cannot find a 
systematic reason why vaginal or skin flora contamination 
might affect only one group of patients.

Additionally, although overall diversity and 
community structure were not significantly different in 
cancer and non-cancer patients after sensitivity analysis, 

we observed changes in relative abundance of several taxa 
independent of menopausal status and BMI. Specifically, 
Corynebacterium, Staphylococcus, Actinomyces, and 
Propionibacteriaceae are all gram-positive microbes 
that are generally associated with skin flora (with the 
exception of Actinomyces). Gram-positive bacteria are 
known to be strong inducers of interleukin-12 (IL-12), as 
opposed to gram-negative bacteria, which preferentially 
stimulate IL-10. IL-12 goes on to promote interferon 
gamma (IFN-γ) secretion from T and NK cells, ultimately 
activating cytotoxic effects [41]. While IFN-γ is classically 
associated with anti-tumor effects, recent literature has 
shown that in the right context, IFN-γ can induce the 
opposite effect by upregulating proliferative signals and 
allowing tumor cells to escape recognition by cytotoxic T 
cells and NK cells [42, 43]. Colonization of the urogenital 
tract by gram-positive bacteria, perhaps opportunistically 
during menopause when levels of protective Lactobacillus 
decline, could potentially lead to chronic low-level IFN-γ 
activity and escape of breast cancer cells from interferon 
regulation and tumor progression [44]. Moving forward, 
it will be necessary to establish a timeline of urinary 
dysbiosis relative to cancer diagnosis/progression; if 
this pattern persists in patients over time prior to cancer 
diagnosis and/or progression, urine screening may 
represent a non-invasive way to identify high-risk patients 
in the future.

While this is one of the largest studies to examine 
the microbiome in human breast cancer patients, this 
study is still limited by sample size, and is underpowered 
to detect taxa-level differences in relative abundance 
after multiple testing correction. As such, we did not 
implement any multiple testing corrections, increasing 
our risk for detection of false positive results in an effort 
to minimize false negative results. Additionally, our 
analyses comparing cancer and non-cancer patient breast 
tissue, oral rinse, and urine microbiomes are potentially 
confounded by the effects of age, BMI, race, and 
menopausal status. We elected not to conduct an adjusted 
analysis as we would have been severely underpowered 
to do so based on sample size. However, in breast tissue, 
comparisons on alpha and beta diversity metrics, as 
well as relative abundances of Methylobacterium and 
Alcaligenaceae were not significantly different when 
analyzed by age, BMI, race, and menopausal status. This 
suggests that the differences observed in breast tissue 
are not due to these potential confounders. In urine, our 
finding of no significant differences between cancer and 
non-cancer patients could have been due to confounding 
from significant differences by menopausal status and 
BMI. In the taxa-level analysis in urine, we adjusted for 
menopausal status by using LEfSe’s subclass function to 
essentially conduct sensitivity analysis, only identifying 
differentially abundant taxa in cancer and non-cancer 
groups within each menopausal class. While logistically 
challenging, future studies in this area should aim to 
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match their cohorts on the basis of age, race, BMI, and 
menopausal status if possible.

Overall, our observations suggest that the 
microbiomes of tumor and paired benign tissue from 
breast cancer patients are largely similar in terms of 
overall diversity and microbiomic content. Notably, 
however, cancer patients had significantly different 
microbiomes compared to non-cancer patients in both 
the local breast tissue and in the urinary tract. The tissue 
microbiome of cancer patients is driven by a relative 
decreased abundance in the genus Methylobacterium, and 
the urinary microbiome of cancer patients is characterized 
by relatively increased levels of gram-positive bacteria 
independent of demographic factors such as menopausal 
status and BMI. The investigation of the microbiome 
in breast cancer patients is still in its infancy. Further 
validation with a larger cohort of clinically matched 
patients will be needed to determine the significance and 
biological relevance of these findings.

MATERIALS AND METHODS

Patient enrollment and sample collection

With approval from our Institutional Review Board 
for human subjects protection and after written informed 
consent, we planned to enroll 50 breast cancer patients and 
20 healthy controls for this study from a multidisciplinary 
breast cancer center at a large academic hospital from 
2014-2016. Breast cancer patients eligible for inclusion for 
this study were over 18 years of age, female, had tumors 
greater than or equal to 2 cm in size, and were undergoing 
mastectomy. The second 2 criteria were to allow for 
sufficient quantity of tissue to be obtained for this study. 
Patients receiving neo-adjuvant therapy prior to surgery 
or with active clinical breast infection were excluded from 
the study. Control patients eligible for inclusion were 
older than 18 years of age, female, and undergoing breast 
surgery for cosmetic reasons (reduction mammoplasty 
or mastopexy). Control patients with a past history of 
cancer were excluded from the study. Demographics, 
clinical history, and risk factors for these patients were 
collected prospectively at the time of enrollment through a 
combination of patient interview and medical chart review 
[Supplementary Table 2]. Missing data was filled in via 
retrospective chart review; individuals without available 
data were noted as such in Table 1.

From each breast cancer and each control patient, 
we obtained a midstream clean-catch urine sample and 
a saline oral rinse sample at the time of written consent 
and centrifuged at 600 x g for 10 minutes. After decanting 
the supernatant, the pellet was frozen and stored at -80° 
C until nucleic acid extraction. At the time of surgery, 
we intraoperatively and aseptically collected two tissue 
samples from the patient: right and left breast from each 
control patient, and tumor and ipsilateral adjacent normal 

breast tissue for each cancer patient. These samples were 
transported in sterile containers to the pathology lab, 
where they were dissected with sterile forceps and scalpels 
in a sterile hood to prevent contamination. Tissue required 
for diagnosis and clinical care was preserved, and a 
tumor sample and grossly normal tissue were flash frozen 
and stored at -80° C. Environmental controls from the 
operating room (open container of water left open during 
surgery, sterile gloved fingertip swirled in water, post-
surgery gloved fingertip swirled in water) and pathology 
lab (container used to transport tissue from operating room 
to sterile hood, sterile dissecting tools rinsed in water) 
were collected and frozen as well.

DNA extraction

Total DNA was extracted from the breast tissue, 
environmental controls, urine, and oral rinse pellets 
using PowerMag Microbiome RNA/DNA Isolation 
Kit according to the manufacturer’s protocol (MO BIO 
Laboratories Inc., Carlsbad, CA) with minor modifications 
as previously described [45]. Extraction and no-template 
controls consisting of reagents only were processed in 
parallel in an identical fashion.

16S rRNA gene sequencing

Bacterial 16S rRNA amplification and library 
construction was performed according to the 16S 
Metagenomic Sequencing Library Preparation guide from 
Illumina (Forest City, CA) with minor modifications. All 
beads, tubes, and nonenzymatic reagents were treated with 
UV light for at least 30 minutes prior to use [46]. In brief, 2 
μl total DNA was amplified using primers F: (5’TCGTCG
GCAGCGTCAGATGTGTATAAGAGACAGCCTACGG
GNGGCWGCAG3’) and R: (5’GTCTCGTGGGCTCGG
AGATGTGTATAAGAGACAGGACTACHVGGGTATCT
AATCC3’), targeting the 16S V3 and V4 region (Illumina) 
[47] under the following conditions: 95° C for 3 minutes, 
followed by 25 cycles of 95° C for 30 seconds, 54° C for 
30 seconds for breast samples or 55° C for 30 seconds 
for urine and oral rinse samples, 72° C for 30 seconds, 
and a final extension of 72° C for 5 minutes. For urine 
and oral rinse samples, the resulting 16S rDNA amplicons 
were cleaned with Ampure XP beads (Beckman Coulter, 
Inc., Brea, CA). For breast samples, the PCR product 
showed nonspecific bands on a 1% agarose gel. Thus, all 
breast sample 16S rDNA amplicons were run out on a 1% 
agarose gel, size selected at 450-500 bp, and gel purified 
using Zymoclean DNA Gel Recovery kit (Zymo, Orange, 
CA). Purified amplicons underwent a second round of 
PCR to add Nextera indices (Illumina) in half reaction 
volumes with 2.5 μl of sample. A second round of Ampure 
XP clean-up was performed and resulting libraries were 
quantified with Quantiflour dsDNA system (Promega, 
Madison, WI). After calculating molarity, 5 uL of each 
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sample (diluted to 4 nM) were pooled into sequencing 
libraries. Libraries were validated on a Bioanalyzer DNA 
1000 chip (Agilent, Santa Clara, CA) to verify size and 
sequenced on the Illumina Miseq with V3 reagent kit at 
the Case Western Reserve University Genomics Core.

Bioinformatic analysis

Paired-end reads at 250 bp in length were merged 
using FLASH [48] with read length set to 250, fragment 
length set to 460, and standard deviation set to 46. 
Filtration of poor quality reads (Phred quality score < 
20), subsampled open reference operational taxonomic 
unit (OTU) picking [49] against Greengenes (version 
13.8) [50, 51] at 97% similarity threshold using UCLUST 
[52], alignment with PyNAST [53], phylogenetic tree 
construction using FastTree (version 2.1.3) [54], and 
subsequent computation of alpha (Shannon diversity 
index) [55] and beta diversity measures (unweighted 
Unifrac distances) [24] was performed using QIIME 
(version 1.9.1) [56]. Prior to PCoA analysis on weighted 
Unifrac distances of oral rinse and urine samples, OTU 
tables were normalized using the DESeq2 algorithm 
(implemented within the QIIME pipeline), which was 
originally developed for RNA-seq data, and models counts 
with a negative binomial mixture model [57, 58]. Breast 
tissue samples were rarefied to 60 reads instead of being 
normalized due to insufficient read counts for comparisons 
of both alpha and beta diversity. Sensitivity analyses with 
weighted UniFrac distances were also conducted, and 
were not reported unless discordant with findings based 
on unweighted UniFrac distances.

Statistics

Two-sided Student’s T-test and Fisher’s exact 
test were used to compare continuous and categorical 
demographics/clinical factors, respectively, between 
cancer and non-cancer patient samples. Two-sided 
Student’s T-test was used to compare Shannon index 
averaged between 10 rarefactions per sample. Distance 
matrices were compared using PERMANOVA [59], a 
method which relies on F-tests based on sequential sums of 
squares derived from 1000 permutations on the weighted 
and unweighted UniFrac distance matrices, with the 
null hypothesis that there is no difference in community 
structure between groups. To compare relative abundances 
of taxa between different categorical variables, we used a 
nonparametric Wilcoxon rank-sum or Kruskal-Wallis test. 
To examine correlations between relative abundances of 
taxa and continuous variables, we used a bivariate analysis 
with log-transformed response abundances and a linear fit.

Relative abundances of each taxon for each sample 
are listed in Supplementary Table 3. In order to account for 
the confounding factor of menopausal status in the analysis 
of the urine microbiome, instead of using Wilcoxon rank-

sum or Kruskal-Wallis, taxa summaries generated in 
QIIME [56] were reformatted for input into LEfSe [60] 
via the Huttenhower Lab Galaxy Server [61–63], where 
menopausal status was used as a subclass, and cancer vs. 
non-cancer as the overarching class. This ensured that 
any taxa flagged as significantly different between cancer 
and non-cancer urine samples by LEfSe’s algorithm were 
also different within the peri/post-menopausal and pre-
menopausal subclasses. Taxa represented in fewer than 
10% of total samples in the group were discarded. This 
algorithm performed nonparametric statistical testing of 
whether individual taxa differed between the class cancer 
vs. non-cancer, and the subclass peri/postmenopausal vs. 
premenopausal, and ranked differentially abundant taxa 
by their linear discriminant analysis (LDA) log-score 
[60]. Differentially abundant taxa that were statistically 
significant using an alpha of 0.05 and exceeded an LDA 
log-score of 2 were visually represented on cladograms 
and box plots, with p-values listed in Supplementary 
Table 4.

All statistical tests were two-sided, with p-value 
of less than 0.05 considered statistically significant. All 
analyses were conducted and graphs created in JMP Pro 12 
(SAS Institute Inc., Cary, NC) or R version 3.2.2 (package 
lattice) [64]. The cladogram was created using GraPhlAn 
on Galaxy [61, 65].
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