
Oncotarget93957www.impactjournals.com/oncotarget

Predicting new indications of compounds with a network 
pharmacology approach: Liuwei Dihuang Wan as a case study

Yin-Ying Wang1,2,3,*, Hong Bai4,*, Run-Zhi Zhang4, Hong Yan3, Kang Ning4 and Xing-
Ming Zhao1

1Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China
2Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
3Department of Electronic Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
4Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong 
University of Science and Technology, Wuhan, Hubei 430074, China

*These authors have contributed equally to this work

Correspondence to: Xing-Ming Zhao, email: xmzhao@fudan.edu.cn
Keywords: network pharmacology; drug repurposing; TCMs; pathway profile; LDW
Received: February 13, 2017    Accepted: September 05, 2017    Published: September 30, 2017
Copyright: Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

ABSTRACT

With the ever increasing cost and time required for drug development, new 
strategies for drug development are highly demanded, whereas repurposing old drugs 
has attracted much attention in drug discovery. In this paper, we introduce a new 
network pharmacology approach, namely PINA, to predict potential novel indications 
of old drugs based on the molecular networks affected by drugs and associated with 
diseases. Benchmark results on FDA approved drugs have shown the superiority of 
PINA over traditional computational approaches in identifying new indications of old 
drugs. We further extend PINA to predict the novel indications of Traditional Chinese 
Medicines (TCMs) with Liuwei Dihuang Wan (LDW) as a case study. The predicted 
indications, including immune system disorders and tumor, are validated by expert 
knowledge and evidences from literature, demonstrating the effectiveness of our 
proposed computational approach.

INTRODUCTION

With the ever increasing cost and time-
consuming process of drug development, new 
strategies for drug development are highly demanded. 
Drug repurposing, which aims for identifying 
novel indications for existing drugs, attracts a lot of 
attention since the toxicity of known drugs is already 
understood [1]. For example, Metformin has been 
widely used for more than 30 years for the treatment of 
type 2 diabetes, but extensive preclinical and clinical 
studies over the past decade have demonstrated the 
antitumor effects of the drug [2]. It has been reported 
that Metformin was able to lower the risk of cancer 
mortality and incidence in patients with diabetes [3]. 
Nowadays, drug repurposing has been considered as 

an effective approach in drug development. However, 
identifying novel indications with drug repurposing is 
highly challenging since the novel indications of one 
drug may have no obvious relationship with its initial 
purpose.

During the past decade, much effort has been 
made to develop new computational approaches for 
the purpose of repositioning drugs and elucidating the 
molecular mechanisms of drugs. For example, Wang et al 
proposed a novel method to predict drug target proteins 
based on drug-domain interactions [4], and Zhang et al 
constructed a post-translational regulatory network to 
explore network motifs as potential drug targets which 
can help design multi-component or combinatorial drugs 
[5]. With the popular deep learning (DL) techniques, 
Kadurin et al proposed a DL-based model for screening 
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potential anti-cancer compounds [6]. Recently, the 
network pharmacology approaches have been widely 
employed for understanding the mechanisms of drug 
actions, resistance and side effects [7–9]. At the same 
time, some network pharmacology approaches have been 
proposed to predict the associations between drugs and 
diseases. For instance, Martinez et al developed DrugNet 
to prioritize drugs for certain diseases by integrating 
complex associations among disease, drugs and proteins 
[10]. Besides, Alaimo et al also introduced a method 
that can be used to integrate biological knowledge and 
bipartite interaction network to predict new indications 
of drugs [11].

As multi-target or multi-component therapies 
gain increasing attention recently, Traditional Chinese 
Medicines (TCMs) are being re-evaluated and becoming 
important resources for the discovery of alternative 
treatments for certain diseases, where various network 
pharmacology approaches have been proposed for this 
purpose [12–15]. For example, Qing Luo Yin (QLY) 
is an effective formula in the treatment of arthritis and 
antiangiogenic. With the target network of QLY, not only 
the diseases related key biological processes including 
angiogenesis, inflammatory and immune response were 
revealed, but also the active ingredients and synergistic 
combinations of this herbal formula were identified 
[16]. Another example is Liuwei Dihuang Wan (LDW), 
which shows potential for regulating the imbalance of 
hormones and metabolism [17]. Therefore, the network 
pharmacology approaches are capable of providing 
insights into the mechanisms of actions of known drugs 
and identifying new indications of those drugs [18–20]. 
However, current network pharmacology methods for 
repurposing drugs are mainly based on the target proteins 
of active compounds, whereas the target information may 
not be indicative of diseases that the drugs can be used 
for.

In this paper, we investigate the mechanisms of 
drug actions based on the pathways modulated by the 
drugs. By further integrating pathway profiles with 
chemical structures as well as disease phenotypes, we 
present a network pharmacology approach namely 
PINA (Predicting new Indications of compounds 
with a Network pharmacology Approach) as shown in 
Figure 1, to predict potential indications of old drugs. 
Benchmark results on FDA approved drugs have proven 
the superiority of our method over traditional network 
pharmacology approaches, as regard to revealing new 
associations between compounds and diseases. We 
further extend PINA to predict the novel indications 
of Traditional Chinese Medicines (TCMs) with Liuwei 
Dihuang Wan (LDW) as a case study. The predicted 
indications, including immune system disorders and 
tumor, are validated by expert knowledge and evidences 
from literature, demonstrating the effectiveness of our 
proposed computational approach.

RESULTS

Identification of the pathway profiles associated 
with diseases

In this work, given a disease, we assume that the 
compounds that can significantly affect the pathway 
profiles associated with the disease can be used for the 
disease. With 4,774 known drug-disease associations 
composed of 928 compounds and 608 diseases extracted 
from CTD database [21], we first identified the pathways 
that are dysfunctional in diseases. Assuming that diseases 
with similar pathway profiles should have similar 
mechanisms, based on the pathways we identified a 
disease-disease association network was constructed, 
where two diseases were linked if they shared at least one 
pathway. We further detected modules from the network 
with density-based MCODE [22] tool (Supplementary 
Figure 2). Table 1 listed the 14 modules and the 
corresponding average similarities among diseases within 
the module as well as the most enriched disease class. 
Supplementary Table 2 has shown the detailed information 
of the 14 modules. If the pathway profiles we identified 
are indeed associated with diseases, we expected that the 
diseases belonging to the same module should have similar 
mechanisms. It could be seen that the diseases grouped 
into the same module based on pathway profiles tended to 
have similar symptoms, where the disease similarity was 
calculated as described in [23]. Furthermore, the diseases 
can be grouped into 22 classes based on the physiological 
systems affected by the diseases as defined in [24]. By 
investigating the diseases belonging to same module, we 
found that the diseases in the same module tend to be in 
the same class as shown in Table 1, indicating that the 
diseases from the same module have similar mechanisms. 
In addition, by investigating the number of disease classes 
that the pathway profiles were associated with, we found 
that each of more than 79% pathways was associated 
with only one specific disease class, implying that each 
pathway profile is specifically associated with a certain 
type of diseases (Supplementary Figure 3).

By further investigating the pathway profiles that 
were associated with one disease class, we found that 
those pathways were indeed related to the disease class. 
For instance, the calcium signaling pathway played a 
crucial role in the control of neuronal functions and 
plasticity by regulating members of the neuronal calcium 
sensor (NCS) proteins [25]. It was reported that the 
deregulation of calcium signaling pathway was one of the 
key processes in the pathogenesis of neurodegenerative 
disorders [26]. In our study, the neurological class consists 
of 48 diseases while the calcium signaling pathway was 
predicted to be related with 18 out of them. Besides, 
the transmission across chemical synapses pathway we 
identified was related to more than 20% of neurological 
diseases, where the chemical synapses were specialized 
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junctions used for communications between neuron [27]. 
Furthermore, the GPCR ligand binding pathway was 
predicted to be associated with all psychiatric diseases, 
where the G protein-coupled receptors have been found to 
play important roles in major psychiatric disorders, such 
as depression and schizophrenia [28].

From the findings shown above, we can see that the 
pathway profiles identified here are indeed related to the 
corresponding diseases.

Prediction of potential indications for FDA 
approved drugs

With the pathway profiles identified above, the 
potential associations between compounds and diseases 
could be predicted. Based on the FDA approved drugs 
with target information and their known associations with 
diseases obtained from the CTD database, PIPP, NP_C 

and NP_D were respectively applied to predict potential 
compound-disease associations.

By comparing the three approaches, we noticed 
that many of the predictions by pathway profile approach 
(PIPP) could be validated with those predicted by chemical 
structures and disease similarities based on the ‘guilt by 
association’ rule, where drugs with similar structures were 
assumed to be able to treat the same disease while similar 
diseases could be treated with the same drug. For example, 
the compound Nortriptyline (CID: 4543) was originally 
used as an anti-depressive agent [2], and it was predicted 
for the treatment of schizophrenia (OMIM: 603176) with a 
score of 0.9985 by PIPP. In fact, the drug Nortriptyline had 
similar structure with Amitriptyline (CID: 2160), which 
was used for schizophrenia [9], with a similarity score of 
0.92. On the other hand, schizophrenia was similar with 
Attention Deficit Hyperactivity (ADH) disorder (OMIM: 
143465), and Nortriptyline have already been reported for 

Figure 1: The pipeline of predicting new indications of compounds with a network pharmacology approach. (A) Data 
sources for network pharmacology analysis; (B) Predicting new indications of compounds with a network pharmacology approach. Node: 
irregular, disease; hexagon, compound; circle, gene. Line: solid line, known association; square dot, enriched association; long dash, 
predicted association.



Oncotarget93960www.impactjournals.com/oncotarget

treating ADH in the CTD database, which validated that 
Nortriptyline could be used for schizophrenia. Moreover, 
we noticed that the pathway profile approach could 
successfully recover known associations that were missed 
by the chemical or disease similarity based approach. For 
example, the compound Retinoic Acid was used for femur 
head necrosis, which was successfully identified by our 
pathway profile method with a score of 1.0. However, the 
nearest profile approach based on chemical and disease 
similarity failed to identify this association with scores of 
0.0 and 0.27, respectively.

The results shown above demonstrate that the pathway 
profile approach can complement with other approaches, 
e.g. chemical or disease similarity based ones, very well. 
Therefore, we further proposed an ensemble approach 
named as PINA that combines the pathway profile method 
with chemical and disease similarity based methods to predict 
potential compound-disease associations. The novel potential 
indications of all compounds are list in Supplementary Table 
4. We also compared PINA with three existing methods 
from literature, including DrugNet [10], HGBI [29] and 
NBI [30]. DrugNet is a network-based drug repositioning 
method, which integrates the information of diseases, drugs 
and proteins to prioritize drug-disease associations. HGBI 
and NBI have been originally developed for predicting drug-
protein interactions, and can also be used for the prediction 
of drug-disease associations. HGBI predicts the drug-disease 
associations with the guilt-by-association principle based 
on the drug-disease heterogeneous graph, while NBI can 

predict new drug-disease associations based on a two-step 
diffusion model on a drug-disease bipartite graph. To evaluate 
the performance of our approach, PINA was compared with 
the other three approaches on the same benchmark drug-
disease associations from the Comparative Toxicogenomics 
Database, where the same pre-process was used for all the 
four computational approaches. The chemical similarities 
between compounds were calculated based on their 
fingerprints by using the Single Linkage algorithm [31] while 
the disease similarities were defined as described in [23]. 
All the four approaches were evaluated with 5-fold cross-
validations. Table 2 shows the performances of different 
methods, from which we can see that PINA has the highest 
AUC (0.8969) and F1 (0.3833) and significantly outperforms 
the other approaches.

Prediction of potential indications for LDW

In this part, we further extended PINA to predict 
the novel indications of Traditional Chinese Medicines 
(TCMs) with Liuwei Dihuang Wan (LDW) as a case study. 
With the known compound-disease associations from the 
CTD database, we built a model as described in Equation 
(4) and identified 59 diseases that LDW can be used for. 
Among the 156 compound components of LDW, only the 
eight compounds that can be found new indications with 
PINA were considered here, where the eight compounds 
were further required to be drug-like. Table 3 shows the 
detailed information about the eight compounds. By 

Table 1: The modules detected by MCODE from the disease association network generated with disease related 
pathway profiles

Modules Number of diseases Average similarity# Disease class (Coverage)*

1 16 0.1623 Psychiatric (0.625)

2 9 0.3210 Neurological (0.67)

3 7 0.2448 Ophthamological (0.71)

4 5 0.3294 Connective tissue (0.6)

5 5 0.6367 Cardiovascular (1.0)

6 4 0.4166 Endocrine (1.0)

7 4 0.2861 Neurological (0.5), Metabolic (0.5)

8 4 0.2427 Neurological (0.5), Cancer (0.5)

9 3 0.5193 Neurological (1.0)

10 3 0.3635 Bone (1.0)

11 3 0.2281 Immunological (1.0)

12 3 0.4612 Metabolic (1.0)

13 3 0.4284 Multiple (1.0)

14 3 0.5407 Gastrointestinal (1.0)

#Average similarity means the average of similarities over all disease pairs in each module detected in disease associated 
network.
*Coverage means the number of the diseases in the most enriched class divided by the number of disease in the module.
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Table 2: The performances of different methods which were obtained with 5-fold cross-validation

Method AUC Precision Recall F1 score

PIPP 0.8515 0.1517 0.4899 0.2313
NP_C 0.8132 0.0873 0.6511 0.1539
NP_D 0.8633 0.3005 0.4760 0.3684
PINA 0.8969 0.4325 0.3446 0.3833
DrugNet 0.8034 0.3411 0.3923 0.3568
HGBI 0.8125 0.3867 0.3639 0.3752
NBI 0.7983 0.3297 0.3321 0.3308

AUC - Area under ROC curve;
Precision - TP/(TP+FP), positive predictive value;
Recall - TP/(TP+FN), true positive rate;
F1 score - Harmonic mean of precision and recall.

Table 3: The detail information about eight compounds belonging to LDW

Compound ID Name FDA Status Part of known indications obtained from 
CTD database

CID000445354 Retinol Approved Acne Vulgaris; Acute Kidney 
Injury; Adrenal Insufficiency; 

Carcinoma, Hepatocellular; Colonic 
Neoplasms; Diabetes Mellitus, Type 
1; Fatty Liver; Hypertension, Portal; 

Hypertriglyceridemia; Liver Cirrhosis; 
Nephrosis;

CID000024360 Camptothecin Experimental Neoplasms; Leukemia, Lymphoid

CID027237R1936 Nicotinamide Experimental Diabetes Mellitus, Type 2; 
Hypercholesterolemia; Hyperglycemia; 
Hyperlipoproteinemias; Hypertension; 

Hypertriglyceridemia; Kidney Diseases; 
Nerve Degeneration; Ventricular 

Dysfunction, Left;

CID000006137 L-methionine Approved Carcinoma, Hepatocellular; Fatty Liver; 
Kidney Diseases; Memory Disorders;

CID005280343 Quercetin Experimental Acute Kidney Injury; Autoimmune 
Diseases; Breast Neoplasms; Cognition 

Disorders; Diabetes Mellitus; Fatty Liver; 
Hypertension; Kidney Diseases; Memory 
Disorders; Ovarian Neoplasms; Prostatic 

Neoplasms;

CID000005641 Urethane Withdrawn Arrhythmias, Cardiac; Hypertension; Liver 
Neoplasms; Ovarian Neoplasms;

CID027237R1305 Choline Approved Amnesia; Cognition Disorders; Fatty Liver; 
Memory Disorders;

CID027237R1681 Dopamine Approved Acute Kidney Injury; Arrhythmias, 
Cardiac; Central Nervous System Diseases; 

Heart Failure; Hypertension; Learning 
Disorders; Nerve Degeneration; Nervous 

System Diseases; Parkinson Disease;
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investigating the indications of the eight compounds 
obtained from CTD, we found that LDW, as a mixture 
of multiple compounds, achieves its therapeutic effects 
through its individual components. For example, LDW 
was used for anti-aging, delayed development and blurred 
vision, whereas Retinol, also known as vitamin A, plays 
an essential role in anti-aging, promoting bone growth 
and the treatment of various eye conditions. Moreover, 
it was found that LDW was useful for decreasing blood 
sugar, suppressing blood pressure and improving the renal 
function. Another compound component Quercetin, an 
antioxidant, was reported to treat many LDW associated 
disease, such as acute kidney injury, diabetes mellitus 

and hypertension. The combination of Nicotinamide and 
Retinol could be effective for acne treatment for which 
LDW has been used for [32].

With the findings above, we assumed that the new 
indications we predicted for LDW can be validated with 
the indications of its component compounds. Figure 
2 shows a compound-disease association network 
constructed with the associations between diseases and 
compounds we have predicted, where the 59 diseases that 
LDW has been predicted to be used for were linked to 
the eight individual compounds based on PINA. Among 
the 104 compound-disease associations shown in Figure 
2, 21 of them have been reported in CTD. For example, 

Figure 2: The LDW associated compound-disease network. Node: green circles, diseases for which LDW was known to be 
used for (Number=14); blue circles, diseases reported in Li et al that LDW can be used for (Number=7); grey circles, diseases reported 
in literature that LDW can be used for (Number=12); white circles, diseases predicted to be treated with LDW (Number=26); purple 
hexagons, compounds. Line: solid lines, known associations between compounds and diseases; dotted lines, predicted associations between 
compounds and diseases.
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Quercetin could inhibit the growth of MCF-7 breast cancer 
cell line and promoted apoptosis by reducing G0/G1 phase 
arrest [33, 34]. Besides, it was widely accepted that the 
compound could be used to treat a certain disease if it 
targeted the disease related genes. With the known target 
and disease genes information, we also found there are 
another 27 predicted compound-disease associations which 
can be validated by sharing same genes. For instance, 
dopamine D2 receptor (DRD2) played an essential role 
in dopamine signaling which was strongly implicated 
in the etiology of schizophrenia (SZ) [35], and was also 
one of the targets of Dopamine. By targeting the gene 
DRD2, Dopamine may be used for schizophrenia. As a 
result, 48 compound-disease associations can be validated 
by difference evidence while the rest associations need 
further experimental validation.

By considering the indications (59 diseases) we 
predicted for LDW, we further investigated whether LDW 
has been reported to be effective for some of these diseases 
in literature by expert knowledge. As a result, 14 of them 
have been known to be associated with LDW as shown 
in Supplementary Table 3. For example, it was found that 
LDW could significantly inhibit the breast cancer tumor 
growth and progression, and promoted the recovery of 
breast ducts in mice [36, 37]. Likewise, LDW decoction 
could exert therapeutic effects on liver cancer in mice 
by affecting tumor cell cycle and down-regulate serum 
VEGF level [38]. Moreover, it was well accepted that 
LDW could counteract the adverse effect of steroid and 
immunosuppressive agents, significantly improving the 
therapeutic effectiveness in the treatment of Systemic Lupus 
Erythematosus (SLE) [39]. Besides, many other predicted 
diseases, i.e. diabetes mellitus, hypertension and so on [40–
43], were also known to be associated with LDW.

Previously, Li et al predicted new indications for 
LDW based on drug targets and disease genes [17]. We 
further investigated how many of our predictions could 
be validated by those reported in their work, and the 
new indications found by both works for LDW would 
be more convincing. Consequently, 7 of our predictions 
were also reported by Li et al, including atherosclerosis, 
retinoblastoma, rheumatoid arthritis, esophageal 
neoplasms, uterine cervical neoplasms, familial combined 
hyperlipidemia and panic disorder. For example, it 
was found that LDW had already been reported for 
treating esophageal neoplasms [44]. In addition, studies 
have shown that LDW pills could effectively inhibit 
the expression of IL-beta, MMP-1 and MMP-3, thus 
protecting and repairing the articular cartilage which had 
significant therapeutic effects on Osteoarthritis [45].

Moreover, we also performed text mining by 
querying the PubMed database to see whether LDW have 
been reported effective for the rest of our predictions. As 
a result, except the diseases mentioned above, 12 diseases 
have been reported to be treated by LDW in literature as 
listed in Supplementary Table 3. For instance, it was found 

that LDW could simultaneously disturb the regulations of 
apoptosis and protein ubiquitination among biological 
processes, such as RPS6KA1, FHIT and AMFR, which 
may be the therapeutic targets of Alzheimer Disease [46, 
47]. Moreover, traditional Chinese doctors have already 
used LDW to treat asthma patients based on the cytokine 
gene expression perturbed by LDW [48].

Taken together, 33 out of 59 diseases we predicted to 
be treated by LDW have been validated in different ways, 
where the known indications with direct evidences tend to 
rank top. These results demonstrate that LDW can really work 
for those diseases. The detailed results with corresponding 
evidences were presented in Supplementary Table 3.

DISCUSSION

Repurposing old drugs has drawn increasing 
attention, since they could serve as the effective and cost-
saving strategies for drug discovery. In this study, we 
first introduce pathway profiles associated with diseases 
and affected by compounds. By integrating the pathway 
profiles with chemical structure as well as disease 
phenotype, we present PINA to predict new indications of 
compounds. Benchmark results on FDA approved drugs 
have demonstrated the predictive power of PINA. We 
further extended PINA to predict the potential indications 
of traditional Chinese medicine with LDW as a case 
study. The new indications we predicted for LDW have 
been validated with expert knowledge and evidences from 
literature.

We also noticed that improvement of our PINA 
approach is possible when predicting novel indications 
of TCMs. For example, a TCM formula is typically 
composed of multiple herbs or hundreds of chemical 
compounds. Here, the indications of a TCM formula were 
predicted with a Bayesian model, where the compound 
components were regarded to be independent with each 
other. Although the synergistic effects among compounds 
cannot be explicitly described in the Bayesian model, 
the good performance on LDW shows the effectiveness 
of the model. In the future, more efficient models should 
be developed to take into account the synergistic effects 
among compounds. Another concern is that many 
compound components of TCMs are not known while it is 
expensive and time-consuming to determine all bioactive 
compounds of TCMs, a comprehensive knowledgebase 
about compound components of TCMs is highly 
demanded.

MATERIALS AND METHODS

Data sources

The FDA approved human drugs used in our study 
were retrieved from the DrugBank database (Version 4.3) 
[49], of which we only focused on the 932 compounds 
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that had target information according to the DrugBank 
and STITCH databases (Version 4) [50] which provides 
a confidence score for each interaction. Here, a score of 
700 was used as threshold to choose the high-confidence 
interactions [51]. Specifically, the interactions marked 
with prediction or text mining were removed to make 
sure high-quality interactions used in this paper. The 
LDW was composed of Rehmannia glutinosa Libosch., 
Cornus officinalis Sieb. et Zucc., Paeonia suffruticosa 
Andr., Dioscorea opposita Thunb., Poria cocos (Schw.) 
Wolf and Alisma orientalis (Sam.) Juzep. In our work, 
the chemical constituents of LDW were mainly obtained 
from the TCM Database@Taiwan [52] by searching the 
herb names. Meanwhile, the other constituents were also 
collected manually from published articles by text mining. 
Then we transformed all constituents into mol2 format 
with ChemDraw software (http://www.cambridgesoft.
com/software/ChemDraw/), and the chemicals were 
then converted into the canonical SMILES format. We 
downloaded all known chemicals with each of them 
annotated with PubChem identity from STITCH database 
(version 4.0). By querying the known compounds with the 
chemical SMILES files, the chemical constituents of LDW 
can be identified. Here, we only picked up the chemicals 
that had target information according to DrugBank and 
STITCH databases. Consequently, 156 compounds of 
LDW (Supplementary Table 1) were finally collected.

The disease-gene associations were obtained 
from the Comparative Toxicogenomics Database 
(CTD) [21]. As a result, the associations between 4937 
diseases and 8536 genes were collected. We further 
collected compound-disease associations from the CTD 
database, and the 4774 associations with direct evidence 
(therapeutic/maker) between 928 compounds and 608 
diseases were used as the positive set while the other 
possible compound-disease associations were used as the 
negative set.

All predefined biological pathways used in this 
study were obtained from the Molecular Signatures 
Database (Version 5.0) [17], where the canonical pathways 
from the curated (c2) gene sets were adopted. The physical 
protein-protein interactions were obtained from HPRD 
[53], BioGRID [54], IntAct [55], MINT [56] and DIP [57] 
databases.

Predicting new indications of compounds with a 
network pharmacology approach

Predicting indications of compounds based on pathway 
profile

We assumed that the occurrence of a disease 
was due to the aberrant functions of certain pathways. 
Accordingly, to treat a disease, the drugs should affect 
the dysfunctional pathways that were associated with 
the disease. With this assumption, for each drug and its 
related disease, the pathways linking the pair of drug 

and disease were firstly identified. For this, the pathway 
profiles associated with a drug and a disease were 
respectively identified, where the drug related pathways 
were enriched by its target proteins while the disease 
associated pathways were enriched by its related genes 
[58]. Given a pair of pathways respectively associated 
with a drug and a disease, we only considered the 
pathways that met one of the following conditions: (1) 
the two pathways are the same one (common pathway); 
(2) the two pathways share at least one gene (cross-
talking pathways); (3) there are protein interactions 
between the two pathways (interacting pathways) (As 
shown in Supplementary Figure 1). To avoid possible 
false positives, the cross-talking or interacting pathways 
were required to have correlated activities based on the 
gene expression data obtained from 36 normal tissues 
[59]. Here, the pathway activity in a tissue was defined 
as the average expression value of all genes within the 
pathway and only the pathway pairs with a significant 
correlation coefficient (p-value <0.01) in 36 tissues were 
kept for further analysis.

Here, the pathway profile method named PIPP 
(predicting indications based on pathways profile) were 
proposed. Given one disease and related drugs as well as 
the pathways associated with any pair of drug and disease 
as defined above, the score of a pathway pair associating 
a drug with the disease it could be used for was defined 
as follows:

 P p D
N C p

N C D
( _ )

( | )

( | )i
i

'
=  (1)

where N(C | pi) is the number of compounds treating 
disease D and the pathway pair pi is the one that occurs 
commonly between compound set C and the disease D, 
and N(C′ | D) is the number of all compounds used for 
disease D. If P(pi_D) is above a certain threshold, the 
pathway pair piwill be regarded as the pathway profiles for 
associating a disease with the drugs treating the disease.

Given a new drug, the score of the drug used for 
treating the disease D can be defined as below:

∏∑α= − −
=

P C D P p D( _ ) 1 (1 ( _ )) (2)i m m
m 1

3

where m represents one of the three types of 
pathway profiles, i.e. common, cross-talking and 
interacting pathway(s), P(pm_D) is the score of the mth 
type of pathway profiles associated with disease D, and 
αm is the weight for the mth type of pathway profiles. 
To determine the weights for the three types of pathway 
profiles, the 5-fold cross validation was employed and 
the AUC was used to choose the proper values. As a 
result, the weights in Equation (2) were determined as: 
α1 = 0.5, α2 = 0.3, α3 = 0.2, where the best results were 
obtained.
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Predicting new indications of compounds based on the 
nearest neighbor profile

It has been found that similar drugs tend to have 
similar mechanism and can be used to treat similar 
diseases, and vice versa [24]. Therefore, given a new drug, 
the new indications of the drug can be predicted based on 
its similarity with other drugs. Here, the nearest neighbor 
profile approach proposed by Yamanishi et al [26], i.e. 
nearest profile based on chemical similarity and nearest 
profile based on disease similarity we named as NP_C and 
NP_D, was adopted to predict whether a new drug could be 
used for a certain disease. The chemical similarity between 
compounds is calculated based on their fingerprints by 
using the Single Linkage algorithm [31]. The disease 
similarities are defined in [23], where the similarity was 
calculated based on disease descriptions from the OMIM 
database [60].
Predicting new indications of compounds based on an 
ensemble method

The three independent methods mentioned above, 
i.e. PIPP, NP_C and NP_D, showed different performance on 
different datasets. Here, we further proposed an ensemble 
approach named PINA to predict the compound-disease 
associations by integrating the pathway profile, chemical 
similarity and disease similarity. In particular, a weight 
was set for each method based on its performance on 
a benchmark dataset, and the ensemble learner was 
constructed as follows:

 P C D W M( _ ) i i
i

n

1
∑= ⋅

=
 (3)

where wi is the weight for each method, and Mi is 
the output of the ith method. Here, the weight for each 
method is set to the AUC (area under the curve) score of a 
receiver operating characteristic (ROC) curve. For a given 
compound, we can use the ensemble approach to predict 
whether the drug can be used for the disease.

Predicting new indications of LDW

To evaluate the performance of our proposed approach, 
the PINA method was applied to infer the therapeutic 
indications of TCM and investigate the curative effect 
between TCM and its individual components. To this end, we 
chose the LDW as a case study since its chemical constituents 
and indications were well known. Subsequently, we proposed 
PINA to the 156 chemical constituents to predict compound-
disease associations, where a score was calculated based on 
Equation (3) as the confidence score of the prediction. To 
determine the threshold above which a prediction is regarded 
as positive, the 5-fold cross-validation was employed on the 
known drug-disease associations, i.e. training set. Especially, 
the threshold that can lead to the highest F1 score was chosen, 
where the F1 score can evaluate the overall performance of 
the learner and is a tradeoff between Precision and Recall. 

Here, the threshold of 0.6 that can lead to the highest F1 
score in the cross-validation was chosen. Then we defined an 
efficacy score for LDW to a certain disease by considering 
the synergistic effect of all compounds based on Bayesian 
models. The efficacy score could be described as follows:

 
∏= − −

∈

P LWDH D P C D( _ ) 1 (1 ( _ ))i
C LWDHWi

 (4)

where Ci is the component of LDW. P(Ci_D) is the 
association score between compound Ci and disease D 
calculated with Equation (3).
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