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ABSTRACT
Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern 

recognition receptors (PRRs) involved in immune defense against bacterial infections. 
In this study, a short PGRP (termed AdPGRP-S1) was cloned and functionally 
characterized from Chinese giant salamander (Andrias davidianus), the largest extant 
urodela amphibian species. AdPGRP-S1 was 184 aa in length and shared 38.7%-
54.9% sequence identities with other vertebrates’ short PGRPs. It contained one 
typical PGRP domain at the C-terminal region and several conserved amino acid 
(aa) residues involved in amidase and PGN binding. AdPGRP-S1 was constitutively 
expressed in all tissues examined, with the highest expression level seen in spleen 
and intestine. It has been shown that AdPGRP-S1 could bind and degrade Lys-PGN and 
Dap-PGN. Further, AdPGRP-S1 had antibacterial activity against the Gram-negative 
bacteria, Edwardsiella tarda, and was able to trigger the activation of NF-κB signaling. 
These results demonstrated that AdPGRP-S1 possesses multiple functions in pathogen 
recognition, mediating ceullular signaling, and initiating antibacterial response. 
This is the first functional study of a salamander PGRP, providing insight to further 
understand the functional evolution of verterbates’ PGRPs.

INTRODUCTION 

 Innate immunity is the first line of defense 
against invading microorganisms, and is triggered by 
recognition of pathogen associated molecular patterns 
(PAMPs) through host pattern recognition receptors 
(PRRs). PAMPs are conserved molecular structures of 
microorganisms, including bacterial lipopolysaccharide 
(LPS) and peptidoglycan (PGN), fungal β-1,3-glucan and 
viral double-stranded RNA (dsRNA) [1]. Several families 
of PRRs have been identified in vertebrates, including toll-
like receptors (TLRs), nucleotide binding oligomerization 

domain (NOD)-like receptors (NLRs), retinoic acid 
inducible gene I-like receptors (RLRs), C-type lectin 
receptors (CLRs), and peptidoglycan recognition proteins 
(PGRPs) [2]. 

PGRPs were first identified in the silkworm Bombyx 
mori and named according to their high-affinity binding to 
PGN [3]. PGRPs were subsequently found to be conserved 
in the whole animal kingdom including insects [4], 
deuterostomes [5], fish [6] and mammals [7]. However, 
the copy numbers of PGRP genes vary in species, e.g. 
13 PGRP genes in Drosophila melanogaster [4], 3 in 
zebrafish Danio rerio [6] and 4 in mammals [7]. Based on 
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the length of peptide sequences, PGRPs are classified into 
three groups: short (S) PGRPs, intermediate (I) PGRPs and 
long (L) PGRPs, among which the short and long PGRPs 
are identified in all the invertebrates and vertebrates [4-7], 
while the intermediate PGRPs only exist in mammals [7]. 
All PGRPs contain at least one C-terminal PGRP domain 
of 165 amino acids. Structurally, PGRPs contain multi 
β-sheets and α-helices, which form an L-shaped groove 
involved in PGN binding [8]. 

Invertebrate PGRPs are crucial PRRs in 
antimicrobial innate immunity [9]. Drosophila PGRP-
SA, PGRP-SD and PGRP-SC1 recognize PGN and 
subsequently activate the Toll pathway [10-12]. In 
contrast, Drosophila PGRP-LC activates the death-
domain-containing Imd protein, inducing antimicrobial 
peptides to eliminate bacteria [13]. Silkworm PGRP-S 
is shown to bind bacteria PGN to activate the prophenol-
oxidase cascade, generating melanin and reactive oxygen 
species to combat infections [3]. Furthermore, Drosophila 
PGRP-SC1 and PGRP-LB have N-acetylmuramoyl-L-
alanine amidase activity of degrading bacterial PGNs 
[14, 15]. Studies have shown that teleost PGRPs have 
comparable functions of invertebrate orthologs. Zebrafish 
recombinant PGRPs are potent bactericidal agents against 
Gram-positive and Gram-negative bacteria [16]. Unlike 
teleost counterparts, mammalian PGRPs that have amidase 
activity do not possess direct bactericidal activity, while 
those without amidase activity are bactericidal [17].

Amphibians are placed at a unique evolutionary 
point when the living environment is transited from 
aquatic to terrestrial habitats. Previously, we identified two 
types of PGRPs (short and long PGRPs) from Xenopus 
tropicalis, a model amphibian species, and showed that 
these two PGRPs were up-regulated following bacterial 
infection [18, 19]. The Chinese giant salamander (Andrias 
davidianus) is the largest extant urodela species and 
one of the primitive amphibians. Information regarding 
salamander PGRPs is still scarce. In this study, a short 
PGRP (AdPGRP1) was cloned from salamander, and 
its expression patterns, amidase activity, PGNs binding 
ability, antimicrobial activity, and involvement in 
regulation of NF-κB pathway were studied. This work 
provides a basis for further analysis of the functions of 
amphibian PGRPs and the evolutionary history of animal 
PGRPs.

RESULTS

Sequence features of AdPGRP-S1

 The cloned AdPGRP-S1 cDNA sequence (GenBank 
accession number: MF563613) was 985 bp in length, 
containing 131 bp of 5’-untranslated region (UTR), 555 
bp of open reading frame (ORF) and 299 bp of 3’-UTR. 

AdPGRP-S1 cDNA sequence contained two stop codons 
in the 5’-UTR upstream of the start codon (ATG) and 
two in-frame stop condons in the 3’-UTR downstream 
of the stop condon, indicating that a complete ORF of 
AdPGRP-S1 had been obtained. The ORF of AdPGRP-S1 
encoded 184 amino acids with a signal peptide of 17 aa 
predicted by the SignalP software. No N-glycosylation site 
and transmembrane domain were found (Supplementary 
Figure 1). 

 AdPGRP-S1 possesses a PGRP domain (residues 31 
to 169). Notably, several conserved residues important for 
the PGRP functions were identified in the PGRP domain, 
including four catalytic residues responsible for amidase 
activity (H49, Y84, H159 and C167), four residues 
involved in specific PGN recognition activity (K78, W79, 
R98 and V103), and ten possible substrate binding sites 
(H50, T51, C80, Y84, R98, A105, H106, N112, H159, 
T165, S166 and C167) (Figure 1). AdPGRP-S1 shared 
38.7%-54.9% sequence identities with vertebrates’ short 
PGRPs, with the highest identity (54.9%) with frog 
PGRP-S.

To further understand the evolution of vertebrates’ 
PGRPs, an un-rooted phylogenetic tree was constructed 
using the MEGA 7.0 software based on the multiple 
sequences alignment (Figure 2). The phylogenetic tree 
was divided into five main clades, supported by the high 
bootstrap values (≥ 99%). They included the mammalian 
intermediate PGRPs (PGLYRP3/4), mammalian short 
PGRPs (PGLYRP1), the amphibian short PGRPs, which 
contained AdPGRP-S1, the teleost short PGRPs, and the 
vertebrates’ long PGRPs (Figure 2).

Tissue distribution of AdPGRP-S1

Real-time qPCR analysis demonstrated that 
AdPGRP-S1 was ubiquitously expressed in tissues, 
with the highest expression seen in spleen and intestine, 
and lowest in liver and kidney. Moderate expression of 
AdPGRP1 was also detected in muscle, heart, skin and 
lung (Figure 3).

Analysis of the AdPGRP-S1 fusion protein 
expressed in HEK-293T cells

The AdPGRP-S1 fusion protein expressed in the 
HEK-293T cells was analyzed by Western blotting. A 
specific band of 15-25 kDa was detected in the supernatant 
and cell lysate of cells transfected with AdPGRP-S1 
plasmid but not empty p3xFLAG vector, which was in 
line with the predicted molecular weight of AdPGRP-S1 
(18 kDa). The results indicate that the AdPGRP1 fusion 
protein could be expressed as preprotein in intracellular 
region and could be secreted (Figure 4). 
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PGNs binding ability of AdPGRP-S1

Four residues involved in PGN binding were 
identified in AdPGRP-S1 (Figure 1), demonstrating that 
AdPGRP-S1 might have PGN binding ability. To test 
this, p3xFLAG-CMV-14 or pPGRP-S1-FLAG plasmids 
were transiently transfected into HEK-293T cells and 
recombinant proteins were extracted and incubated with 
insoluble Lys-type PGN and DAP-type PGN, respectively. 
Fig. 4 showed that AdPGRP-S1 could bind both Lys-type 
PGN and DAP-type PGN. No band was detected in cells 
transfected with empty p3xFLAG vector (Figure 5).

Amidase activity of AdPGRP-S1

Next, the amidase acitivity of AdPGRP-S1 on 
Lys-PGN and DAP-PGN was examined by assessing 
the optical clearance of solution at 540 nm [20]. In the 
presence of 10 μM Zn2+, apparent drop tendency was 

observed within 120 min when the lysates of pPGRP-S1-
FLAG-transfected HEK-293T cells were incubated with 
Lys-PGN and DAP-PGN. No drop tendency was detected 
for the cell lystate of the control cells transfected with 
p3xFLAG plasmid (Figure 6).

Antibacterial activity of AdPGRP-S1

The AdPGRP-S1 fusion protein was shown to be 
expressed in intracellular region and also secreted. These 
intracellular and extracellular isoforms of AdPGRP-S1 
were investigated for their antibactericidal effects. In 
cells transfected with AdPGRP-S1, it was observed that 
at 3 h and 6 h post E. tarda infection the numbers of 
intracellular bacteria were significantly lower than that of 
control cells transfected with p3xFLAG plasmids (Figure 
7A). Similarly, the numbers of extracellular bacteria were 
significantly decreased in HEK-293T cells transfected 
with AdPGRP-S1 at 6 h post E. tarda infection (Figure 
7B).

Figure 1: Multiple alignment of the amino acid sequences of vertebrates’ short PGRPs. The sequence alignment was 
performed using the Clustal O software and edited with the BoxShade software. Sequence identity was analyzed using MegAlign in the 
DNAStar software package. Catalytic residues responsible for amidase activity and specific PGN recognition activity are marked by 
inverted white triangles and dots, respectively. The possible substrate binding sites were marked by white asterisks.
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Figure 2: Evolutionary relationships of vertebrates’ PGRPs. The evolutionary history was inferred using the Neighbor-Joining 
method in MEGA7 software. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (10,000 
replicates) were shown next to the branches. The evolutionary distances were computed using the JTT matrix-based method and were 
shown in the units of the number of amino acid substitutions per site.
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Activation of NF-κB by AdPGRP-S1

The NF-κB signaling pathway is important in 
regulating innate and adaptive immune responses [21]. 
The PGRPs of teleost and mammals mediate NF-κB 
pathway. We hypothesized that AdPGRP-S1 might also 
be involved in the NF-κB pathway and tested the effect of 
AdPGRP1-S1 on the activation of NF-κB in HEK-293T 

cells using a luciferase reporter gene assay. The results 
confirmed that the NF-κB luciferase reporter was activated 
by pPGRP-S1-FLAG in a dose-dependent manner, with 
a maximum increase of 4.5-fold relative to transfection 
of HEK-293T cells with p3xFLAG-CMV-14 (control) 
alone (P < 0.01) (Figure 8). These results indicated that 
AdPGRP-S1 could trigger the activation of the NF-κB 
signaling pathway in HEK-293T cells.

Figure 3: Tissue distribution of AdPGRP-S1 in selected tissues of normal salamanders. Expression of AdPGRP-S1 was 
analyzed by real-time qPCR and normalized to β-actin in each tissue of 4 animals.

Figure 4:The extracellular and intracellular expression of AdPGRP-S1 in HEK-293T cell medium and lysates by 
western-blotting. The numbers on the left panel indicate the size (kDa) of the molecular markers. 



Oncotarget99328www.impactjournals.com/oncotarget

Figure 5: AdPGRP-S1 binding insoluble Lys-PGN from Staphylococcus aureus and Dap PGN from Bacillus subtilis. 
Lysates of HKE-293T cells transiently transfected with p2xFLAG-CMV-14 or pPGRP-S1-FLAG plasmids were incubated with 40 μg Lys 
PGN from S. aureus or Dap PGN from B. subtilis, respectively. Proteins eluted from the pellets were separated by SDS-PAGE and detected 
using Western blotting with anti-FLAG antibody. 

Figure 6: Degrading of AdPGRP-S1 on Lys PGN and Dap PGN. Lysates of HKE-293T cells transiently transfected with 
p3xFLAG-CMV-14 and pPGRP-S1-FLAG plasmids were respectively incubated with Lys PGN and Dap PGN and the optical density (OD) 
at 540 nm was recorded every 5 minutes until 120 min post incubation.
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Figure 7: Inhibition of intracellular (A) and extracellular (B) E.tarda by AdPGRP-S1. HKE-293T cells transiently transfected 
with p3xFLAG-CMV-14 or pPGRP-S1-FLAG plasmids were infected with E.tarda. The numbers of bacteria were calculated at 3 h and 6 
h post bacterial infection or post incubation with gentamicin. *P<0.05. **p < 0.01.

Figure 8: Effects of AdPGRP-S1 overexpression on the activity of the NF-кB reporter gene. The HEK-293T cells were 
transiently co-transfected with pRL-TK, NF-κB reporter vector, and pPGRP-S1-FLAG expression vector. The p3xFLAG-CMV-14 vector 
was used as a control. **p < 0.01.
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DISCUSSION

Chinese giant salamander (A.davidianus), the 
largest extant urodela amphibian species, has substantial 
scientific and economic values. However, little is known 
about its immune defence. In the present study, we cloned 
and functionally analyzed a short PGRP (AdPGRP-S1) 
in this species. To our best knowledge, this was the first 
report on the functions of PGRP in salamander. The cloned 
AdPGRP-S1 was 184 aa in length, which had similar 
sequence length with invertebrates’ and vertebrates’ short 
PGRPs [4, 6, 7]. Multiple sequence alignment showed 
that AdPGRP-S1 shared high sequence identities (38.7%-
54.9%) with other vertebrates’ short PGRPs. Similar to 
other vertebrates’ PGRPs, AdPGRP-S1 also contained 
one typical PGRP domain at its C-terminal region. The 
length of PGRP domain of AdPGRP-S1 (138 aa) was 
comparable to that of other vertebrates’ PGRPs (~ 165 aa) 
[9]. In the PGRP domain of AdPGRP-S1, several residues 
involved in functions of PGRPs were identified, including 
four catalytic residues involved in amidase activity, four 
residues involved in specific PGN recognition activity 
and ten possible substrate binding sites. These structural 
features revealed that AdPGRP-S1 might have functions of 
bacterial recognition and effector to eliminate pathogens. 

The expression of AdPGRP-S1 in tissues of normal 
salamander was analyzed by quantitative real-time PCR, 
providing clues to understand its functions. Results 
showed that AdPGRP-S1 was ubiquitously expressed 
in all the tissues analyzed, in agreement with previous 
studies [6, 7, 18, 19]. Similar to fish species, salamanders 
also live in aquatic environment. Constitutive expression 
of AdPGRP-S1 in tissues might be favorable to combat 
the aquatic pathogens. It was interesting that AdPGRP-S1 
was highly expressed in immune related tissues. We 
also found that AdPGRP-S1 was highly expressed in 
salamander intestine and skin which are important tissues 
of mucosal immunity [21, 22]. In addition, AdPGRP-S1 
was expressed in non-immune tissues, e.g. muscle, heart. 
Similar results were also found for PGRPs of invertebrates 
[23] and teleost [24], suggesting that PGRPs might also 
play roles in processes other than immune defense against 
bacterial pathogens. 

Genes of PGRPs could encode secreted proteins, 
membrane proteins and intracellular proteins. All 
of Drosophila short PGRPs were secreted proteins, 
among which PGRP-SA and PGRP-SD acted as pattern 
recognition receptors, PGRP-SB and PGRP-SC had 
amidase activity to hydrolyze PGN [25]. The four 
mammalian PGRPs were also secreted proteins, which 
were differently expressed and involved in immune 
responses in different tissues [7]. Zebrafish PGLYRP2, 
PGLYRP5 and PGLYRP6, grass carp (Ctenopharyngodon 
idella) PGLYRP6 were also secreted proteins [16, 26]. 
Similar to human PGLYRP1 [7], AdPGRP-S1 also 
possessed a signal peptide at its N-terminus and was 

detected as a secretory protein. Signal peptide is essential 
for the classic protein secretion pathway where proteins 
were transported through endoplasmic reticulum (ER) and 
Golgi to the extracellular membrane [27]. We speculate 
that AdPGRP-S1 might be secreted through the classic 
protein secretion pathway. 

PGRPs were firstly named according to the ability to 
bind PGN [3]. However, different types of PGRPs showed 
selective binding ability towards Lys-PGN and Dap-PGN. 
It had been found that the three important amino acids 
located in the PGN-binding cleft of PGRPs were essential 
for classification of the PGN types bound by PGRPs [28]. 
For example, human PGLYRP1 containing Gly89, Trp90 
and Arg109 could bind Dap-type PGN, PGLYRP3 with 
Asn236, Phe237 and Val256 could bind Lys-type PGN 
[9], grass carp PGLYRP5 with Gly73, Phe74 and Arg93 
could bind both types of PGNs [29]. In the present study, 
we found that AdPGRP-S1 contained Lys78, Trp79 and 
Arg98 and was able to bind both types of PGNs. Also, 
the different combinations of these three amino acids in 
the PGN-binding cleft of PGRPs were found in other 
species. The relationship between the amino acids and 
PGN binding specificity requires further investigations. 

Some PGRPs had amidase activity which converted 
pro-inflammatory PGNs into non-immunogenic fragments. 
These included Drosophila PGRP-SB1 and PGRP-LB, 
and mammalian PGLYRP2 [15, 30, 31]. All the PGRPs 
possessing amidase activity contained four conserved Zn2+ 
binding sites, involving several key amino acid residues, 
e.g. His98, Tyr132, His206 and Cys214 in zebrafish 
PGLYRP5 [16]. Zn2+ acts as electrophilic catalyst during 
the hydrolytic process of PGN, promoting the hydrolysis 
of bond between the lactyl group of the N-acetylmuramic 
acid and the L-alanine of peptide [15, 30, 31]. The four 
Zn2+ binding sites played essential roles in the catalytic 
activity of PGRPs. Mutant forms of human PGLYRP2 
(C530S), Drosophila PGRP-SC1b (C168A and C168S) 
were shown to lack amidase activity [20]. In this study, 
we found that AdPGRP-S1 also contained four conserved 
Zn2+ binding sites and was capable of degrading PGNs, 
suggesting that it possesses both PGN binding activity and 
amidase activity, similar to that of teleost PGRPs [16].

We demonstrated in the present study that 
AdPGRP-S1 possesses antibacterial activities, inhibiting 
proliferation of a pathogenic Gram-negative bacterium. 
This was in agreement with studies in teleosts and 
mammals [16, 32]. Notably, the antibacterial mechanisms 
of teleost and mammalian PGRPs are different. 
Mammalian bactericidal PGRPs do not have amidase 
activity, indicating the bactericidal activity of mammalian 
PGRPs is independent of amidase activity [32, 33]. Unlike 
mammalian PGRPs, fish PGRPs possess both amidase 
and bacterial activity [16]. Whether insect PGRPs are 
bactericidal is less clear, except for Drosophila PGRP-SB1 
that possesses both amidase and bacterial activities [34]. 
These observations suggest that teleost and insect PGRPs 
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might be amidase-dependent, involving in peptidoglycan 
hydrolysis or permeabilization of the cytoplasmic 
membrane [16]. The AdPGRP-S1 also possesses both 
amidase and bactericidal activity, and could function 
within the cells and extracellularly. 

Our study demonstrated that AdPGRP-S1 could 
trigger the activation of the NF-κB signaling pathway. 
A dose-dependent induction of NF-κB promoter in 
transfected cells was seen. Similar results were also found 
in fish PGRPs. For example, rainbow trout PGRP-L1 could 
inhibit the activation of the NOD-induced NF-κB pathway 
via downregulation of TAK1 and IκBα phosphorylation 
[35]. Zebrafish PGRP-SC could regulate expresssion of 
several immune related genes, including TLR2, TLR3, 
interleukin (IL)-17 and NF-κB [36]. 

In summary, we cloned a short PGRP from the 
Chinese giant salamander and analyzed its functions for 
the first time. AdPGRP-S1 was constitutively expressed in 
tissues of normal salamander. Functional analysis revealed 
that AdPGRP-S1 had similar activities as teleost PGRPs, 
including PGN binding activity, antibacerial activity, 
amidase activity and signaling regulation. The results 
suggest that the functional divergence of amidase activity 
and PGN binding activity of verterbrates’ PGRP might 
have taken place after the emergence of tetrapods. 

MATERIALS AND METHODS

Ethics statement

This study was approved by the Ethics Committee 
of Animal Experiments (Institute of Hydrobiology; Permit 
Number: Y213531301). All surgery was performed under 
anesthesia using 500 mg/L gethyl-3-aminobenzoate 
methanesulfonate (MS-222, Sigma, USA).

Cloning cDNA of AdPGRP-S1

Normal Chinese giant salamanders (average 
body weight 200 g) were obtained from a farm in 
Hubei province, P. R. China. Total RNA was extracted 
from the liver of normal salamanders using Trizol 
reagent (Invitrogen, USA) according to manufacturer’s 
instructions. cDNA was then synthesized using First 
Strand cDNA Synthesis Kit (Thermo Scientific, USA). 
Specific primers (AdPGRP1F and AdPGRP1R) were 
designed according to the partial sequence obtained from 
the salamander transcriptome [37]. Then, 3’-RACE and 
5’-RACE were performed using gene specific primers and 
adaptor primers (UPM) to obtain the full cDNA length of 
AdPGRP-S1. 

Cell line, bacteria and reagents

The human embryonic kidney cell line (HEK-
293T) was maintained in MEM medium (Gibco, USA) 
supplemented with 10% fetal bovine serum (FBS) (Sigma, 
USA) at 37°C. Edwardsiella tarda (strain PPD130/91) 
was used for antibacterial activity assay. Lys-type PGN 
(catalog no. 77140) from Staphylococcus aureus and Dap-
type PGN (catalog no. 69554) from Bacillus subtilis were 
purchased from Sigma-Aldrich (USA). 

Sequence and phylogenetic analyses

Alignment of multiple sequences was performed 
using the Clustal Omega software (http://www.ebi.ac.uk/
tools/msa/clustalo) and edited with the BoxShade software 
(http://www.ch.embnet.org/software/BOX_form.html). 
Protein sequence identity was calculated by the MatGat 
2.02 software [38]. The signal peptide and transmembrane 
domain were predicted by the SignalP 4.1 server [39] and 
TMHMM server 2.0 [40], respectively. Various physical 
and chemical parameters including molecular weight, 
theoretical isoelectric point, amino acid composition, 
atomic composition, extinction coefficient, estimated half-
life, instability index, aliphatic index and grand average 
of hydropathicity (GRAVY) of proteins were analyzed 
using ProtParam tool [41]. The protein domains were 
searched in the Pfam database [42]. A phylogenetic tree 
was constructed using the Neighbor-Joining (N-J) method 
in MEGA 7.0 software, with bootstrapping set as 10,000 
repetitions to assess the reliability of branch topology. 

Tissue distribution of AdPGRP-S1 

To investigate the tissue distribution of AdPGRP-S1, 
ten tissues including liver, spleen, intestine, muscle, brain, 
stomach, kidney, lung, heart and skin were collected from 
four normal salamanders. Total RNA was extracted from 
these tissues using Tirzol reagent (Invitrogen, USA), 
and reverse transcribed into first strand cDNA using 
PrimeScript® RT reagent Kit with gDNA Erase (Takara, 
Japan). Real-time qPCR was performed using SYBR 
Green fluorescent dye (Invitrogen, USA) on the CFX96 
Touch™ Real-Time PCR Detection System (Bio-Rad, 
USA) and analyzed as described previously [43, 44]. The 
expression level of AdPGRP-S1 was normalized to that of 
β-actin. Primers used for real-time quantitative PCR are 
listed in Table 1.

Construction of expression vectors for the 
production of AdPGRP-S1 fusion protein

The open reading frame (ORF) of AdPGRP-S1 was 
amplified with primers (AdPGRP1F1 and AdPGRP1R1) 
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and inserted into the Hind III and BamH I sites of 
p3xFLAG-CMV-14 (Sigma, USA) to generate pPGRP-
S1-FLAG expression plasmid. 

Expression analysis of the AdPGRP-S1 fusion 
protein

The HEK-293T cells were used to study the function 
of AdPGRP-S1. The p3xFLAG-CMV-14 or pPGRP-S1-
FLAG plasmids were transiently transfected into 2 × 106 

HEK-293T cells using LipofectAMINE 2000 transfection 
reagent (Invitrogen, USA) following the manufacture’s 
construction. After 48 h, the cell media and cell pellet were 
collected and the expression of AdPGRP-S1 in cell media 
and cell pellet were detected with anti-FLAG antibody by 
Western blotting. 

PGNs binding assay

Three micrograms of p3xFLAG or pPGRP-S1-
FLAG plasmids were transiently transfected into 2 × 106 
HEK-293T cells using LipofectAMINE 2000 transfection 
reagent (Invitrogen, USA) following the manufacture’s 
construction. After 48 h, protein was extracted using 
RIPA buffer (plus protease inhibitor cocktails) (Thermo 
Scientific, USA) and frozen at -80°C. Forty micrograms 
of insoluble Lys-type PGN and DAP-type PGN were 
incubated with 50 μg extracted proteins for 4 h at 4°C in a 
rocking incubator. Then, the bound and unbound proteins 
were separated by centrifugation at 13,000 rpm for 15 min 

and washed 4 times with TBS buffer (50 mM TrisHCl, 
50 mM NaCl, 10 μM ZnCl2, pH 7.5). The bound proteins 
were recovered from PGN by boiling in 2 × SDS-PAGE 
loading buffer. Then, the proteins were loaded onto the 
SDS-PAGE gels for gel electrophoresis and detected with 
anti-FLAG antibody by Western blotting. 

Amidase activity analysis

The p3xFLAG or pPGRP-S1-FLAG plasmids were 
transfected into HEK-293T and proteins were extracted 
as mentioned above. Forty micrograms of insoluble Lys-
type PGN and DAP-type PGN were incubated with 50 
μg extracted proteins in Tris-ZnCl2 buffer (20 mM Tris 
HCl, 150 mM NaCl, 10 μM ZnCl2, pH 7.2). The PGNs 
incubated with p3xFLAG-CMV-14 in Tris-ZnCl2 buffer 
were set as control groups. The optical density (OD) at 
540 nm was recorded every 5 minutes until 120 min post 
incubation. 

Antibacterial assay

Intracellular antibacterial assay

The 3 × 105 HEK-293T cells were transiently 
transfected with 0.5 μg p3xFLAG or pPGRP-S1-FLAG 
and cultured at 37 °C for 48 h. The cells were infected 
with E. tarda at the multiplicity of infection (MOI) of 10 
(2 × 107 cfu/ml) for 1 h at 25 °C. After the cells were 
washed with DMEM medium for three times, the 10% 

Table 1: Primers used in this study.
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FBS DMEM medium containing 16 μg/ml gentamicin 
was added to each well to kill extracellular bacteria. The 
cells were collected at 3 h and 6 h post incubation with 
gentamicin. The cells were washed with DMEM medium 
for four times and then lysed in 500 μl PBS containing 1% 
Triton X-100 for 20 min. The numbers of bacteria were 
calculated by plate colony-counting methods. 
Extracellular antibacterial assay

The 3 × 105 HEK-293T cells were transiently 
transfected with 0.5 μg p3xFLAG or pPGRP-S1-FLAG 
and cultured at 37 °C for 48 h, and the cells were then 
infected with E. tarda at the multiplicity of infection 
(MOI) of 10 (2 × 107 cfu/ml) for 1 h at 25 °C. At 3 h 
and 6 h post infection, the medium were collected and 
the numbers of bacteria were calculated by plate colony-
counting methods.

No additional antibiotics were used during the 
intracellular and extracellular antibacterial experiments. 
All the intracellular and extracellular antibacterial 
experiments were performed in triplicate and the data were 
expressed as mean ± SD, and analyzed using Student’s 
t-test with P < 0.05 considered statistically significant.

Transient transfection and luciferase reporter 
assays

Activation of the NF-κB pathway was measured 
using the luciferase reporter assay as described previously 
[26]. The HEK-293T cells were transfected with 100 ng 
NF-κB luciferase plasmid, 10 ng pRL-TK vector and 
different concentrations of pPGRP-S1-FLAG plasmids 
(100, 300 and 600 ng). The p3xFLAG vector was used 
as control. At 36 h post transfection, the cells were lysed 
and the luciferase activity was measured. The experiments 
were performed in triplicate and the data were expressed 
as mean ± SD, and statistical difference was determined 
using Student’s t-test at P < 0.05. 
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