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ABSTRACT

Cisplatin-based chemo-radiotherapy is widely used to treat cancers with often 
severe therapy-associated late toxicities. While mesenchymal stem cells (MSCs) were 
shown to aid regeneration of cisplatin- or radiation-induced tissue lesions, the effect 
of the combined treatment on the stem cells remains unknown. Here we demonstrate 
that cisplatin treatment radiosensitized human bone marrow-derived MSCs in a dose-
dependent manner and increased levels of radiation-induced apoptosis. However, the 
defining stem cell properties of MSCs remained largely intact after cisplatin-based 
chemo-radiation, and stem cell motility, adhesion, surface marker expression and the 
characteristic differentiation potential were not significantly influenced. The increased 
cisplatin-mediated radiosensitivity was associated with a cell cycle shift of MSCs 
towards the radiosensitive G2/M phase and increased residual DNA double-strand 
breaks. These data demonstrate for the first time a dose-dependent radiosensitization 
effect of MSCs by cisplatin. Clinically, the observed increase in radiation sensitivity 
and subsequent loss of regenerative MSCs may contribute to the often severe late 
toxicities observed after cisplatin-based chemo-radiotherapy in cancer patients.

INTRODUCTION

Ionizing radiation (IR) damages cells primarily by 
inducing DNA lesions, resulting in apoptosis, cell cycle 
arrest or mutagenesis. Cellular radiation sensitivities 
vary considerably and may be influenced by the cells’ 
DNA repair capacity or the presence of modifying agents 
including oxygen or cytotoxic drugs [1–4].

The anti-cancer agent cisplatin is widely 
used together with IR, and several large trials have 
demonstrated the safety and efficacy of cisplatin-based 
chemo-radiation regimens for various cancers [5–8]. 

Cisplatin binds to DNA strands and creates intra-strand 
and inter-strand crosslinks, thereby inhibiting DNA 
replication and transcription [9]. Cisplatin treatment can 
cause severe adverse effects in many organs, including 
bone marrow, nervous system, inner ear and kidneys, and 
cisplatin-induced renal damage commonly constitutes the 
dose-limiting toxicity [10, 11]. Cisplatin has been shown 
to influence radiation sensitivities of various cell types in 
vitro, and several potential mechanistic explanations have 
been provided, concerning radiation-induced increases 
in cisplatin uptake, efficient blockade of DNA repair 
or prolonged cell cycle arrest [12]. However, the exact 
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mechanism underlying the radiosensitization of cisplatin 
remains incompletely understood.

Mesenchymal stem cells (MSCs) constitute a 
heterogeneous population of multipotent stromal cells that 
are found in various tissues like bone marrow, adipose 
and vascular tissues, placenta or umbilical cord [13–15]. 
MSCs can be identified by a combination of functional and 
molecular characteristics, including their ability to adhere 
to plastic surfaces, their differentiation potential and a 
characteristic surface marker expression [16, 17]. Due to 
their immunomodulatory and differentiation capabilities, 
MSCs have been investigated as a potential means of 
repairing tissue damage, and preclinical data suggest 
beneficial effects of MSC-based treatments for the therapy 
of radiation- or cisplatin-induced tissue injuries [18]. 
However, the effects of clinically relevant combination 
treatments on MSCs remain completely unknown.

RESULTS

Cisplatin radiosensitizes MSCs in a dose-
dependent manner

The radiosensitization potential of cisplatin was 
assessed by clonogenic survival assays (Figure 1 and 
Supplementary Figure 1). Three MSC preparations and 
HS68 fibroblasts were treated with 200 or 1000ng/mL 
cisplatin for 4 hours, followed by photon irradiation 48 
hours later. Cisplatin pre-treatment with 200ng/mL resulted 
in a small but significant reduction in the clonogenic 
survival of MSCs (P<0.01 for MSC1 and MSC2 and 
P<0.05 for MSC3); sensitizer enhancement ratios (SERs) 
ranged between 1.07 and 1.10 (Figure 1). Pre-treatment with 
1000ng/mL cisplatin led to considerably lower clonogenic 
survival for all tested MSC samples compared to untreated 
controls (P<0.01 for MSC1, P<0.05 for MSC2 and MSC3) 
and pre-treatment with 200ng/mL (P<0.05 in MSC1 and 
MSC3, P=0.09 in MSC2). SER values for the higher 
cisplatin concentration ranged between 1.24 and 1.30, 
suggesting a dose-dependent radiosensitization of cisplatin 
in MSC1 and MSC3. In contrast, HS68 fibroblasts exhibited 
no dose dependency of cisplatin radiosensitization.

MSC adhesion is maintained after cisplatin-
based chemo-radiation

MSC adherence as a defining characteristic 
of these cells was only insignificantly affected by 
cisplatin treatment or IR alone (Figure 2A). Similarly, 
the combination of cisplatin pre-treatment and 6 Gy 
IR did not affect the adhesion potential of MSC2 and 
MSC3 preparations compared to untreated controls 
and only resulted in a small, but significant dose-
dependent reduction of MSC1 adherence after irradiation. 
Differentiated HS68 fibroblasts did not demonstrate 

reduced adhesion after the combined treatment compared 
to untreated cells.

Cellular morphology of MSCs and fibroblasts 
remained unchanged after combined treatment, and cells 
revealed no signs of increased apoptosis up to 36 hours by 
light microscopy (Figure 3A).

Cisplatin-based chemo-radiation does not 
impede MSC motility

The average velocity of MSCs as required for cell 
migration and differentiated fibroblasts was measured 
by time-lapse microscopy. Neither MSC sample showed 
a reduction of the average velocity after treatment with 
cisplatin or IR alone or a combination treatment (Figure 
2B). Similarly, the average velocity of HS68 fibroblasts 
remained unaffected by drug and radiation treatment.

Cisplatin-based chemo-radiation does not affect 
MSC surface marker expression

MSC surface markers were examined by flow 
cytometry at 24 and 48 hours after combined treatment. 
Protein expression patterns of positive stem cell markers 
CD73, CD90 and CD105 and negative markers CD14, 
CD20, CD34 and CD45 remained largely unchanged in 
all tested samples at 24 (Supplementary Figure 2) and 48 
hours after cisplatin-based chemo-radiation (Figure 3B).

Cisplatin-based chemo-radiation does not 
abrogate the differentiation potential of MSCs

The potential for adipogenic and chondrogenic 
differentiation is a defining hallmark of MSCs. 
Immunocytochemical analyses were carried out to assess 
a potential effect of cisplatin-based chemo-radiation on the 
MSCs’ differentiation ability. Chondrogenic differentiation 
was not generally altered after treatment with cisplatin 
or irradiation alone, and only MSC1 samples revealed 
a small reduction in induced differentiation after 6 Gy 
radiation (P<0.05). Combined treatment with cisplatin 
and irradiation did not consistently alter the chondrogenic 
differentiation potential compared to untreated control 
samples (Figure 4A). Similarly, the ability for adipogenic 
differentiation was maintained in all MSC preparations 
after treatment with cisplatin or radiation, and the pooled 
data revealed no significant reduction after cisplatin-based 
chemo-radiation compared to untreated cells (Figure 4B).

Cisplatin pre-treatment shifts MSCs towards the 
radiosensitive G2/M phase

Cisplatin treatment resulted in a strong 
accumulation of MSCs in the radiosensitive G2/M 
phase of the cell cycle with 17 to 58 % in G2/M phase 
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at 48 hours after exposure to 1000ng/mL cisplatin 
(P<0.001 for MSC1 and MSC3, P<0.01 for MSC2) 
(Supplementary Figure 3).

Combining 200ng/mL cisplatin and radiotherapy 
was found to augment the observed G2 phase block 
in all three MSC samples compared to treatment with 
either modality, while pre-treatment with higher doses of 
1000ng/mL cisplatin achieved a further increase only in 
MSC2 (Figure 5A). These findings suggest that cisplatin 
pre-treatment causes a shift in the cell cycle distribution of 
MSCs towards the radiosensitive G2/M phase that persists 
for up to 96 hours after exposure.

HS68 fibroblasts revealed a small increase in their 
G2 population after exposure to cisplatin or irradiation 
alone, and a combination of both treatment modalities did 
not further augment the detected G2 population.

MSCs show increased apoptosis after cisplatin-
based chemo-radiation

Induction of apoptosis after treatment with cisplatin 
or irradiation was measured by sub-G1, annexin-V 
staining and caspase-3 activation. While the percentage 
of sub-G1 cells remained very low independent of 
cisplatin and radiation treatment, exposure to 1000ng/mL 
cisplatin resulted in an increase of caspase-3 activation or 
annexin-V staining in MSC2 and MSC3 samples (Figure 
5B, Supplementary Figure 4). Combined treatment with 
1000ng/mL cisplatin and 6 Gy radiation led to a further 
increase in apoptosis in MSC2 and MSC3 cells as detected 
by caspase-3 activation; in contrast, HS68 fibroblasts did 
not undergo increased apoptosis following exposure to 
cisplatin and irradiation.

Figure 1: Cisplatin pre-treatment radiosensitizes MSCs. Clonogenic survival assays for MSCs and HS68 fibroblasts pre-treated 
with 200ng/mL or 1000ng/mL cisplatin 48 prior to irradiation. *P<0.05, **P<0.01 (paired Student’s t-test). Table represents sensitizer 
enhancement ratios for each cell line.
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Cisplatin pre-treatment increases the number of 
radiation-induced DNA double-strand breaks in 
MSCs

Cellular irradiation induces various forms of DNA 
damage, with DNA double-strand breaks forming the main 
cytotoxic lesions. To measure the influence of cisplatin 
pre-treatment on the creation and repair of DNA double-
strand breaks, phosphorylated H2AX (γH2AX) foci were 
quantified as markers for these double-strand breaks. 
Irradiation resulted in an initial increase in γH2AX foci 
within 2 hours, but foci levels representing unrepaired 
strand breaks at 8 and 24 hours after treatment were 
strongly reduced in all three MSC samples (Figure 6A). 
While exposure to different concentrations of cisplatin 
alone did not markedly increase γH2AX foci levels, 
pre-treatment with 1000ng/mL cisplatin significantly 
augmented the numbers of initial radiation-induced 
double-strand breaks in all tested MSC preparations. 
Lower cisplatin concentrations of 200ng/mL did not 
increase radiation-induced γH2AX foci levels in MSC1 
and MSC2 and were found to increase double-strand 

breaks only in MSC3 samples, indicating a dose-
dependent effect.

Radiation-induced DNA double-strand breaks 
remained elevated over time in MSCs pre-treated 
with 1000ng/mL cisplatin: γH2AX foci levels were 
significantly elevated in all tested MSC specimens after 8 
hours and remained elevated up to 24 hours.

Similar results were obtained for differentiated 
fibroblasts with a significant increase in γH2AX foci 
in cisplatin-pre-treated cells at all tested time points 
compared to cells that were only irradiated. These findings 
suggest that cisplatin pre-treatment increased both initial 
and residual numbers of DNA double-strand breaks 
induced by sequential irradiation.

Cisplatin pre-treatment activates radiation-
induced DNA damage recognition pathways in 
MSCs

DNA damage-signaling pathways were investigated 
by Western blot analyses. The ataxia-telangiectasia 
mutated (ATM) kinase and the DNA-dependent protein 

Figure 2: MSC adhesion and motility is unaffected by cisplatin-based chemo-radiation. (A) Adhesion kinetics of MSCs 
and HS68 fibroblasts after radiation. (B) Average velocity of MSCs and HS68 fibroblasts after treatment with cisplatin, IR or a combined 
treatment. *P<0.05.
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kinase (DNA-PKcs) as key signaling proteins for 
homologous recombination repair and non-homologous 
end-joining repair respectively were found elevated after 
irradiation irrespective of cisplatin pre-treatment (Figure 
6B). In line with the observed persistent γH2AX-labelled 
DNA double-strand breaks at 24 hours after irradiation, 
activated phospho-ATM and phospho-BRCA1 involved 
in the homologous recombination repair of radiation-
induced DNA damage remained elevated up to 24 hours, 
also suggesting residual strand breaks. Consistently, the 
ATM-dependent checkpoint kinase 2 (Chk2) was found 
strongly activated after cisplatin-based chemo-radiation, 
while there was no pronounced effect on phospho-p53, 
further explaining the observed arrest of treated MSCs in 
G2, but not G1 phase of the cell cycle.

DISCUSSION

Cisplatin is widely combined with radiotherapy 
for cancer treatment. Despite extensive studies, the exact 
mechanisms by which cisplatin and IR interact remain 

incompletely understood. Our analyses indicated that 
cisplatin pre-treatment sensitized radioresistant human 
mesenchymal stem cells without affecting their defining 
stem cell characteristics.

Several publications demonstrated a relative 
resistance of MSCs against IR [19–21] that was linked 
to an efficient repair of radiation-induced DNA double-
strand breaks [22, 23] and the evasion of apoptosis [24, 
25]. The defining stem cell characteristics of MSCs were 
found largely unaffected by irradiation [19, 22, 26]. A 
similar resistance of MSCs against cisplatin treatment 
was found associated with high levels of protective heat-
shock proteins, cytoskeletal modifications and suppressed 
apoptosis [27–29].

In our dataset, combining cisplatin and irradiation 
resulted in a significant dose-dependent radiosensitization 
of MSCs. A previous study reported a pronounced 
radiosensitization of mouse fibroblasts by pre-treatment 
with 1000ng/mL cisplatin, while higher concentrations 
up to 6000 ng/mL showed reduced SER values compared 
to the lower dose [30]. We found comparably high SERs 

Figure 3: Cisplatin-based chemo-radiation does not alter morphology and surface marker expression of MSCs. (A) 
Microscopic images of unstained MSCs and HS68 fibroblasts showing no visible changes in morphology after cisplatin-based chemo-
radiation. 10x objective, scale bar 100μm. (B) FACS histograms of defining MSC surface markers at 48 hours after cisplatin-based chemo-
radiation.
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Figure 4: Cisplatin-based chemo-radiation does not affect the differentiation potential of MSCs. (A) Alcian blue staining 
for chondrogenic MSC differentiation after treatment with cisplatin and radiation. 2x objective, scale bar 1000μm. (B) BODIPY staining 
for adipogenic differentiation in MSCs. Relative staining intensities were measured to quantify adipogenic and chondrogenic differentiation 
levels. 2x objective, scale bar 2000μm. *P<0.05, **P<0.01.

Figure 5: Cisplatin-based chemo-radiation increases apoptosis and G2 phase arrest. (A) Cell cycle distribution of MSCs 
and HS68 fibroblasts at 48 hours after cisplatin-based chemo-radiation. (B) Apoptosis levels of MSCs and HS68 fibroblasts after cisplatin-
based chemo-radiation. *P<0.05, **P<0.01, ***P<0.001.
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in MSCs after pre-treatment with 1000ng/mL, while 
lowering the cisplatin dose did not cause further increases 
in SER values.

While the radiosensitizing properties of cisplatin 
may depend on the treatment scheduling, experimental 
data investigating the optimal timing of both modalities 
produced controversial results. In mouse tumors, 
cisplatin application before irradiation resulted in higher 
levels of radiation-mediated tumor control than after 
radiotherapy, while in vitro, simultaneous treatment 
elicited the strongest supra-additive effects [31, 32]. In 
our dataset, only cisplatin pre-treatment resulted in MSC 
radiosensitization, while concomitant or post-irradiation 
treatment with cisplatin did not radiosensitize MSCs. As 
cisplatin has been shown to accumulate in the body up to 
several months after exposure, cisplatin pre-treatment may 
also exert prolonged effects clinically when subsequent 
radiotherapy is applied [33, 34].

The mechanisms underlying a cisplatin-mediated 
radiosensitization remain incompletely understood. 
Cellular radiosensitivities vary according to the cell 
cycle phase, and G2/M phase cells exhibit the highest 

sensitivities [35, 36]. Accordingly, we found that 
cisplatin pre-treatment strongly shifted the MSCs’ cell 
cycle distribution towards the G2/M phase, resulting in 
increased radiation-induced apoptosis. Additionally, it has 
been suggested that cisplatin DNA adducts hamper the 
repair of radiation-induced DNA lesions, leading to the 
transformation of sublethal into lethal radiation damage 
[4]. Previous publications demonstrated efficient repair 
of DNA damage caused by irradiation or cisplatin alone 
in MSCs [22, 23, 37]. However, our data revealed that 
cisplatin pre-treatment increased the number of initial and 
residual radiation-induced DNA double-strand breaks in 
MSCs. It has been suggested that γH2AX-labelled double-
strand breaks may serve as valuable biomarkers to quantify 
cellular radiosensitivity, and unrepaired DNA double-
strand breaks at 24 hours after irradiation have been linked 
to an increased cellular radiation sensitivity [38, 39]. In 
our dataset, cisplatin pre-treatment increased residual 
double-strand breaks and resulted in prolonged DNA 
damage signaling up to 24 hours after treatment; hence, 
the observed increase in unrepaired radiation lesions may 
help to explain the enhanced MSC radiosensitivity.

Figure 6: Cisplatin pre-treatment causes prolonged DNA damage signaling and increased radiation-induced DNA 
double-strand breaks in MSCs. (A) γH2AX foci numbers in MSCs and HS68 fibroblasts after cisplatin-based chemo-radiation. 
*P<0.05, **P<0.01. (B) Western blot analyses of various proteins regulating cell cycle checkpoints and double-strand DNA break repair at 
2 and 24 hours after irradiation with 6 Gy.
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Interestingly, despite the observed radiosensitization 
of MSCs by cisplatin, the surviving stem cells remained 
functionally unaffected. Of note, the differentiation 
potential as the basis for the reported regenerative effects 
of MSCs remained largely intact after cisplatin-based 
chemo-radiotherapy. This finding may have special clinical 
relevance, as several publications provided evidence that 
endogenous MSCs could invade into tissue lesions caused 
by cisplatin or IR and could differentiate into functional 
cell types, thereby aiding tissue regeneration [24, 40–44].

While the observed cisplatin-based 
radiosensitization may not directly affect the treatment 
of chemo-radiation-induced side effects with exogenous 
MSCs, such an application would require a concomitant 
immunosuppression to avoid graft rejection. It is therefore 
conceivable that endogenous MSCs may be utilized in the 
future to treat tissue damage caused by cisplatin-based 
chemo-radiation: Stimulation or harvesting and ex-vivo 
proliferation of endogenous MSCs after the occurrence 
of chemo-radiation-induced tissue lesions may provide an 
on-demand cell-based therapeutic approach to treat those 
side effects. However, as the use of these endogenous 
MSCs is directly dependent on their ability to survive 
after cisplatin-based chemo-radiation, the observed 
increase in cisplatin-mediated MSC radiosensitization 
needs to be taken into consideration when planning 
treatment protocols utilizing endogenous MSCs for 
chemo-radiotherapy-associated side effects (18,43). 
On the other hand, the data shown here may help to 
explain the augmented severe late toxicities often seen 
after combining cisplatin and radiotherapy for routine 
treatments, e.g. in head and neck or cervical cancers: Since 
the endogenous regeneration of tissue damage induced by 
cisplatin-based chemo-radiation in part depends on the 
activation of organ-resident MSCs, the reported increase 
in MSC radiosensitization by cisplatin may result in 
reduced numbers of regenerative tissue-resident stem cells 
by the combined treatment and hence in impaired tissue 
regeneration [45, 46].

Taken together, our data demonstrated an increased 
radiation sensitivity of MSCs after pre-treatment with 
cisplatin, whereas their stem cell properties were largely 
maintained. A cisplatin-mediated shift in the cell cycle 
distribution and an increase in residual DNA double-strand 
breaks may contribute to the radiosensitizing potential of 
cisplatin in MSCs.

MATERIALS AND METHODS

Cell culture

MSCs were isolated from bone marrow of healthy 
volunteers and characterized as published previously 
[47, 48]. MSCs were cultured in Mesenchymal Stem 
Cell Growth Medium containing MSCGMTM SingleQuots 
(MSCGMTM, Lonza, Basel, Switzerland). Human HS68 

dermal fibroblasts were purchased from the ATCC and 
grown in Dulbecco’s Modified Eagle Medium (Biochrom, 
Berlin, Germany) with 10% fetal bovine serum and 3.5g/L 
glucose. Donors provided written informed consent prior 
to the harvesting of MSCs, and this work was approved 
by the Heidelberg University ethics board (#S-384/2004).

Drug preparation

Cisplatin solution was received from the Heidelberg 
University Hospital central pharmacy and was kept 
refrigerated for a maximum of 7 days for the use in this 
study. The drug was diluted to either 200 or 1000ng/mL 
immediately prior to its use. All experimental setups 
containing cisplatin were protected from light.

Clonogenic survival assays

Between 1000 (0 Gy) and 8000 (6 Gy) cells were 
plated and allowed to attach before treatment. Cisplatin 
treatment was carried out at concentrations of 200 or 
1000ng/mL for 4 hours. Irradiation was performed using 
a 6 MeV linear accelerator. Timing of drug treatment 
and irradiation for each experiment is indicated in the 
respective figure legends. After 14 days, colonies were 
fixed with 25% acetic acid (v/v) in methanol and stained 
using crystal violet solution. Colonies exceeding 50 
cells were counted, and the cellular surviving fraction 
was calculated according to the following formula: 
(#colonies/#plated cells)treated/(#colonies/#plated 
cells)untreated. Plating efficiencies were 6.53±2.65% for 
MSC1, 6.79±1.41% for MSC2, 3.58±1.98% for MSC3 and 
6.11±0.33% for HS68 cells. The sensitizer enhancement 
ratio (SER) for cisplatin was calculated at 10% survival; 
radiosensitization was assumed for SER values >1.1. 
Survival curves were modeled according to the linear-
quadratic model using Sigma Plot version 13 (SyStat 
Software, San Jose, USA). All experiments were carried 
out in triplicate, and statistical comparison of survival 
curves was performed using paired Student's t-tests.

Cell adhesion measurements

Cells were exposed to 200 or 1000ng/mL cisplatin 
for 4 hours and incubated for 48 hours before irradiation. 
100 cells were transferred to each well of 96-well plates, 
and attached cells over time were evaluated by light 
microscopy. The attachment efficiency was calculated as 
the ratio between attached and plated cells.

Cell motility measurements

10 000 cells were plated in each well of a 24-well plate 
and treated with 200 or 1000ng/mL cisplatin for 4 hours, 
followed by irradiation. Movement of MSCs and fibroblasts 
was investigated at 7-minute intervals over 35 hours by 
time-lapse microscopy. Images were acquired on an IX70 
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microscope (Olympus, Hamburg, Germany). Migratory 
tracks of treated cells were quantified using ImageJ software 
(National Institutes of Health, Bethesda, USA).

Surface marker expression

MSCs were pre-treated with 200 or 1000ng/mL 
cisplatin and irradiated 48 hours later. At 24 and 48 hours 
after radiotherapy, surface marker expression was analyzed 
on a FACSCanto flow cytometer (Becton-Dickinson, 
Heidelberg, Germany)[17]. Surface marker stainings were 
performed using a MSC phenotyping kit according to the 
manufacturer's instructions (Miltenyi Biotec, Bergisch-
Gladbach, Germany), and 10,000 events were recorded for 
each treatment condition before data analysis with FlowJo 
7.6.5 software (FlowJo LLC, Ashland, USA).

MSC differentiation

MSCs were treated with cisplatin for 4 hours and 
exposed to 6 Gy IR 48 hours later. Culturing medium was 
then replaced with differentiation media, and cells were 
proliferated for 21 days.

Chondrogenic differentiation was induced using the 
STEMPRO® Chondrogenesis Differentiation Kit (Gibco 
Life Technologies, Frankfurt, Germany). MSC spheroids 
were fixed with 4% paraformaldehyde solution before 
sectioning on a cryomicrotome. Staining was carried out 
with 1% Alcian Blue solution for 30 minutes at room 
temperature.

Adipogenic differentiation was induced using 
DMEM containing 10% FCS, 2mM L-glutamine, 1μM 
dexamethasone, 500μM 1-methyl-3-isobutylxanthine, 
1μg/mL insulin and 100U/mL penicillin/streptomycin. 
Differentiated cells were stained in 1μM/mL BODIPY 
(493/503) solution for 20 minutes (Life Technologies, 
Darmstadt, Germany) and nuclei were counterstained with 
1μM 4′,6-diamidin-2-phenylindol (DAPI). Fluorescence 
images were taken on a Keyence BioRevo9000 
microscope, and mean fluorescence intensities were 
quantified using ImageJ software.

Cell cycle analysis and apoptosis measurements

Cells were treated with cisplatin for 4 hours 
followed by irradiation 48 hours later. At 24 and 48 hours 
after treatment, cells were fixed in 3% paraformaldehyde 
solution, permeabilized in ice-cold 70% ethanol and 
incubated with a fluorescence-coupled antibody against 
activated caspase-3 (1:20, BD Pharmingen, Heidelberg, 
Germany) for 1 hour at room temperature. Nuclei were 
counterstained with 1μg/mL DAPI solution. Flow 
cytometry measurements were carried out on a LSR-II 
system, recording 10,000 events for each experimental 
condition. Early apoptosis was measured by annexin-V 
staining with the FITC Annexin-V Apoptosis Detection 
Kit (BioLegend, San Diego, USA) according to the 

manufacturer’s instructions. Data analysis was performed 
using FlowJo 7.6.5 software.

Analysis of DNA double-strand break foci

10 000 cells were plated in 24-well plates before 
a 4-hour pre-treatment with cisplatin and irradiation. 
Cells were fixed with 4% paraformaldehyde solution 
and permeabilized with ice-cold 70% ethanol before 
incubation with a mouse monoclonal antibody against 
γH2AX (1:100, Biolegend, London, UK) and an Alexa 
Fluor-488-coupled goat anti-mouse antibody (1:250, 
Invitrogen, Darmstadt, Germany) at 4°C. Nuclei were 
stained with DAPI for 5 min, and images were taken at 
40x magnification on an Axioplan2 microscope (Zeiss, 
Jena, Germany). For each treatment condition, 300 cells 
were automatically detected, and foci were counted using 
Metafer software (Metasystems, Altlussheim, Germany).

Western blot analyses

Western blots were performed as reported previously 
[49]. In short, cells were pre-treated with 1000 ng/mL 
cisplatin for 4 hours and irradiated 48 hours later before 
harvesting at 2 and 24 hours after irradiation. Protein 
samples were run on polyacrylamide gels and transferred 
to polyvinylidene difluoride membranes (Millipore, 
Darmstadt, Germany). Membranes were probed with 
antibodies against phospho-Chk2 (1:1000, Cell Signaling 
Technology, Leiden, Netherlands), phospho-p53 (1:1000, 
Cell Signaling Technology), phospho-ATM (1:1000, 
R&D, Wiesbaden, Germany), phospho-BRCA1 (1:1000, 
Cell Signaling Technology) and DNA-PKcs (1:1000, Cell 
Signaling Technology). β-actin was used as a loading 
control (1:2000, Cell Signaling Technology). Blots were 
visualized on X-ray film using a horseradish-peroxidase 
kit (Cell Signaling Technology).
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