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ABSTRACT

Clinical and pathological indicators are inadequate for prognosis of stage II and III 
colorectal carcinoma (CRC). In this study, we utilized the activity of regulatory factors, 
univariate Cox regression and random forest for variable selection and developed 
a multivariate Cox model to predict the overall survival of Stage II/III colorectal 
carcinoma in GSE39582 datasets (469 samples). Patients in low-risk group showed 
a significant longer overall survival and recurrence-free survival time than those in 
high-risk group. This finding was further validated in five other independent datasets 
(GSE14333, GSE17536, GSE17537, GSE33113, and GSE37892). Besides, associations 
between clinicopathological information and risk score were analyzed. A nomogram 
including risk score was plotted to facilitate the utilization of risk score. The risk score 
model is also demonstrated to be effective on predicting both overall and recurrence-
free survival of chemotherapy received patients. After performing Gene Set Enrichment 
Analysis (GSEA) between high and low risk groups, we found that several cell-cell 
interaction KEGG pathways were identified. Funnel plot results showed that there was 
no publication bias in these datasets. In summary, by utilizing the regulatory activity in 
stage II and III colorectal carcinoma, the risk score successfully predicts the survival 
of 1021 stage II/III CRC patients in six independent datasets.

INTRODUCTION

Colorectal carcinoma (CRC) is one of the most 
important causes of death worldwide [1]. According to 
recent reports, 376,300 new cases and 191,000 deaths 
occurred due to CRC, in China, 2015 [2]. Currently, the 
prognosis of colorectal cancer is controversial in stage 
II and III colorectal carcinoma [3]. Although the staging 
system is mature, some stage II colorectal adenocarcinoma 
patients have relatively poorer prognosis than stage III 
CRC patients. This indicates that clinical observations, 

including stage, could not distinguish the good or poor 
prognosis of colorectal carcinoma well in stage II/III CRC.

During the past years, numerous molecular 
biomarkers have been reported to be able to predict the 
survival of stage II and III colorectal carcinoma patients 
[4–8]. However, the single biomarker’s prognostic value 
is usually unfavorable across datasets. In order to elevate 
the performance on prognosis, multiple gene models for 
predicting survival of carcinomas have been developed 
[9–12]. The expression of genes, especially cancer-related 
genes, are regulated by critical signaling pathways and 
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transcription factors [13–15], The transcription factor 
activity of core signaling pathways reflects the cell status 
and cancer heterogeneity.

In this article, we evaluated the activities of 
regulatory factors, and then developed a Cox multivariate 
model to predict the survival of stage II and III colorectal 
carcinoma patients from GSE39582 dataset. The 
risk score is significantly associated with overall and 
recurrence-free survival. The performance of risk score 
model in predicting survival of stage II and III colorectal 
adenocarcinoma was further validated in five independent 
datasets. Association analysis showed that the risk score 
was independent from clinical information including age, 
stage and gender. A nomogram was plotted to facilitate 
the utilization of risk score. In conclusion, transcription 
regulation activity based risk score successfully predict the 
survival of stage II and III colorectal carcinoma.

RESULTS

Candidate gene selection and model development

Detailed information of datasets used in this study 
were listed in Table 1. Regulators including transcription 
factors and core pathway genes were important for cancer 
development. However, the activity of these regulators 
could not be assessed by the mRNA level because some 
regulators took effect by protein modifications, thus, the 
regulatory activity of regulators was calculated based 
on the expression levels of target genes downstream. 
The survival significance of candidate regulators (based 
on their regulatory activity) was evaluated using cox 
univariate regression (p<0.05). Forty-four regulator 
activities were detected to be correlated with survival, 
then random forest was implemented for variable hunting. 
Totally, ten regulators’ activities (EPAS1, TP73, TEAD1, 
DBP, NME2, GFI1, NR5A1, ELK1, NANOG and ETS2) 
were selected as candidate features (regulators). Cox 
multivariate analysis was performed with above candidate 
regulators, and the coefficients of each regulator were 
assigned as its weighting, respectively (Table 2). The 
hazard ratios <1 suggested that their corresponding 

regulators were tumor suppressor genes, while genes with 
hazard ratios >1 were cancerous genes.

Risk score predicts survival in the training 
dataset

After developing risk score staging model in the 
training dataset, the survival-predicting value of risk score 
was evaluated. The patients were subtyped into high risk (n 
= 235) and low risk (n = 234) group by using the median 
risk score value as cutoff. The overall survival (OS) of high-
risk group was significantly shorter than the low-risk group 
(Figure 1A, p=0.00059). In addition, the recurrence-free 
survival (RFS) profile of high-risk group resembled that of 
its overall survival (Figure 1B, p<0.05). Detailed survival 
information and risk scores were shown in Figure 1C. 
The regulatory activity pattern of the candidate genes was 
consistent with their coefficients. The risk score performs 
better in predicting the three-year survival of stage II and III 
CRC patients compared with clinicopathological indicators 
(Figure 2D). Area under receiving operating characteristic 
curve (AUROC) for three-year survival was plotted, 
showing a result of 0.66 for risk score and 0.66, 0.53, 0.53 
for age, gender, chemotherapy, respectively. This indicated 
that the risk score was an important survival indicator for 
stage II and III colorectal carcinoma.

Risk score model is robust across the test 
datasets

The high performance of risk score model in the 
training dataset may result from over-fitting. To assess 
its robustness, we carried out risk score performance 
evaluation on five independent public CRC cohorts, after 
locking the coefficients of the model. It was shown that 
the survival time of patients in the high-risk group was 
significantly shorter than in that the low-risk group, which 
was in consistent with the survival profile of training 
datasets (Figure 2A-E). In addition, the regulatory activity 
of candidate genes in the test datasets also resembled that 
in training datasets (Supplementary Figure 1A-E). These 
results above indicate that our risk score model was robust 
across datasets.

Risk score and clinical/pathological indicators

The relationship between the risk score we 
developed and clinical/pathological information was 
measured as well (Figure 3A). It was found to be 
independent from gender, age and stage (p>0.05). Multiple 
cox hazard ratio analysis results showed that risk score 
was an important indicator for predicting survival (Figure 
3B). In order to facilitate the utilization of risk score 
model, a nomogram including gender, age, stage, risk 
score and chemotherapy was plotted (Figure 3C). The 
Cox univariate and multivariate regression of risk score 

Table 1: Sample size and survival information of 
datasets used in this article

Datasets Sampls Survival info provided

GSE143 162 Disease-free survival

GSE176 115 Overall survival

GSE177 55 Overall survival

GSE333 90 Progression-free survival

GSE272 130 Metastasis-fee survival

GSE396 469 Overall survival
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Table 2: Basic parameters of regulatory factors used for risk score 

TFs Genes downstream Coefficiens Frequeny Hzazad 
ratio

CI 95% p Value

DBP 1 1.4199301 25 1.39 1.04-1.85 0.026
ELK1 3 0.1978697 28 1.77 1.21-2.59 0.0036
EPAS1 3 0.219671 24 1.59 1.09-2.31 0.015
ETS2 2 0.3803902 34 1.93 1.16-3.22 0.011
GFI1 5 -0.237219 26 0.523 0.331-0.829 0.0057
NANOG 2 -3.168149 33 0.642 0.415-0.993 0.046
NME2 5 -0.130288 26 0.736 0.607-0.893 0.0018
NR5A1 2 0.0413388 28 3.83 1.09-13.5 0.037
TEAD1 1 0.5805332 25 1.22 1.1-1.35 0.000091
TP73 383 -0.166284 25 34.9 1.33-920 0.032
The columns are number of genes used for regulatory factor evaluation, Cox univariate regression p value, Cox multivariate 
regression beta values, and frequencies of regulatory factors of random forest variable hunting.

Figure 1: Performance of regulatory factor activity based risk score. The high-risk group has a significant longer overall 
survival (A) and recurrence-free survival (B) time than low-risk group. The detailed survival information and regulatory factor activity (C) 
and three-year survival ROC (D) was shown.
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Figure 2: Validation of survival-predicting performance of risk score. The performance of risk score was further validated in 
five independent datasets (A: GSE14333, B: GSE17536, C: GSE17537, D: GSE33113, E: GSE37892).
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and more detailed information indicated that risk score 
was the most important indicator for prognosis, as shown 
in Table 3. These results indicated that risk score was an 
independent and critical indicator for prognosis.

Risk score and chemotherapy

Chemotherapy is the one of most important 
adjuvant treatment strategies following surgery. Thus, 
the correlation between risk score and chemotherapy was 
evaluated. We used overall survival and recurrence-free 
survival information to estimate the availability of our risk 
score model for predicting the survival of patients with 
chemotherapy. As expected, the chemotherapy received 

patients with high risk score had a worse prognosis both on 
overall survival (Figure 4A) and recurrence-free survival 
(Figure 4B), compared to the low risk group. The prognostic 
value of risk score was also evaluated in patients without 
chemotherapy, and it was similar with chemotherapy-
receiving group (Not shown). These results indicated that 
the regulatory activity based risk score was also available 
for the prognosis of CRC patients with chemotherapy.

Identification of biological pathways associated 
with risk score

In order to investigate why the risk score can predict 
the survival of colorectal carcinoma, the comparison of 

Figure 3: Risk score and another clinical indicator. The risk score is independent from age, gender, and stage (A), and is an 
important clinical indicator for survival according to multivariate hazard analysis (B) and nomogram (C).
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gene expression profile between high-risk and low-risk 
group was performed, according to the median value 
of risk score in the largest cohort, GSE39582. The 
altered KEGG pathways was evaluated using Gene Set 
Enrichment Analysis (Figure 5A). The results showed 
that the most altered and enriched KEGG pathways were 
“complements and coagulation cascades” (Figure 5B), 
“ECM receptor interaction” (Figure 5C), “cell adhesion 
molecular” (Figure 5D), and “Cytokine-cytokine receptor 
interaction” (Figure 5E). These results indicated a possible 
molecular mechanism of the clinical outcome in stage II 
and III colorectal adenocarcinoma reflected by risk model.

Publication bias evaluation

Publication bias inspection regarding basic clinical 
information, including age, gender, and events (relapse, 

metastasis, death) was performed. Funnel plots indicated 
that no publication bias for gender, age, or events was 
detected (Figure 6A, p>0.05). The forest plot showed that 
no data heterogeneity exists (Figure 6B). Publication bias 
was not investigated when the number of studies was less 
than 10 because of the low sensitivity of the qualitative 
and quantitative tests [16].

DISCUSSION

Prognosis of stage II and III colorectal carcinoma still 
remains a problem. Although single biomarker has been 
reported for survival prediction [8, 17, 18], the robustness 
of these biomarkers still remains a huge concern. One of 
the reasons may be that single biomarker fails to reflect the 
genomic heterogeneity of tumors. Regulatory factors control 
the expression of genes downstream, and further determine 

Table 3: Cox univariate and multivariate regression of clinical indicators in GSE39582

Gene Univariate regression Multivariate regression

HR 95%CI p Value HR 95%CI p Value

Riskscore 1.2 1.1-1.3 0 1.15 1.04-1.27 0.00692

SexM 1.3 0.91-1.8 0.16885 1.35 0.91-2 0.13668

Stage 1.2 0.89-1.7 0.20707 1.17 0.79-1.73 0.44657

Location 1.1 0.81-1.6 0.472 1.04 0.67-1.6 0.86886

CIMP 0.93 0.57-1.5 0.76494 0.73 0.34-1.55 0.41108

CIN 0.99 0.62-1.6 0.9745 0.93 0.54-1.58 0.78014

KRASmut 1.4 1-2 0.03751 1.47 0.97-2.24 0.07001

BRAFmut 0.89 0.46-1.7 0.71906 1.35 0.52-3.5 0.53881

CDX2 0.83 0.7-0.98 0.02838 0.92 0.7-1.19 0.50933

Figure 4: Risk score and chemotherapy. Overall survival (A) and recurrence-free survival of patients underwent chemotherapy in 
high risk group is longer than in low risk group.
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the status of crucial pathways. Activity of multiple core 
regulatory and transcription factors may reflect the genomic 
status of cancer cells. In this vein, we evaluated the activities 
of transcription and regulatory factors by considering the 
expression of target genes downstream of stage II and III 
colorectal carcinoma. Using cox univariate regression and 
random forest variable hunting, activities of ten regulatory 
factors were identified to develop a risk score model for 
prognosis. The model successfully predicted survival of 
1021 stage II and III colorectal carcinoma patients in six 
independent datasets. It is also independent from other 
clinical indicators and performs exceedingly in survival-
predicting.

We noticed that the most of the 42 regulators are 
important for prognosis, the combination of the ten 
regulators effectively reduced the panel and retained the 
useful information. Among the ten transcription regulators, 
we noted that the overexpression of EPAS1 was associated 
with poor prognosis in colorectal carcinoma, according to 
previous reports [19–21]. Polymorphism and expression of 
TP73 were associated with carcinogenesis and colorectal 
carcinoma development [22, 23]. TEAD1 was reported 
to enhance the proliferation in colorectal carcinoma [24]. 
DBP and NME2 were associated with carcinogenesis 

and development of cancer types, including colorectal 
carcinoma [25–28]. It was similar for GFI1 [29–31], 
NR5A1 [32], and ELK1 [33–35]. NANOG was related 
to multiple colorectal tumor development functions, 
including liver metastasis [36], stemness maintaining [37] 
and prognosis [38]. ETS2 was shown to be associated with 
metastasis of colorectal carcinoma [39, 40]. These reports 
indicated that the regulatory factors included in the risk 
score model were essential prognostic genes, implying the 
reliability of this model.

The metastasis of CRC is among the most serious 
events during colorectal carcinoma development 
[41]. Among pathways and genes involved in CRC 
metastasis, cell-cell focal adhesion plays important 
roles [42, 43]. According to GSEA analysis, the most 
pathways involved in cell-cell interaction and focal 
adhesion were significantly enriched, which may 
explain why risk score is associated with stage II/III 
CRC prognosis.

In conclusion, our transcription activity based risk 
score model successfully predicts the survival of stage 
II and III colorectal carcinoma. To our knowledge, this 
is the first model using activities regulatory factors to 
predict survival of stage II/III colorectal carcinoma.

Figure 5: KEGG pathways associated with risk score. Of the KEGG pathways significantly associated with risks score (A), 
complements and coagulation cascades (B), ECM receptor interaction (C), cell adhesion molecular cams (D), and “cytokine-cytokine 
receptor interaction” were noted.
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Figure 6: Publication bias of risk score and clinical indicator. Funnel plot of age (A, left), gender (A, middle), and events (A, 
right) has no bias. Forest plot suggests the similar results (B, top-down, age, gender, events).
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MATERIALS AND METHODS

Data preprocessing

The raw data of six datasets (GSE39582, GSE14333, 
GSE17536, GSE17537, GSE33113 and GSE37892) was 
downloaded in. CEL format. After background correction 
and normalization, the fold change between expression value 
of each sample and median expression value for each gene 
was calculated. Probes were matched to the gene names, 
and genes matching more than one probe were merged 
and average values were calculated as the expression of 
the corresponding genes. Duplicated values were excluded. 
The regulatory factor-downstream pairs were constructed 
according to the regulatory data provided by HTRI database 
[44]. Suppose the downstream genes of regulator k (Rk) are 
Gene1,2,3…j, and the dataset consist of samples 1,2,3…i.

Sample 1 sample 2 sample 3 … sample i
Gene 1 … … … … …    …
Gene 2 … … … … …     …
Gene 3 … … … … …     …
…         … … … … …     …
 Gene  j   … … … … …        …

The regulator factor activity (RFA) of regulator k is 
calculated as the following,

∑= −RFA Gene median Gene[ ( )]k i
i

n

j i j, ,

Where Genej,i indicates the gene expression value 
of Genej in sample i, and median (Genej) refers to the 
median expression values of Genej, refers to the regulatory 
factor activity of regulator k in sample i. Construct a new 
matrix containing activity of regulators, in which the 
rows represent the regulators and the columns indicate 
the samples. All datasets included in this article was 
transformed using the same method.

Gene selection and model construction

Cox univariate regression was performed on 
GSE39582 dataset. Transcription factors that significantly 
associated with overall survival in this dataset were 
retained. Random forest variable hunting was performed 
with 100 replications and 100 steps. Multivariate Cox 
regression was implemented to construct the risk score 
model with the candidate genes, and coefficients were 
locked in the five test datasets. The risk scores (RS) of 
each sample were calculated as the following,

∑ β=RS RFA *i
k

n

k i k,

Where indicates the regulatory factor activity of 
regulator k in sample i, and βi refers to the coefficients 

for candidate regulators. Coefficients was evaluated 
using the training dataset, GSE39582, and locked 
to calculate the risk score in the other five datasets 
(GSE14333, GSE17536, GSE17537, GSE33113 and 
GSE37892). The median risk score values in each 
dataset were used as cutoff to identify the high-risk and 
low-risk group.

Statistical analyses

All statistical analysis was performed on R language and 
R packages. Microarray data pre-process was performed with 
R package “affy”. Survival analysis, Cox univariate regression 
and Cox multivariate regression were carried out with R 
package “survival”[45], and random forest variable hunting 
was implemented with R package “randomForestSRC”[46]. 
Survival ROC curve was plotted with R package “pROC”[47], 
and nomogram was drawn with R package “rms”[48]. 
Publication bias analysis was performed on R package 
“meta”. Gene Set Enrichment Analysis was carried out on java 
software “GSEA”[49].
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