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ABSTRACT

Radiation therapy induces DNA damage and inflammation leading to fibrosis. 
Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens 
with time and years. Radiation-induced fibrosis is characterized by fibroblasts 
proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans 
and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and 
relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. 
In this review, we discussed the interplays between transforming growth factor-β1 
(TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated 
receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the 
radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression 
of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation 
and myofibroblast differentiation whereas PPAR γ expression decreases due to the 
opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical 
WNT/β-catenin pathway stimulate each other through the Smad pathway and non-
Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase 
(PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite 
manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors 
of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and 
dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and 
tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt 
pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then 
TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical 
WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists 
can prevent radiation-induced fibrosis.

INTRODUCTION

Patients suffering of cancer often receive an external 
ionizing radiation therapy in association with surgery/

chemotherapy or alone. This ionizing radiation can 
involve damages in tumor cells but also in healthy tissue 
in the radiation field. Radiation therapy induces several 
skin changes such as inflammation, edema, dermatitis, 
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ulceration, late radiation-induced fibrosis (RIF), and 
necrosis [1, 2]. Radiation dose, fraction size and volume 
treated will vary the late side effects of radiation.

Radiation-induced fibrosis is marked by fibroblasts 
proliferation, myofibroblast differentiation, and synthesis 
of collagen, proteoglycans and extracellular matrix. [3, 
4]. RIF can occur 4 to 12 months after radiation therapy, 
and this process is worsening with time and years. Every 
radiation-exposed part of the body can be affects by RIF, 
and the type of tissue exposed will influence the clinical 
presentation. RIF manifestations are multiple, such as skin 
induration and thickening, muscle shortening and atrophy, 
limited joint mobility, lymphedema, mucosal fibrosis, 
ulceration, fistula, hollow organ stenosis, and pain [5] 
and generally impact the quality of life [6, 7]. Fibrosis 
present an active retraction of the granulation tissue 
which is induced by contractile non-muscle cells, named 
myofibroblasts [8–10]. Fibroblasts and myofibroblasts 
are key effectors involved in the development of fibrosis 
due to excessive deposition of collagen and inappropriate 
extracellular matrix (ECM).

RIF is characterized by a DNA damage [11–14] 
and an inflammation [15–18]. Prolonged alteration of 
nuclear factor kappa B (NF-κB) pathway, a major effector 
of inflammation, leads to increase pro-fibrotic and pro-
inflammatory cytokines which participate to the onset and 
the progression of RIF [6, 19, 20].

DNA damage and inflammation stimulate 
transforming growth factor β1 (TGF-β1) activity, which 
induces fibrosis mechanism [21, 22]. Furthermore, 
progression of radiation doses increases levels of TGF-β 
[14, 23].

TGF-β1 interacts with the canonical WNT/β-
catenin pathway and peroxisome proliferator activated 
receptor γ (PPAR γ) which act in an opposite manner in 
several pathologies [24]. TGF-β1 stimulates myofibroblast 
differentiation by the activation of canonical WNT 
pathway and the downregulation of PPAR γ expression 
[25]. In response to TGF-β1, resident fibroblasts 
transdifferentiate into contractile myofibroblasts which 
express α -smooth muscle actin (α -SMA) and synthesize 
extracellular matrix proteins, particularly collagen.

We focus this review on the positive link between 
TGF-β1 and canonical WNT/β-catenin pathway and the 
opposite role of PPAR γ.

Radiation-induced fibrosis (RIF)

Radiation-induced fibrosis (RIF) is a major late 
effect which contributes to patient morbidity and occur in 
the skin, and subcutaneous tissue, lungs, gastrointestinal 
as well as any other organs in the treatment field. The 
mechanisms linking radiation to tissue sclerosis, fibrosis 
and atrophy are complex. In both tumors and normal 
tissues, radiation causes the induction of apoptosis or 
clonogenic cell death through free radical-mediated 

DNA damage [26]. In normal tissues, radiation toxicity 
induces changes in cell functions and causes activation of 
coagulation system, inflammation, epithelial regeneration, 
and tissue remodeling, which are precipitated by several 
signaling such as cytokines, chemokines and growth 
factors [27].
Etiology of RIF

Several factors can increase the risk of RIF. Total 
dose of radiotherapy and dose per fraction, volume 
of tissue treated, and time of treatment delivery are 
considered as primary factors. Increased levels of radiation 
dose, hypofractionation and increased field size are 
directly correlated with degree of RIF [28–32]. Patients 
with certain diseases are more susceptible to develop 
severe RIF, such as systemic scleroderma, systemic lupus 
erythematosus (SLE), or Marfan syndrome [33, 34]. 
Genetics factors have also a role in the predisposition 
to RIF [35, 36]. Single-nucleotide polymorphisms 
have been observed in genes encoding proteins such as 
TGF-β1, and superoxide dismutase 2 (SOD2) [37, 38]. 
Additional genes like IL18 (interleukin 18), MMP12 
(matrix metalloproteinase 12), PER3 (period circadian 
protein homolog 3 protein), LTF (lactoferrin) stimulate 
the degradation of post-radiation ECM [39]. Several 
DNA modifications have been associated with RIF, like 
epigenetic modifications to DNA and histones [40]. 
Mitochondrial DNA damage enhance the removal of 
reactive oxygen species (ROS) [41].
Clinical presentation of RIF

RIF usually occurs 4 to12 months after radiation 
therapy and can progress over many years. The type 
of tissue exposed to irradiation is responsible for the 
clinical presentation. In general, RIF can manifest as 
skin induration and thickening, muscle shortening and 
atrophy, limited joint mobility, lymphedema, mucosal 
fibrosis, ulceration, fistula, hollow organ stenosis, and 
pain [5]. Other manifestations more regionally and 
specific include trismus, xerostomia, decreased vocal 
quality, osteoradionecrosis, dysphagia, and aspiration 
in patients with head and neck malignancy [42–47]; 
cervical plexopathy, brachial plexopathy, interstitial 
fibrosis, dyspnea, and oxygen requirement in patients 
with breast or lung malignancy [48, 49]; and urinary 
urgency, increased urinary frequency, diarrhea, loss of 
reproductive function, and dyspareunia in patients with 
abdominopelvic malignancy [50–52]. Currently, there is 
no uniform consensus to objectively quantify the degree 
of fibrosis in RIF [53].
Pathogenesis of RIF

Three histopathological phases of RIF are described. 
The prefibrotic phase shows chronic inflammation in 
which endothelial cells have a major role. The organized 
fibrosis phase contains a high density of myofibroblasts 
in an unorganized matrix adjacent to poorly cellularized 
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fibrotic areas of senescent fibrocytes in a dense sclerotic 
matrix. The third phase named late fibroatrophic phase 
shows retractile fibrosis and gradual loss of parenchymal 
cells [54].

RIF is initially characterized by an injury which 
incites an acute response leading to inflammation, 
followed by the accumulation of fibroblasts, differentiation 
into myofibroblasts, and activation of extracellular matrix 
proteins like collagen [22]. Radiation induces direct 
DNA damages and the apparition of reactive oxygen 
species (ROS) [55] resulting in oxidative stress [56]. ROS 
involves interactions of ionizing radiation with water 
molecules and then the formation of free radicals such 
as superoxide, hydrogen peroxide and hydroxyl radical 
[57]. Hydroxyl radical production is responsible for the 
major part of damages [58, 59]. ROS generation and free 
radicals lead to a deterioration of cellular compounds 
such as DNA, RNA, proteins, lipids and membranes [58–
60]. Superoxide dismutase, glutathione peroxidase and 
catalase control free radical damages [61]. Several studies 
have shown that a depletion of these enzymes stimulate 
oxidative stress [62–64]. During RT, injured cells lead 
to the release of chemoattractant molecules which can 
stimulate inflammation [55, 65, 66]. Furthermore, release 
of inflammatory cytokines and chemokines is exacerbated 
by thrombosis and ischemia [67, 68].

The first inflammatory cells which arrived at 
injured sites are neutrophils [69]. Neutrophils encounter 
fibronectin and collagen fragments and then lead to the 
release of inflammatory cytokines such as tumor necrosis 
factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 
6 (IL-6) for the initiation of ROS and local inflammation 
[3, 70–74]. Theses inflammatory cytokines are correlated 
with high collagen deposition and with the onset of RIF 
[19, 75–78]. Monocytes and lymphocytes then interact 
with injured cells and stimulate the differentiation 
of monocytes into two subset of macrophages (M1 
and M2) [79–81]. Subset M2 of macrophages secrete 
platelet-derived growth factor (PDGF) which stimulate 
the migration of fibroblast into injured tissue and the 
promotion of neo-angiogenesis [82]. Subset M2 of 
macrophages also secrete TGF-β, which is the main 
effector of Rif [83]. PDGF and TGF-β cascades are 
increased in lung tissues after RT [84–87].

TGF-β is responsible for the production of 
fibroblasts from bone marrow progenitors [88, 89] and 
for the differentiation of fibroblast into myofibroblasts 
[14]. The differentiation of fibroblasts results in 
activation of the expression of α-smooth muscle actin 
(α-SMA) which is responsible for the transformation of 
proto-myofibroblasts into matured myofibroblasts [90]. 
Fibrocytes (bone marrow-derived progenitor cells) and 
epithelial cells during epithelial-mesenchymal transition 
(EMT) can also be at the origin of myofibroblasts [91]. 
Activated myofibroblasts, by overexpression of TGF-β, 
secrete too much collagen, fibronectin and proteoglycans 

[92]. This phenomenon is responsible for stiffness and 
thickening of tissues under RT [68, 93]. In addition, 
TGF-β stimulates inhibitors of matrix metalloproteinases 
(MMP) and then decreases the activity of MMP-2 and 
MMP-9, which participates to the aggravation of excessive 
ECM deposition [94]. TGF-β stimulates ECM production 
and collagen architecture alterations [95, 96]. Excessive 
accumulation of collagen reduces the vascularization 
with time [68], although basic fibroblast growth factor 
(bFGF) is activated by myofibroblasts and participates for 
endothelial cell proliferation and neoangiogenesis [97]. 
Loss of cell functions, tissue atrophy, and then necrosis 
are induced by damages and gradual ischemia suffered 
by radiation-induced fibrosis [49, 65, 98–100]. However, 
the apparition of early fibrosis is not correlated with the 
development of lasted effects of RIF [101–103].

TGF-β and radiation therapy (cf. Figure 1)

Transforming growth factor β (TGF-β) is 
made of three similar proteins: TGF-β1, TGF-β2 and 
TGF-β3. TGF-β receptor 1 and TGF-β receptor 2 are 
transmembrane proteins. TGF-β1 binds TGF-βR2 
which recruits TGF-βR1. TGF-β1 is secreted and then 
deposited into ECM and considered as a large latent 
complex. ECM is a main reservoir of cytokines [104]. 
TGF-β1 stimulates the Smad pathway and non-Smad 
pathways such as phosphatidylinositol 3-kinase/serine/
threonine kinase (protein kinase B) (PI3K/Akt), Rho, and 
MAPK. Radiation-induced fibrosis is characterized by an 
upregulation of TGF-β1 [21, 23, 84, 105, 106].

TGF-β is responsible for the control of many 
functions, like breakdown of connective tissue, inhibition 
of epithelial cell proliferation and synthesis of extracellular 
matrix proteins (collagen and MMPs) [106].

Several studies have shown a weakly activation of 
TGF-β1 on day 1 after irradiation whereas its activation 
is strongly on day 14 after irradiation [106]. Thus, the 
irradiation-induced activation of TGF-β1 is rapid [107–
110]. EMT is initiated by a prolonged irradiation exposure 
to TGF-β1 and this activates several transcriptional 
signaling pathways [111–113]. Radiation increases 
fibroblast differentiation-induced alpha-smooth muscle 
actin (α-SMA) activation [114]. Myofibroblast activation 
releases α-SMA or myofibroblasts activate the release 
α-SMA and α-SMA confers to myofibroblasts a strong 
contractile property [115, 116]. The interplay between 
TGF-β and several molecules, like extracellular signal-
related kinase (EK), mitogen-activated protein kinase 
(MAPK), WNT, and PI3K, can explain the extent and the 
reversibility of EMT) [113].

A close relationship is observed between irradiation 
dose and liver cell viability [117]. Indeed, ionizing 
irradiation induces a progressive change in mRNA 
levels which gradually increase with time [118, 119]. 
Evolution of α-SMA in liver fibrosis induction suggests 
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a time-dependent effect of irradiation [120, 121]. TGF-β1 
expression gradually increases in a dose-dependent 
manner and peaking 4 weeks after irradiation [122].

The contractile non-muscle cells: myofibroblasts

Myofibroblasts contain actin filaments bundles with 
α-SMA. α-SMA represents peripheral focal adhesions and 
gap junctions for the connection between myofibroblats 
and granulation tissues [123]. Fibroblasts become 
protomyofibroblats after this interaction.

Protomyofibroblasts synthetize ECM, collagen, 
fibronectin which are essential for differentiation 
[124]. Then, protomyofibroblasts differentiate into 
myofibroblasts containing α-SMA. α-SMA is responsible 
for the retractile role of myofibroblasts [25]. Apoptosis is 
the final stage of myofibroblasts [125].

Mesenchymal stem cells (MSC) and fibroblasts 
are at the precursors of myofibroblasts, and these cells 
are found in normal tissues, like lung alveolar septa, 
uterine submucosa, lymph nodes, spleen, adrenal capsule, 
periodontal ligament, intestinal crypts and bone marrow 
stroma [115, 125].

Several diseases show myofibroblasts such as 
idiopathic pulmonary fibrosis and epithelial cancers [116]. 

In hypertrophic scar, myofibroblasts can persist after 
wound closure [126]. Precursors of myofibroblasts can 
be smooth muscle cells in coronary atheromatous plaque 
[127], perisinusoidal cells in liver [128], keratocytes in 
eyes [115], pericytes in kidneys [129], and bone marrow-
derived fibrocytes [130]. Myofibroblasts are also observed 
in several pathological tissues like cancers (mammary 
carcinoma, epithelial cells in cancerous mammary glands), 
and fibrotic lesions [131].

Moreover, non-fibroblastic cell lineages [132–134] 
can differentiate into myofibroblasts through EMT process 
[135]. Differentiation of fibroblasts into myofibroblasts 
needs the participation of physical and chemical factors 
with increased stiffness of tissues [90, 136] and association 
of TGF-β1 with extra domain A (EDA) fibronectin 
[124, 137]. α-SMA increases contractile property of 
myofibroblasts and is synthesized through TGF-β1 
activation [138]. The transmission of force generated by 
α-SMA and the molecular motor myosin are allowed by 
ECM through focal adhesions containing transmembrane 
integrins [139]. TGF-β1 is activated through an integrin-
dependent process in ECM [126].

Myofibroblasts are contractile non-muscle cells, 
characterized by the type IIA non-muscle myosin (NMIIA) 
[140]. NMII are responsible for cell polarity, cell migration 

Figure 1: Processes for the development and progression of radiation-induced fibrosis.
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and cell-cell adhesion. NMIIA are highly observed in 
myofibroblasts of human placental stem villi [141, 142]. 
NMIIA is characterized by three pairs of chains, two 
heavy chains of 230 kDa, two 20 kDa regulatory light 
chains (RLCs) which stimulate the NMII activity and two 
17 kDa essential light chains (ELCs) which stabilize the 
heavy chain structure. Calcium-calmodulin-myosin light 
chain kinase (MLCK) and Rho/ROCK/myosin light chain 
phosphatase increases NMII activity [90, 143, 144].

Myosin filaments link actin filaments in thick 
bundles like as stress fibers. NMMIIA molecules assemble 
into bipolar filaments. A title of the head enables a 
conformational change that moves actin filaments in an 
anti-parallel manner. The cross-bridge actin-myosin cycle 
of NMIIA is overall like smooth and striated muscle 
myosin. An ATP molecule binds the NMIIA-ATPase 
site on the myosin head. This allows the dissociation of 
actin from the NMIIA head. ATP is then hydrolyzed and 
subsequently, NMIIA binds to actin. Then, the power stoke 
occurs with a tilt of the NMIIA head, which generates a 
CB single force and a displacement of few nanometers. 
ADP is then released from the acto-NMIIA complex. A 
new ATP molecule dissociates actin from myosin head, 
and a novel CB cycle begins.

However, the major feature of NMIIA is its extreme 
slowness, with dramatic slow of its kinetics of contractile 
[145, 146]. The cross-bridge actin-myosin detachment 
constant, attachment constant, catalytic constant are 
widely low compared with striated or smooth muscles. 
Nevertheless, the cross-brigde actin-myosin of NMIIA 
single force is same order of magnitude compared 
with muscle myosin II (MII). Thermodynamic force, 
thermodynamic flow and thermodynamic entropy 
production rate are rarely low [147]. This explains 
why this stationary contractile system operates near-
equilibrium. The low isometric tension observed in 
placental stem villi [141, 148] can be surely explained 
by the low placental myosin content [149, 150]. The 
extremely slow shortening velocity can be accounted for 
by the very low placental myosin ATPase activity which 
has an essential role for the association/dissociation of 
actin from the NMIIA head [145, 149]. In placental stem 
villi, a low isometric tension has been reported [147]. This 
can be explained by the low placental myosin content 
and the low placental myosin ATPase activity [148]. The 
acto-myosin apparatus functions as in smooth muscles in 
myofibroblasts of human placenta. In experimental bath, 
addition of KCl or electrical field induce the contraction 

Figure 2: Interactions between TGF-β1, canonical WNT/β-catenin pathway, and YAP/TAZ signaling. In the absence of 
WNT ligands, Smad7 associates with β-catenin and Smurf2 to degrade β-catenin. Smad7 also binds phosphorylated YAP and Smurf to form 
a high affinity complex for TGF-β type 1 receptor to decrease TGF-β signaling expression. In the absence of WNT ligands, phosphorylated 
YAP and TAZ are associated with the β-catenin destruction complex. Phosphorylated YAP is also associated with β-catenin to inhibit its 
nuclear translocation and promote its degradation. Upon WNT stimulation, the beta-catenin destruction complex is inhibited and then 
beta-catenin accumulates in the cytosol and translocates to the nucleus. TAZ inhibits the phosphorylation of DSH and dissociates it from 
the β-catenin destruction complex. The destruction complex is inhibited because YAP and TAZ dissociate from the complex. β-catenin 
accumulates in the cytosol and then translocates to the nucleus for activating WNT targets. Upon TGF-β stimulation, Axin promotes the 
tail-phosphorylation of Smad2/3. Axin also forms a complex with Arkadia and Smad7 for enhancing TGF-β signaling. The activated Smad 
complex associates with TAZ and YAP and then translocates to the nucleus for activating Smad targets.
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phase. 2,3-butanedione monoxime, or isosorbide dinitrate, 
two inhibitors of NMII, can induce the relaxation phase 
[146]. Changes in the volume of the intervillons chamber 
can alter the length of the placental stem villi. Contraction 
of myofibroblasts induces a modulation of the distal 
resistance of the umbilical artery and then a modulation of 
the umbilical blood flow, due to the Starling phenomenon. 
In fibrotic processes, myofibroblasts generate rather a 
phenomenon of contraction-retraction lasting without 
relaxation and the pathological tissue undergoes an 
irreversible retraction, evolving towards fibrosis favored 
by the synthesis of collagen.

Canonical WNT/β-catenin pathway

Wingless and integration site (named WNT) 
pathway is a cascade of numerous signaling which are 
involved in development, metabolism, growth cellular, and 
maintain of stem cells [151]. WNT pathway is formed by 
secreted lipid-modified glycoproteins [152]. Deregulation 
of the canonical WNT pathway is observed in several 
pathologies [24].

WNT extracellular ligands bind Frizzled (FZD) 
receptors, low density lipoprotein receptor-related protein 
5 and 6 (LRP 5/6) and disheveled (DSH), which lead to 
stimulate β-catenin accumulation and then the nuclear 
β-catenin translocation for the bind to T-cell factor/
lymphoid enhancer factor (TCF/LEF) [153]. TCF/LEF 
related to nuclear β-catenin activates numerous target 
genes such as c-Myc, cyclin D1 [154].

Downregulation of the WNT pathway is 
characterized by the absence of binding between WNT 
extracellular ligands and the complex FZD/LRP 5/6. 
Thus, adenomatous polyposis coli (APC), AXIN and 
glycogen synthase kinase-3 (GSK-3β) form the β-catenin 
destruction complex and mediate degradation of β-catenin 
in the proteasome [155]. GSK-3β inhibits β-catenin 
accumulation and its nuclear translocation [155, 156].

WNT/β-catenin pathway is increased in fibroblasts 
in response to radiation during skin fibrogenesis [157]. 
WNT ligands are activated after irradiation and promote 
survival in head and neck cancers [158, 159]. Radiation 
stimulates ERK pathway through a reactive oxygen 
species (ROS) generation and inactivates GSK-3β [114]. 

Figure 3: Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ agonists in radiation-induced 
fibrosis. Inflammation activates WNT ligands. WNT ligand binds FZL and LRP5/6 receptors. This leads to inactivate the destruction 
complex AXIN/APC/GSK-3β. β-catenin phosphorylation is thus stopped, which prevents its degradation in the proteasome. Then, β-catenin 
accumulates in the cytosol and translocates to the nucleus for binding TCF/LEF co-transcription factor for inducing WNT target genes such 
as c-Myc and cyclin D1. WNT pathway and PI3K/Akt pathway increase each other. Inflammation and DNA damage also activate TGF-β1, 
which induces the Smad pathway. TGF-β1 binds type 2 TGF-β receptor, which recruits type 1 TGF-β receptor. The heterotetramer formed 
phosphorylates Smad2/3, which binds to Smad4. The Smad complex translocates to the nucleus for activation its target genes, such as 
CTGF. PPAR γ agonists activate Dickkopf-1 (DKK) for the inhibition of WNT ligands, and prevent β-catenin accumulation by activating 
GSK-3β. PPAR γ agonists inhibit Akt activity and stimulate PTEN, the inhibitor of PI3K. PPAR γ agonists also stimulate Smad7 and 
PTEN for inhibiting Smad pathway. Adenomatous polyposis coli (APC); dishevelled (DSH); frizzled (FZD); glycogen synthase kinase-3β 
(GSK-3β); low-density lipoprotein receptor-related protein 5/6 (LRP5/6); peroxisome proliferator-activated receptor γ (PPARγ); TGF-β1 
receptors 1 and 2 (R1, R2); T-cell factor /lymphoid enhancer factor (TCF/LEF); transforming growth factor (TGF); phosphatase and tensin 
homolog (PTEN).
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Irradiation inhibits GSK-3β activity in mesenchymal 
cells [160] and increases WNT genes expression in 
fibroblasts [161]. Moreover, WNT/β-catenin pathway 
is overexpressed in liver, skin, lung, kidney, and heart 
presenting fibrosis [162–167].

Phosphatidylinositol 3-kinase/serine/threonine 
kinase (protein kinase B)/mammalian target of rapamycin 
(PI3K/Akt/mTOR) pathway is present in cell growth, 
proliferation, protein synthesis and energetic metabolism 
[168–171]. WNT/β-catenin pathway is considered as an 
upstream activator of PI3K/Akt/mTOR pathway [172] 
through the inhibition of GSK-3β [173]. In addition, 
diminution of bet-catenin signaling decreases the 
expression of PI3K/Akt/mTOR pathway [174, 175]. 
Moreover, in adipocyte differentiation, activated PI3K/
Akt pathway inhibits GSK-3β [176, 177]. WNT/β-catenin 
pathway and PI3K/Akt/mTOR pathway mediate each 
other.

Inflammation and canonical WNT/β-catenin 
pathway

NF-κB signaling is a main effector of inflammation 
[178–180], its deregulation is implicated in numerous 
inflammatory processes [179–181]. Several studies have 
shown an interplay between canonical WNT/β-catenin 
pathway and NF-κB signaling [182]. Inflammation 
and immune response are modulated by this interaction 
between WNT/β-catenin pathway and NF-κB [182–185].

Overexpression of WNT/β-catenin pathway 
increases the NF-κB-mediated anti-apoptotic action 

[186, 187], and activates inflammatory processes through 
the stimulation of β-catenin targets genes [188, 189]. 
Activated β-catenin/TCF4 stimulates the NF-κB activity 
in vascular smooth muscle cells [190] and in colorectal 
cancer cells [191]. Activated WNT pathway in THP-1 
cells induces release of inflammatory cytokines [192]. 
Nuclear activation of β-catenin associated with p50 and 
TNF-α, stimulates C-reactive protein (CRP) expression in 
293T and HepG2 cells [193]. Nuclear β-catenin coupled 
with the TCF/LEF complex activates NF-κB target genes, 
such as CRP and matrix metalloproteinase 13 (MMP-13) 
in chondrocytes [194, 195], and then induces their genes 
transcription [193, 194]. In breast cancer, β-catenin/TCF 
and NF-κB signaling activate each other in a synergistic 
manner [196]. WNT/β-catenin pathway inhibits prolyl-
hydroxylase and then activates NF-κB signaling [197, 
198]. GSK3-β upregulation also decreases NF-κB 
signaling [199, 200].

Moreover, the NF-κB signaling activates canonical 
WNT/β-catenin pathway [201]. NF-κB activation 
stimulates the expression of the TCF/LEF complex and 
provides an indirect positive control of WNT/β-catenin 
pathway [202]. In human adipose tissue and bone marrow 
stroma cells, NF-κB decreases the expression of LZTS2 
which inhibits β-catenin nuclear translocation and 
transcriptional activity [203, 204]. Stimulation of IKKB 
kinase (IKK) α, an activator of NF-κB, leads to cytosolic 
accumulation of β-catenin and then activates WNT/β-
catenin pathway targets genes [201, 205]. Overexpression 
of interleukin 1 β (IL-1β) in mouse chondrocytes leads to a 
positive direct binding between NF-κB and LEF to induce 

Figure 4: PPAR γ interactions with TGF-β1, PI3K/Akt pathway and the canonical WNT/β-catenin pathway. PPAR 
γ agonists activate Smad7, an inhibitor of Smads pathway. PPAR γ agonists activate PTEN, which inhibits both PI3K/Akt pathway and 
TGF-β1 signaling. PPAR γ agonists activate DKK and Smad7, two inhibitors of WNT/beta-catenin pathway leading to the β-catenin 
degradation in the proteasome. PPAR γ agonists activate GSK-3β activity, which forms the destruction complex to degrade β-catenin. In 
contrast, presence of WNT ligands inhibits GSK-3β and lead to cytosolic accumulation of β-catenin. Then nuclear β-catenin associates with 
TCF/LEF in the nucleus to inhibit PPAR γ expression.
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β-catenin/LEF transcription [202]. NF-κB-induced TNF-α 
macrophages stimulates β-catenin cytosolic accumulation 
[206].

Ionizing radiation activates NF-κB which 
contributes to cell sensitivity to radiation [207]. NF-
κB is activated in endothelial cells after irradiation and 
is necessary for radiation-induced IL-6 release [208]. 
Inflammation, through the activation of NF-κB, promotes 
the production of collagen and the release of inflammatory 
chemokines in the development of liver fibrosis [209]. 
NF-κB expression is stimulated by the activation of Akt 
pathway observed in RIF [210]. In fibrosis, CCN4, a 
WNT-inducible signaling pathway protein-1 (WISP1) is 
increased and participates to the fibroblast proliferation 
and ECM expression [211, 212]. CCN4 overexpression 
induces morphological transformation in skin fibrosis 
[213]. CCl4mAb, a specific inhibitor of CCN4, reduces 
NF-κB activity and then decreases the expression of pro-
fibrotic factors, such as TGF-β1, in hepatic fibrosis [214].

Interactions between TGF-β1 and canonical 
WNT/β-catenin pathway (cf. Figure 2)

The canonical Smad pathway activates intracellular 
TGF-β1 signaling in activated myofibroblasts. TGF-β1 
binds TGF-βR2 and then interacts with TGF-βR1 to 
form a heterotetramer for the phosphorylation of Smad2 
and Smad3 which binds Smad4. The complex formed 
translocates to the nucleus for the activation of Smad 
binding element (SBE) DNA sequences and for recruit 
coactivators like histone acetyltransferase p300 [215]. 
Canonical WNT ligands, such as WNT3a, increase TGF-β1 
through a Smad2 activation in a β-catenin-dependent 
manner and lead to myofibroblasts differentiation [216]. 
A non-Smad pathway is also observed and represented by 
MAPK, TGF-β activated kinase (TAK1), JNK, or PI3K/
Akt [133, 217]. Phosphatase and tensin homolog (PTEN) 
is an inhibitor of PI3K/Akt pathway [218]. PTEN inhibits 
myofibroblasts differentiation, and the expression of 
collagen and α-SMA [219].

Fibroblasts stimulation with activated WNT3a 
enhances the expression of TGF-β and then the 
phosphorylation of the MH2 domain of Smad2 [216]. 
Conversely, the absence of WNT ligands decreases the 
expression of TGF-β and then attenuates the fibrotic 
response [220].

Without tail-phosphorylation by the TGF-β type 
I receptor, Smad2/3 cannot interact with Smad4 and 
then cannot engaged the DNA. Smads inactivated are 
phosphorylated by activated GSK-3β and then degraded 
[221]. Moreover, activation of TGF-β also enhances WNT 
pathway stimulation through the inhibition of dickkopf-
related protein 1 (DKK1) [222].

Upon TGF-β and WNT stimulation, Axin facilitates 
the binding of Smad2/3 with TGF-β type 1 receptor and 
then activates Smad2/3 [223]. Moreover, upon WNT 

ligands activation, Axin forms a complex with Smad7 and 
the E3 ubiquitin ligase Arkadia to promote the degradation 
of Smad7 [224].

Smad7 is an inhibitor of Smad pathway [225]. 
Activated Smad7 binds YAP (yes-associated protein 1) 
and Smurf to increase affinity for TGF-β type 1 receptor, 
and then decreases TGF-β signaling [226]. Activated 
Smad7 also recruits Smurf 2 to induce ubiquitination and 
degradation of β-catenin [227].

Myofibroblast activation and fibrosis induction have 
been recently translated by the mechanical properties of 
YAP and TAZ. YAP and TAZ (transcriptional coactivator 
with PDZ-binding motif) elevated levels are observed in 
fibrosis [228]. YAP and TAZ knockdown in lung and liver 
fibroblasts cultured reduces the levels of protein associated 
with myofibroblast differentiation, such as pro-collagen 
and α-SMA [229]. During fibrosis, F-actin polymerization 
inactivates the Hippo core kinase complex leading to the 
dephosphorylation of YAP and TAZ [230].

Stimulation by WNT3a inhibits the destruction 
complex because YAP/TAZ dissociates from the β-catenin 
destruction complex and then allowed β-catenin nuclear 
translocation. TAZ binds DSH and dephosphorylates it 
upon stimulation with WNT3a to dissociate DSH from the 
destruction complex [231]. Indeed, in the absence of WNT 
ligands, phosphorylated YAP and TAZ bind β-catenin 
with activated GSK-3β and Axin to degraded β-catenin 
in the proteasome [232]. In fibrosis, activated Smad2/3-
Smad4 complex is associated with YAP and TAZ for its 
translocation to the nucleus [233]. A crosstalk of several 
components of the TGF-β, WNT, and YAP/TAZ signaling 
is playing in the tuning of nucleocytoplasmic shuttling of 
fibrosis [230].

PPAR γ

Peroxisome proliferator receptor γ (PPAR γ) is 
a ligand activated transcriptional factor which forms a 
heterodimer with retinoid X receptor (RXR) to activate 
specific peroxisome response elements (PPRE) [234]. 
PPAR γ expression is involved in several mechanisms 
such as glucose and lipid metabolism, immune response, 
and inflammation [235, 236]. PPAR γ decreases NF-κB 
activity and then represses inflammation [237]. PPAR γ 
is expressed in several cells, such as adipocytes, muscle 
cells, brain cells, immune cells and in fibroblasts [238].

15d-prostaglandin J2 (15d-PGJ2), lysophosphatidic 
acid, and nitrolinoleic acid are natural activators of PPAR 
γ [239], whereas thiazolidinediones (TZDs) and oleanic 
acid derivatives such as triterpenoids (2-cyano-3,12-
dioxoolean-1,9-dien-28-oic-acid (CDDO)) are synthetic 
activators of PPAR γ. PPAR γ expression mediates the 
functions of many signaling such as connective tissue 
regulation, mesenchymal cell activation, differentiation 
and cell survival creating a link between metabolism and 
fibrogenesis [134].
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Numerous inflammatory cytokines, chemokines, or 
intracellular signaling decrease PPAR γ expression such 
as TFG-β1, canonical WNT/β-catenin pathway, TNF-α, 
interleukin (IL)-1, IL-13, Connective Tissue Growth 
Factor (CTGF), leptin, and lysophosphatidic acid (LPA) 
[240–242]. The transcription factor COUP II is a canonical 
WNT target and represses PPAR γ expression [243]. In 
adipocytes, adiponectin increases PPAR γ expression 
and decreases LPS-induced NF-κB expression and IL-6 
production [244].
PPAR γ and fibrosis

An inverse relationship is observed between the 
expression of PPAR γ and the apparition of fibrosis. 
Aberrant downregulation of PPAR γ is correlated with 
the development of fibrosis in skin, lung, pancreas, heart, 
and liver [245]. PPAR γ□ expression is decreased in lung 
fibrosis [246], liver fibrosis [247], kidney fibrosis [248] 
and scarring alopecia fibrosis [249]. Furthermore, reduced 
PPAR γ expression precede fibrosis in several human 
diseases, suggesting a causal role [25, 250]. Fibroblasts, 
with a decreased level of PPAR γ, present an increase 
expression of TGF-β1, type 1 collagen, and α-SMA [251, 
252].

Several studies have shown, that PPAR γ agonists 
can diminish pro-fibrotic signal-induced collagen synthesis 
and can blunt fibrosis [25, 241, 245, 251, 253–257]. PPAR 
γ natural and synthetic ligands, such as 15d-PGJ2 and 
rosiglitazone, can decrease the fibroblast-myofibroblast 
differentiation, synthesis of collagen and firbonectin and 
decrease the expression of TGF-β1 [247, 248, 253, 258, 
259]. Moreover, 15d-PGJ2 and rosiglitazone decrease 
bleomycin-induced lung fibrosis [260]. PPAR γ agonists 
stop the TGF-β1-induced EMT of alveolar epithelial cells 
and decrease fibrosis in numerous organs such as heart 
[261, 262], lung [263, 264], liver [265, 266] and kidney 
[267, 268].
PPAR γ and radiation-induced fibrosis

Radiation therapy causes a downregulation of PPAR 
γ expression [59]. PPAR γ levels are decreased in 3 to 12 
hours after a total body irradiation of C57BL/6 mice [59], 
after UVB irradiation in skin models [269] and in 3 days 
following a single abdominal dose of 10 Gy [270].

Oxidative stress and inflammation are involved in 
radiation-induced brain injury [271, 272]. Administration 
of PPAR γ agonists, such as pioglitazone, can decrease the 
severity of radiation-induced cognitive impairment in rat 
models [273]. PPAR γ ligands block the radiation-induced 
activation of NF-κB [274]. PPAR γ agonists administration 
can contribute to reduce the inflammation and oxidative 
stress [248, 275].

PPAR γ ligands enhance radiation-induced DNA 
damage in lung cancer cells in vitro [276, 277].

PPAR γ activators can prevent irradiation-induced 
inflammatory processes through the inhibition of NF-κB 
expression and the downregulation of STAT-3 pathway, 

an activator of canonical WNT/β-catenin pathway [270]. 
Diosmin, a citrus bioflavonoid which has antioxidant, 
anti-inflammatory and anti-apoptotic properties [278], can 
increase PPAR γ expression and can decrease canonical 
WNT/β-catenin pathway to attenuate radiation-induced 
hepatic fibrosis [9].

Interactions between PPAR γ and canonical 
WNT/β-catenin pathway

WNT/β-catenin pathway and PPAR γ act in an 
opposite manner in several diseases such as cancers 
[24, 279–284]. WNT/β-catenin pathway and PPAR 
γ interact through a TCF/LEF β-catenin domain and 
a catenin-binding domain within PPAR γ [285–288]. 
Downregulation of the WNT/β-catenin pathway induces 
PPAR γ stimulation while PPAR γ agonists decrease 
β-catenin expression in numerous cellular systems [235, 
236, 289]. PPAR γ agonists can act as neuroprotective 
agents and promoting synaptic plasticity through a 
WNT/β-catenin/PI3K/Akt pathway interaction [290]. The 
regulation of mesenchymal stem cell differentiation also 
shows the existence of this crosstalk [291].

Indeed, in several diseases, β-catenin signaling 
inhibits PPAR γ [292–301], and using PPAR γ agonists is 
considered as promising treatment through this interplay 
[302]. Troglitazone, a PPAR γ agonist, can decrease 
c-Myc levels [303]. In intestinal fibrosis, the activation of 
WNT/β-catenin has been observed and the use of PPAR 
γ agonist can inhibit WNT/β-catenin pathway activation 
and then can repress fibrosis [304]. PPAR γ agonists 
stimulate Dickkopf-1 (DKK1) activity, which inhibits 
the canonical WNT pathway and then block fibroblast 
differentiation [305]. During adipogenesis in 3T3-L1 
cells, PI3K/Akt pathway decreases PPAR γ expression 
[306]. Akt signaling participates to PPAR γ inhibition in 
adipocyte differentiation [307–309]. PI3K/Akt pathway 
phosphorylates GSK-3β and inhibits it, which decreases 
PPAR γ expression [176, 310]. β-catenin signaling, 
through its activation of Akt signaling, inhibits PPAR γ 
expression in adipocytes and 2T2-L1 preadipocytes [289, 
311]. Moreover, inhibition of Akt pathway in 3T3-L1 cells 
activates the expression of PPAR γ [312]. PPAR γ agonists 
can decrease the activity of Akt signaling [313, 314]. 
Rosiglitazone and pioglitazone, PPAR γ agonists, inhibit 
both Akt signaling and GSK-3β activity in cardiac fibrosis 
to block TGF-β–induced collagen accumulation [315].

Interactions between PPAR γ and TGF-β1

TGF-β1 upregulation decreases PPAR γ expression 
in fibroblasts [245] and hepatic stellate cells [316], whereas 
PPAR γ agonists can directly inhibit TGF-β1 activity [317], 
prevent expression and synthesis of collagen in fibroblasts 
[253, 254, 257], and then prevent α-SMA expression [253, 
257]. In addition, thiazolidinediones can reduce hepatic 
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fibrosis through the inhibition of α-SMA and TGF-β 
expression [318]. PPAR γ agonists can inhibit both the 
Smad-dependent and Smad-independent TGF-β1 pathways.

Interactions through the Smad pathway

Anti-fibrotic PPAR γ effects can be largely 
explained through the Smad pathway. PPAR γ promoter 
has two Smad binding elements and inhibition of PPAR γ 
favors canonical Smad2/3 signaling [316].

In human hepatic stellate cells, PPAR γ agonists can 
inhibit TGF-β1/Smad3 signaling [319]. Smad-dependent 
collagen production is suppressed by PPAR γ ligand-
activated through targeting the p300 transcriptional 
coactivator [254]. CDDO can prevent TGF-β1-induced 
fibrosis by inhibition of Smad transcription and Akt 
pathway [257]. TG-Interacting Factor (TGIF) which is 
a Smad transcriptional co-repressor can be activated by 
PPAR γ agonists, such as troglitazone, ciglitazone, and 
15d-PGJ2. This leads to repress TGF-β1-induced fibrosis 
in hepatocyte cells [320, 321]. TGF-β1-induced JNK 
pathway is decreased by troglitazone, which decreases 
Smad2 signaling and then impairs myofibroblasts 
differentiation [322]. In addition, adiponectin prevents 
fibrosis in liver in mice [323, 324].

Moreover, a PPAR γ downregulation shows an 
increase of (increases) Smad3 and α-SMA expression and 
an overproduction of collagen (collagen overproduction) 
[252]. Rosiglitazone, a PPAR γ agonist, could decrease 
fibrosis by stimulating Smad7, an inhibitor of TGF/Smad 
signaling pathway [325]. In liver fibrosis, overexpression 
of prolyl oligopeptidase (POP) by S17092 (a POP 
inhibitor) leads to activate Smad7 protein and PPAR γ and 
then inactivates TGF-β signaling [326].

Interactions through the non-Smad pathway

PPAR γ agonists can induce diminution of TGF-
β1expression in alveolar epithelial cells and in tumor 
metastasis without interacting with the Smad pathway 
[327, 328]. In an independent Smad pathway manner, 
PPAR γ represses TGF-β1-induced fibrosis [253, 258, 
317]. TGF-β1 expression can be inhibited by 15d-PGJ2 
through a PTEN-mediated p70 ribosomal S6 kinase-1 
inhibition [329]. PPAR γ agonists can decrease TGF-β1-
induced myofibroblast differentiation via the inhibition of 
PI3K/Akt pathway [330]. PPAR γ agonists can stimulate 
PTEN expression for having anti-fibrosis effects [219, 
329, 331], and leading to the inhibition of collagen 
production and myofibroblast differentiation [332].

Interactions between PPAR γ and canonical 
WNT/β-catenin pathway/TGF-β1 in radiation-
induced fibrosis (cf. Figure 3)

Several studies have shown a crosstalk between 
TGF-β1, canonical WNT/β-catenin pathway and PPAR γ 

[25, 250]. Indeed, canonical WNT/β-catenin is activated by 
TGF-β1, and this results in inhibition of PPAR γ. In liver 
fibrosis, TGF-β1 inhibits PPAR γ expression by increasing 
β-catenin expression [299]. In turn, activation of PPAR 
γ inhibits WNT/β-catenin pathway and then TGF-β1. 
PPAR γ targets PI3K/Akt for repress TGF-β1-induced 
myofibroblast differentiation [330]. PPAR γ agonists can 
inhibit fibrosis development through inactivation of TGF-β1 
[333]. Moreover, 15-deoxy-delta12,14-prostaglandin 
J2, troglitazone, and rosiglitazone can suppress corneal 
myofibroblasts in eyes [294]. In addition, PPAR γ 
agonists can protect against excessive fibrosis [245]. Basic 
fibroblast growth factor (bFGF) can be repressed by using 
rosiglitazone and pioglitazone [313]. Inhibition of Akt 
pathway attenuates TGF-β signaling in rat kidney epithelial 
cells [334]. Troglitazone, a PPAR γ agonist, inhibits TGF-β 
signaling by phosphorylating Akt pathway at Ser437. 
LY294002, a PI3K inhibitor, inhibits Akt phosphorylation 
and α-SMA induction and then attenuates TGF-β1 signaling 
[335]. TGF-β-induced phosphorylation of β-catenin at 
Tyr654 associated with a conjunction between β-catenin 
and Smad3 stimulate α-SMA expression during EMT [336]. 
In fibrosis, troglitazone can inhibit TGF-β signaling by 
inhibiting β-catenin and PI3K/Akt pathway activation and 
by activating GSK-3β, the inhibitor of WNT pathway [335].

CONCLUSION

Radiation-induced fibrosis is characterized by DNA 
damage and inflammation. These two processes lead to 
the activation of TGF-β1 and canonical WNT/β-catenin 
pathway. TGF-β1 plays a major role in the differentiation 
of fibroblasts into myofibroblasts. Myofibroblasts appear 
able to physiological contraction and relaxation. However, 
in fibrosis myofibroblasts generate a phenomenon of 
contraction-retraction lasting without relaxation and 
with an irreversible retraction favored by the synthesis 
of collagen. Myofibroblasts show a main role in cellular 
fibrosis in numerous organs such as kidney, heart, 
lung, liver and wound. TGF-β1 operates in a canonical 
WNT/β-catenin pathway dependent manner. These two 
pathways stimulate each other through the Smad pathway 
or non-Smad pathways like PI3K/Akt pathway. TGF-β1 
stimulates myofibroblast differentiation by the stimulation 
of canonical WNT pathway and the downregulation of 
PPAR γ expression. TGF-β1 appears to be an interesting 
therapeutic target in fibrosis [337, 338]. PPAR γ agonists 
stimulate Smad7 for inhibiting Smads pathway what blocks 
TGF-β signaling. PPAR γ agonist can decrease canonical 
WNT/β-catenin pathway by activating both Smad 7, GSK-
3β and DKK. PPAR γ agonists can also stimulate PTEN, 
an inhibitor of PI3K/Akt pathway and inhibit the Smad 
pathway for downregulation TGF-β1 expression. Thus, by 
both inhibiting TGF-β1 and the canonical WNT/β-catenin 
pathway, PPAR γ agonists could be interesting preventive 
targets for radiation-induced fibrosis treatment (cf. Figure 4).
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