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ABSTRACT
Since the introduction of imatinib for the treatment of chronic myelogenous 

leukemia, several oncogenic mutations have been identified in various malignancies 
that can serve as targets for therapy. More recently, a deeper insight into the 
mechanism of antitumor immunity and tumor immunoevasion have facilitated the 
development of novel immunotherapy agents. Certain targeted agents have the ability 
of inhibiting tumor growth without causing severe lymphocytopenia and amplifying 
antitumor immune response by increasing tumor antigenicity, enhancing intratumoral 
T cell infiltration, and altering the tumor immune microenvironment, which provides 
a rationale for combining targeted therapy with immunotherapy. Targeted therapy 
can elicit dramatic responses in selected patients by interfering with the tumor-
intrinsic driver mutations. But in most cases, resistance will occur over a relatively 
short period of time. In contrast, immunotherapy can yield durable, albeit generally 
mild, responses in several tumor types via unleashing host antitumor immunity. 
Thus, combination approaches might be able to induce a rapid tumor regression 
and a prolonged duration of response. We examine the available evidence regarding 
immune effects of targeted therapy, and review preclinical and clinical studies on 
the combination of targeted therapy and immunotherapy for cancer treatment. 
Furthermore, we discuss challenges of the combined therapy and highlight the need 
for continued translational research.

INTRODUCTION

The last decade has witnessed an unprecedented 
advance in the medical treatment of cancer thanks to 
the rapid development of targeted therapy and the recent 
revival of immunotherapy. Targeted agents can specifically 
inhibit oncogenic signaling in cancer cells and accomplish 
striking tumor responses in molecularly defined subsets 
of patients, although initial regression are commonly 
followed by the development of progressive diseases [1]. 
In parallel to these advances in targeting genetic drivers 
of tumorigenesis, another area of success in the treatment 
of cancer centers on the exploration of the mechanisms of 
tumor immunoevasion that has led to the development of 
several novel agents–most notably the immune checkpoint 
inhibitors which reverse T cell inhibition with antibodies 

against the programmed cell death protein-1 (PD-1) or 
its ligand programmed cell death-ligand 1 (PD-L1) and 
cytotoxic T-lymphocyte–associated antigen 4 (CTLA-
4)–that show durable efficacy in subsets of patients with 
diverse tumor types and could achieve disease control 
for extended periods [2]. In spite of these advantages, a 
deficiency of treatment with immune checkpoint inhibitor 
is the relatively low response rate in some tumor types 
because of the lack of definite predictive biomarkers. In 
addition, immunosuppressive effects of heavy baseline 
tumor burden may also limit efficacy of immunotherapy 
[3]. Given the dramatic tumor regression elicited by 
targeted therapy, as well as its immune potentiating effects 
[4], it is reasonable to explore the potential synergistic 
combination of targeted and immune therapy, which 
will hopefully yield a high and prolonged response. 
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This review examines the immune-based mechanisms of 
targeted agents, presents available data related to the use 
of combined targeted- and immunotherapy, and discusses 
the challenges we face in the clinical application of the 
combination therapy.

Immune effects of targeted therapy

Targeted therapy has changed the treatment paradigm 
of cancer over the past decades. Apart from conventionally 
proposed mechanisms of inhibiting driver mutation in 
cancer cells, targeted agents can produce immunoactivating 
effects via bolstering tumor cells immunogenicity, 
enhancing immune cells effector function, and relieving 
tumor-mediated immunosuppression (Table 1). Several key 
steps are involved in an efficient anti-tumor response. First, 
tumor associated antigens released from immunogenic cell 
death are taken up processed by dendritic cells (DCs) in 
the tumor microenvironment. Then, DCs migrate to tumor-
draining lymph nodes where they promote the priming and 
differentiation of naïve T cells. Subsequently, effector T 
cells travel from the lymph nodes through blood vessels 
to the tumor bed, and recognize and eliminate the tumor 
cell. As illustrated in Figure 1, targeted agents have a broad 
impact on the complex signals involved in the multistep 
process. Monoclonal antibodies (mAbs), which attach 
to and block the extracellular ligand binding domain of 
targeted kinase, play a direct immunoactivating role by 
antibody-dependent cellular cytotoxicity (ADCC). Thus, 
mAbs will not be further discussed here. In the following 
paragraph, we mainly discuss immune effect induced by 
small molecule inhibitors targeting different oncogenic 
signaling pathways.

PI3K/AKT/mTOR pathway inhibitors 

The phosphatidylinositol 3-kinase (PI3K)/AKT/
mechanistic target of rapamycin (mTOR) pathway is an 
intracellular signaling pathway that plays a crucial role in 
regulating cell survival and proliferation. Its dysregulation, 
which is implicated in a wide range of cancers, occurs via 
abnormal expression of pathway receptors and/or genetic 
mutations that lead to constitutive activation of key 
kinases in the pathway which could sever as targets for 
drug development [5]. 

PI3Ks are expressed in a broad range of cells, 
including all subtypes of leukocytes [6]. Therefore, 
PI3K inhibition could yield immune modulatory effects. 
Preclinical studies in different cancer models showed that 
PI3K inhibitor could heighten the antitumor properties 
of toll-like receptor (TLR) ligands and was associated 
with increased accumulation of polyfunctional T cells 
that secreted multiple effector cytokines, including 
interferon-γ (IFN-γ), interleukin-17 (IL-17), and IL-2 [7]. 
In addition, PI3K inhibition was shown to dampen Treg 
function, inhibit suppressive myeloid cells, and dampen 

immunosuppressive tumor-associated macrophages 
(TAMs) [8]. The activation of Akt was shown to increase 
programmed death ligand-1 (PD-L1) expression and lead 
to immunoresistance which could be reversed by inhibition 
of PI3K and mTOR [9]. In addition, AKT inhibition 
sensitized tumor cells to immune destruction by disrupting 
Mcl-1 mediated anti-apoptotic signaling [10, 11]. In an 
immune-resistant human papillomavirus type 16 (HPV-
16) E7-expressing tumor cell line, AKT was shown to 
be over-activated. Consistently, retroviral transfer of a 
constitutively active form of AKT induced resistance 
against E7-specific CD8+ T-cell mediated apoptosis, 
which was associated with the upregulation of anti-
apoptotic molecules. Besides, intratumoral injection of an 
AKT inhibitor enhanced the efficacy of immunotherapy 
[10]. Other studies also demonstrated that activation of 
AKT, by preventing apoptosis, induced resistance against 
the cytotoxicity of both antigen-specific cytotoxic T-cell 
lymphocytes (CTLs) in vitro and adoptively transferred 
cellular immune effectors in vivo [11]. 

The role of mTOR in the regulation of immune cell 
function has been well characterized. MTOR inhibitors 
are widely used to suppress a rejection response by the 
immune system in organ transplantation [12]. Paradoxically, 
mTOR inhibitor was recently shown to potentiate immune 
response by generating memory CD8+ T-cells in a dose- 
and duration-dependent manner [13–16]. Li et al. [17] 
reported that a short course of high-dose, instead of 
low-dose rapamycin, generated memory CD8+ T-cell 
responses, and afforded more durable protection against 
tumor compared with persistent administration of either 
low or high dose. Besides, mTOR inhibitors may have a 
dual impact on FOXP3+ regulatory T (Treg) cells. Current 
evidence showed that transient mTOR inhibition with 
rapamycin promoted T cell receptor (TCR)-induced Treg 
cells proliferation before TCR stimulation [18], whereas 
prolonged inhibition led to significant Treg cells depletion 
[19]. Based on these findings, several investigations 
explored the potential synergy between mTOR inhibitors 
and cancer immunotherapy. In a murine model of 
metastatic renal cell carcinoma (mRCC), a combination 
of the adenosine triphosphate (ATP) -competitive mTOR 
kinase inhibitory agent AZD8055 and the alphaCD40 
agonistic antibody yielded synergistic antitumor responses. 
The addition of AZD8055 increased the proliferation and 
activation of CD8 T-cells and natural killer cells, as well 
as matured macrophages and dendritic cells [20]. Another 
study on a murine model of RCC (RENCA) and melanoma 
(B16) showed that combined treatment with heat shock 
protein (HSP)-based cancer vaccines and temsirolimus 
augmented interferon-γ production and cytotoxic T-cell 
responses and enhanced generation of CD8 memory cells 
[21]. These preclinical results provide a strong rationale for 
further exploiting mechanisms by which PI3K/AKT/mTOR 
pathway inhibitors modulate antitumor immune response, 
thereby better guiding the clinical design, particularly in 



Oncotarget86971www.impactjournals.com/oncotarget

cancers harboring PI3K mutations, such as glioblastomas, 
breast, colon and endometrial cancers [22]. 

MAPK pathway inhibitors

The mitogen-activated protein kinase (MAPK) 
pathway includes the signaling molecules Ras, Raf, 

MEK, and ERK, and functions in the regulation of gene 
expression, cellular proliferation, and differentiation, and 
survival [23]. Abnormal MAPK signaling contributes to 
uncontrolled cell growth and resistance to apoptosis and is 
implicated in a wide range of cancer [24]. Besides, MAPK 
pathway also participates in the regulation of T cell 
expansion and differentiation, as well as T cell functions, 

Figure 1: Effects of Targeted Therapy on Anti-Cancer Immunity. Red line, stimulatory effects; green line, inhibitory effects; 
inh, inhibitor; TAA, tumor associated antigen; TRAIL, TNF-related apoptosis-inducing ligand; TRAIL-R, TNF-related apoptosis-inducing 
ligand receptor; NK, natural killer; NKG2D, natural killer group 2, member D; NKG2DL, natural killer group 2, member D ligands; 
TCR, T-cell receptor; MHC, major histocompatibility complex; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-1, programmed 
death 1; PD-L1, programmed death-ligand 1; IDO, indoleamine 2, 3-dioxygenase; IL, Interleukin; TGF, transforming growth factor; DC, 
dendritic cell; Th1, T helper 1; CTL, cytotoxic lymphocyte; Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell.
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Table 1: Immune-based mechanisms of targeted therapy
Pathway inhibition Immune Potentiating Effects Refs

PI3K/AKT/mTOR pathway
PI3K inhibition Heighten the antitumor properties of TLR ligands

Increase accumulation of effector T cells
Dampen Treg function
Inhibit myeloid cells
Inhibit immunosuppressive TAMs

[7]
[7]
[8]
[8]
[8]

  AKT inhibition Sensitize tumor cells to immune destruction by disrupting Mcl-1 mediated anti-apoptotic 
signaling

[10,11]

  mTOR inhibition Generate memory CD8 + T cells
Reduce Tregs

[13–16]
[13–16]

MAPK pathway
  BRAF inhibition Directly enhance T cell function

Increase antigen expression
Increase MHC class I expression
Restore IL-12 and TNF-α production by DCs
Restore CD80, CD83, and CD86 expression on DC
Reduce MDSCs
Reduce the expression of VEGF
Suppress the expression of IL-1
Increase CD8 T cell and NK cells

[31] 
[33–35]
[36] 
[37]
[37]
[38]
[39]
[40]
[41]

  MEK inhibition Protect effector CD8 T cells from death caused by chronic T cell receptor stimulation
Increase antigen expression
Restore IL-12 and TNF-α production by DCs

[32]

[34]
[37]

VEGF pathway
  VEGF/VEGFR inhibition Increase extravasation of T cell

Augment DC maturation and function
[65, 66]
[59, 60]

Multikinase inhibition Decrease the number and function of MDSCs and Tregs
Increase cytotoxic lymphocyte infiltration and response
Enhance IFN-gamma production
Diminish expression of CTLA4, PD1, and PDL-1

[69–71] 
[69–71] 
[69–71] 
[69–71] 

C-kit pathway
  C-kit inhibition Facilitate production of Th1 cytokine

Prompt NK cell activation
Suppress IDO production
Inhibit Treg and MDSCs

[84, 85, 90]
[86, 87]
[89]
[88–90]

Epigenetic pathway
Epigenetic inhibition Increase tumor antigen expression

Increase MHC molecules expression
Induce the expression of NKG2DL (MICA/B)
Reduce Treg cells and MDSCs

[109–111]
[109–111]
[112, 113]
[114, 115]

Others
Proteasome inhibition Decrease expression of peptide–MHC class I complex (thereby sensitizing tumor to NK cells)

Increase expression of FAS and the TRAIL receptor DR5
Induce NOXA-mediated enhancement of mitochondrial SMAC release (thereby increasing 
sensitivity to T cells)

[130]

[131]
[132]

HSP90 inhibition Increase tumor antigen presentation
Augment the expression of NKG2DL (MICA/B)

[135, 136]
[137, 138]

Abbreviations: TAMs, tumor-associated macrophages; TLR, toll-like receptor; Mcl-1, myeloid cell leukemia-1; Treg, regulatory T cell; 
MHC, major histocompatibility complex; IL, Interleukin; TNF--α, tumor necrosis factor-α; DCs, dendritic cells; NK, natural killer; 
MDSCs, myeloid-derived suppressor cells; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-1, programmed death 1; PD-L1, 
programmed death-ligand 1; Th1, T helper 1; IDO, indoleamine 2, 3-dioxygenase; NKG2DL, natural killer group 2, member D ligands; 
MICA/B, major histocompatibility complex class I related-A and –B; TRAIL, TNF-related apoptosis-inducing ligand.
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including cytokine secretion and chemotaxis [25]. Two 
signals are the sine qua non for T cell activation: binding 
of the TCR to the antigen-major histocompatibility 
complex (MHC) and engagement of co-stimulatory 
molecules, which in turn, will activate downstream signal 
transduction cascades including MAPK pathway [25, 26].  
Thus, MAPK pathway activation enhances T-cell 
proliferation and function. Conversely, its inhibition 
dampens T-cell response. 

Besides acting on tumor cells carrying the RAF 
mutation, RAF inhibitors can also stimulate T cell-mediated 
immunity against tumors. Accumulating evidence suggests 
that RAF inhibitors have opposing effects on BRAF-mutant 
and BRAF wild-type cells. While RAF inhibitors block 
ERK signaling in BRAF-mutant cells, they paradoxically 
enhance ERK signaling in BRAF wild-type cells in 
preclinical studies [27, 28]. It is further validated by the 
clinical observation of treatment-induced squamous cell 
cancer and keratoakanthomas in patients receiving RAF 
inhibitors [29, 30]. In a BRAF V600E-driven murine model 
of melanoma, combined treatment with vemurafenib and 
TCR engineered adoptive cell therapy (ACT) resulted in 
superior antitumor responses compared with either therapy 
alone [31]. And vemurafenib increased intratumoral 
cytokine secretion and in vivo cytotoxic activity of 
adoptively transferred cells via MAPK activation [31]. 
Similarly, MEK inhibitors, a recent study in immune-
competent mice found that MEK inhibitors protected 
effector CD8 T-cells from death caused by chronic T cell 
receptor stimulation while sparing cytotoxic activity [32].

Several studies have demonstrated that inhibition 
of MAPK pathway by BRAF and MEK inhibitors leads 
to increased expression of melanocyte differentiation 
antigens in both melanoma cell lines and clinical tumor 
samples from melanoma patients [33–35]. Further, loss 
of tumor antigen expression is observed when resistance 
to BRAF inhibition develops [35]. Besides, it has also 
been reported that BRAF inhibition induced upregulation 
of MHC class I expression in tumor cells and facilitated 
antigen presentation and recognition [36]. Besides, 
blockade of the MAPK pathway may enhance dendritic 
cell function. In vitro showed that MEK and BRAF 
inhibitors could restore the decreased production of IL-12 
and tumor necrosis factor-α (TNF-α) by DCs co-cultured 
with BRAFV600E mutant cells [37]. Moreover, the CD80, 
CD83, and CD86 expression on DC was reduced upon co-
culture and can be partially restored with BRAF inhibition.

Additional mechanisms by which MAPK pathway 
inhibitors bolster antitumor immunity involve improving 
the tumor microenvironment by reducing the suppressive 
immune cells and cytokines. In the blood sample of 
melanoma patients, vemurafenib, a BRAF inhibitor, 
decreased the frequency of monocytic myeloid-derived 
suppressor cells (MDSCs). And it inhibited MDSCs 
generation in an in vitro model of the melanoma 
microenvironment [38]. Furthermore, BRAF inhibitor 

can increase intratumoral infiltration and antitumor 
activity of TCR-engineered ACT by inhibiting tumor 
cell production of the vascular endothelial growth factor 
(VEGF) in xenograft mouse model [39]. In consistent, 
decreased VEGF expression was also observed in tumor 
biopsies of patients receiving BRAF inhibitor treatment 
[39]. BRAF inhibitors also reduce IL-1 expression in cell 
lines and tumor biopsies, which in turn may, as suggested 
by Khalili et al. [40], theoretically be able to relieve T 
cell suppression caused by IL-1 mediated upregulation of 
PD-1 ligands and COX-2 expression on tumor-associated 
fibroblasts (TAFs). Another study in BRAF V600E 
mouse melanoma transplants and in de novo melanomas 
demonstrated that BRAF inhibitor downregulated tumor 
expression of chemokine (C-C motif) ligand 2 (CCL2), 
and resulted in a robust increase in CD8+ T/FoxP3+CD4+ 
T cell ratio and natural killer (NK) cells [41]. 

Multiple studies have reported increased 
intratumoral T cells infiltration in BRAF mutant 
melanoma tumors treated with MAPK pathway inhibitors 
[35, 39, 42]. This may be due to the direct facilitation of 
T cell trafficking, or secondary to increases in tumor cell 
antigenicity and immunogenicity. As the aforementioned 
transient induction of melanoma tumor antigens by BRAF 
and MEK inhibitors, increase in intratumoral T cells 
resulted from MAPK pathway inhibition was also lost at 
the time of progression on therapy [35]. 

BRAF inhibitors were reported to be associated 
with an increase in immunosuppressive T cell exhaustion 
markers TIM-3 and PD1 and its ligand PD-L1 [35], 
suggesting that combining MAPK targeted therapy 
with PD1/PD-L1 inhibitors may improve responses. 
Subsequent studies have provided supporting evidence 
for the potential synergistic effect of this combination 
therapy [43, 44]. However, it is still unclear whether the 
enhanced expression of exhaustion markers resulted from 
the increase in T cell infiltration and cytotoxic activity 
or a direct stimulatory effect of MAPK inhibition on the 
expression of exhaustion markers. Following findings may 
shed light on this question. Elevated PD-L1 expression 
was observed in BRAF inhibitor-resistant melanoma 
cell lines and tumor samples [42, 45, 46]. Furthermore, 
induction of PD-L1 expression was shown to be limited 
to cell lines whose resistance to BRAF inhibitor did 
not depend on reactivation of the MAPK pathway [47]. 
Together, these studies implied that increased PD-
L1 expression might be secondary to enhanced T cell 
infiltration facilitated by 

In summary, BRAF inhibitors contribute to an 
intensified antitumor response via several different 
mechanisms: first, direct enhancing of T cell antitumor 
activity by a paradoxical activation of the MAPK 
pathway; second, promoting the tumor antigen expression, 
recognition, and presentation; third, altering the tumor 
microenvironment by reducing the suppressive immune 
cells and cytokines. 
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VEGF pathway inhibitors

The VEGF family in mammals is composed of 
five members: VEGF-A, VEGF-B, VEGF-C, VEGF-D 
and placenta growth factor (PGF), and binds to different 
receptors, including vascular endothelial growth factor 
receptor (VEGFR) and Neuropilin-1 (NRP1) [48]. 
The role of VEGF signaling pathway in tumorigenesis 
and progression is multifaceted. First, it is implicated 
in pathological angiogenesis, lymphangiogenesis 
and vascular permeability [49]. Second, it promotes 
tumor growth and inhibits apoptosis in an autocrine or 
paracrine manner [50]. Moreover, it facilitates epithelial–
mesenchymal transition of tumor cells [51] and regulates 
the function of cancer stem cells, independent of 
angiogenesis [52–54]. Besides, VEGF signaling affects 
the function of immune cells and fibroblasts that are 
present in the tumor microenvironment [55]. Drugs that 
interfere with the VEGF signaling pathway include two 
types, one targeting VEGF, such as bevacizumab, an anti-
VEGF-A antibody and aflibercept, a recombinant fusion 
protein containing the VEGF-A/B-binding domains 
of VEGFR1/2; the other targeting VEGFR, including 
small molecule multikinase inhibitors like sorafenib and 
sunitinib, as well as anti-VEGFR2 antibody ramucirumab. 

The immune modulating effects of VEGF come down 
to two aspects. On one side, VEGF-A reduces expression 
of endothelial cell adhesion molecules, which prompts an 
abnormal tumor vasculature and inhibits the infiltration 
of T cells and other immune cells [56–58]. On the other 
side, VEGF acts on receptors expressed on immune 
cells, thereby directly modulating the immune response. 
Preclinical studies demonstrated that VEGF-A suppressed 
dendritic cell differentiation and activity [59–61], promotes 
the expansion of MDSCs [59], upregulates the checkpoint 
molecules expression on CD8 T-cells [62], and modulates 
the proliferation of regulatory T cells [63, 64]. 

In accordance with the immune biology of VEGF, 
VEGF signaling blockade treatment shows multifaceted 
immune stimulatory effects. Studies in the murine 
model showed that modulation or normalization of 
tumor vasculature by anti-angiogenic therapy increased 
extravasation of T cell into tumors [65, 66], and exhibited 
a synergistic effect with anti-PD1 therapy [67]. Besides, 
the inhibitory effect of VEGF on DC maturation and 
function can be reversed by bevacizumab and sorafenib 
[59, 60]. Bevacizumab administration to patients with 
lung, breast, and colorectal carcinoma was associated with 
enhancement of DC maturation and antigen presentation 
[68]. In contrast, broader immune modulating effects 
were demonstrated in anti-angiogenic treatment with 
multikinase inhibitors. Preclinical and clinical studies 
have shown that sunitinib or sorafenib could decrease the 
number and function of MDSCs and Treg cells, enhance 
cytotoxic lymphocyte infiltration and response, increase 
IFN-gamma production, and diminish expression of 

CTLA4, PD1, and PDL-1 [69–71]. However, discordant 
results were reported. Liu et al. described an enhanced 
infiltration of Treg cells and an up-regulated expression of 
PD-L1 [72], while Guislain et al reported an augmented 
expression of PD-1 and an unvaried Treg cells infiltration 
[73]. Apart from inhibiting VEGFR, the multikinase 
inhibitor sunitinib also stimulates T cell response by 
interfering with signal transducer and activator of 
transcription 3 (STAT3) activation [70, 74]. 

Clinical trials combining VEGF-A or VEGFR 
inhibitors with immunotherapies showed enhanced 
antitumor activity. In a study of advanced metastatic 
melanoma treated with bevacizumab and ipilimumab 
combination therapy versus ipilimumab monotherapy, 
combination therapy increased expression of E-selectin on 
vessel endothelium, as well as intratumoral immune cell 
infiltration that was associated with clinical responses [75]. 
In patients with mRCC treated with atezolizumab (anti-
PD-L1) in combination with bevacizumab, intratumoral 
T cells were increased by bevacizumab treatment alone, 
and were further increased upon combination with 
MPDL3280A [76]. Nonetheless, it should be noted 
that seemingly related small molecule inhibitors might 
not have identical activities; sorafenib, a multi-kinase 
inhibitor that inhibits angiogenesis, was shown to be 
immunosuppressive in vitro [77, 78].

C-kit inhibitors

Imatinib, a selective inhibitor of BCR-Abl and c-kit 
receptor tyrosine kinase, is a clear example of the success 
of targeted therapy for chronic myelogenous leukemia 
(CML) and gastrointestinal stromal tumors (GIST). 
Besides directly curbing tumor growth, imatinib also 
exerts both suppressive and stimulatory effects on host 
immune system. 

The imatinib-induced immunosuppression is 
mediated by the following mechanisms. First, imatinib 
can impair the generation of dendritic cells (DCs) via 
reduced phosphorylation of AKT/ PKB Protein kinase B 
and nuclear accumulation of NF κB, thereby resulting in 
less efficient priming of CTLs [79]. Clinical observation 
of incomplete recovery of circulating DC numbers in 
CML patients treated with imatinib further provided 
supporting evidence for imatinib-induced dendritopoiesis 
[80]. Second, imatinib facilitates the conversion of the 
TAMs from anti-tumor M1 phenotype to pro-tumor M2 
phenotype. In addition, imatinib restrains TCR  induced 
T cell proliferation and activation [81, 82], as well as 
hampers cytokine synthesis by activated CD4 T cells [83]. 

Despite the above-mentioned immune inhibitory 
effects, the overall effect of imatinib on host anti-tumor 
immune response is stimulatory. The immune potentiating 
activities are mediated by hindering the activity of protein 
tyrosine kinases (PTKs) expressed on distinct cell types 
in host immune system. First, by acting on KIT in DCs, 
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imatinib skews immune responses toward the production 
of T helper 1 (Th1) cytokines which will potentially 
contribute to tumor elimination [84, 85]. Besides, in vitro 
and in vivo studies of GIST showed that imatinib, by 
blocking KIT signaling in DCs, prompted DC-mediated 
NK cell activation, and stimulated the production of IFNα 
from NK cells [86]. Similar findings have been observed 
in clinical studies that imatinib treatment enhanced IFNγ 
secretion in GIST patients [86, 87]. In addition to the 
activation of favorable cross-talk between DC and NK 
cells, imatinib also activates CD8+ T-cells, induces Treg 
cells apoptosis, and reduces the expression of the immune 
suppressive enzyme indoleamine 2, 3-dioxygenase (IDO) 
through inhibition of oncogenic KIT signaling [88]. 
Imatinib was shown to have direct inhibitory effects on 
Treg cells by downregulating expression of the Treg cells 
master transcription factor FoxP3 and decreasing their 
number and suppressive capacity [89]. It also reduced 
MDSCs and restored effector lymphocyte responses [88]. 
Dasatinib, another KIT tyrosine kinase inhibitor, also 
could reduce the suppressive functions of MDSC and 
restore a Th1 response [90], and its antitumor activity 
can be strongly potentiated by immune stimulation with 
agonist anti-OX40 antibody therapy [91]. 

On the basis of the aforementioned preclinical 
findings, multiple investigations have studied the combined 
use of c-Kit inhibitor and various immunotherapeutic 
approaches. In several phase I and phase II trials, 
concomitant treatment with imatinib and vaccines against 
BCR–ABL1 epitopes showed an enhanced anti-tumor 
activity in patients with CML [92, 93]. Other studies 
explored the combination of imatinib and IFNα or IL-2 in 
the treatment of CML. Although several studies showed 
that the addition of IFNα to imatinib led to higher rates 
of molecular response in CML patients [94, 95], others 
yielded conflicting results [96, 97]. The difference among 
these studies might be ascribed to the high discontinuation 
rates resulted from IFNα  related adverse events [97–99]. 
The combination of imatinib and pegylated IFNα 2b has 
also been investigated in patients with GIST, and interim 
analysis have shown promising results [100]. As to the 
combined use of imatinib and immune checkpoint inhibitor, 
it showed synergistic anticancer effects [88].

Epigenetic therapies and immunotherapy 

Epigenetic regulation refers to the functional change 
in the genome without altering underlying nucleotide 
sequence, which is controlled through modifications on 
DNA and histone that includes methylation, acetylation, 
phosphorylation, ubiquitination, sumoylation, proline 
isomerization and ADP ribosylation [101, 102]. Multiple 
enzymes participate in the process, including DNA 
methyltransferases (DNMTs), histone deacetylases 
(HDACs), histone methyltransferases (HMTs), histone 
demethylases, histone acetyltransferases, ubiquitin ligases 

and deubiquitinases [102]. Epigenetic downregulation of 
tumor suppressor genes and upregulation of oncogenes 
are involved in cancer development, progression and 
drug resistance [103, 104]. Recent studies have revealed 
a dynamic interplay between epigenetic modulation and 
host antitumor immunity, laying the groundwork for the 
combination of epigenetic therapies and immunotherapy. 

Epigenetic regulation of cancer immunity, 
which concerns both cancer cells and immune cells, 
includes downregulation of genes expression involved 
in recognition and eliminations of malignant cells 
by immune system, such as cytokine gene, MHC 
genes, and costimulatory genes [105, 106], as well as 
upregulation of genes involved in immunosuppressive 
pathways [107, 108]. Ergo, epigenetic therapies have 
the potential to render malignant cells more sensitive to 
immunosurveillance, as well as prime the host immune 
systems to respond to the immunotherapy. 

A growing body of evidence suggests that 
epigenetic agents can heighten tumor immunogenicity 
by up-regulating the expression of tumor antigens, 
MHC molecules, and other molecules involved in 
antigen processing and presentation [109–111], sensitize 
tumor cells to NK group 2 member D (NKG2D)-
mediated cytotoxicity of NK and T cells by inducing 
expression of MHC class I–related chain A and B 
(MICA/B) [112, 113], and reduce Treg cells and MDSCs 
[114, 115]. Correspondingly, HDAC inhibitors can 
boost the antitumor activity of immunotherapies in both 
lung cancer cell line [110] and murine model of various 
solid tumors [116–119]. However, it is noteworthy that 
epigenetic agents also exert immunosuppressive effects 
by augmenting Treg cell function, altering the Th1 and 
Th2 balance, and inhibiting proliferation and viability of 
lymphocytes [116, 120–122]. 

As to the effects on the expression of immune 
checkpoint molecules, it varies among different epigenetic 
agents. Preclinical studies have demonstrated that class 
I HDAC inhibitors, which target deacetylases mainly 
expressed in the nucleus, lead to upregulation of PD-
L1 and PD-L2 in human and murine melanoma cell 
lines [123]. In contrast, the selective HDAC6 inhibitor 
rocilinostat (which belongs to class II HDAC inhibitors) 
or HDAC6-specific silencing is shown to cause the 
downregulation of PD-L1 in CLL patients [123]. In vitro 
and in vivo studies have shown that treatment with 
DNMT inhibitor decitabine gave rise to a dose-dependent 
upregulation of PD-1, PD-L1, PD-L2 and CTLA-4 
expression [124]. Moreover, elevated expression of 
immune checkpoint genes was observed in patients 
resistant to DNMT inhibitor, suggesting its potential role 
in the development of resistance to demethylating agent 
[124]. A similar result was found that azacytidine (5-aza)-
induced demethylation of PD-1 promoter was associated 
with heightened PD-1 expression and a significantly worse 
overall response rate [125]. Another study analyzing 
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gene signatures in lung cancer samples has shown that 
5-aza up-regulates genes involved in both tumor immune 
elimination and evasion. In particular, 5-aza up-regulates 
PD-L1 transcripts and protein expression, suggesting 
a superior combinatorial effect of the combined use of 
DNMT inhibitor and PD-L1 inhibitor [126]. 

Compatible with the aforementioned immune 
biology of epigenetic agents, combinatorial therapies 
of epigenetic agents and immunotherapy have shown 
promising results in preclinical studies. Combinations of 
CTLA-4 blocking antibody 9H10 with either 5-aza-2’-
deoxycytidine (5-aza-CdR) [127] or the DNMT inhibitor 
guadecitabine [128] was shown to exert robust antitumor 
activity in syngeneic mouse models of mammary 
carcinoma TS/A and mesothelioma AB1. In another study 
on murine models of mammary and colorectal carcinoma, 
the addition of epigenetic-modulating drugs (5-aza and 
entinostat) to checkpoint inhibitors (anti-PD-1 and anti-
CTLA-4 antibodies) remarkably improved treatment 
outcomes, curing more than 80% of the tumor-bearing 
mice. And function studies revealed that the improved 
antitumor activity might be partially due to the reduction 
of MDSCs [114].

Other targeted agents

Bortezomib is the first therapeutic proteasome 
inhibitor used in multiple myeloma [129]. While multiple 
mechanisms are likely to be involved, proteasome 
inhibitors are viewed as functioning mainly by inhibiting 
the degradation of proteins critical to growth inhibition and 
apoptosis, thereby allowing for activation of programmed 
cell death in malignant cells. Aside from the pro-apoptotic 
effect on tumor cells, bortezomib can sensitize tumor cells 
to NK cells by decreasing expression of peptide–MHC 
class I complexes [130] and increasing tumor cell surface 
expression of FAS and the TNF-related apoptosis-inducing 
ligand (TRAIL) receptor DR5 [131]. Furthermore, 
bortezomib may render tumor cells more susceptible to 
T cell-mediated cytolysis by inducing mitochondrial 
accumulation of NOXA and in turn potentiating the release 
of mitochondrial second mitochondria-derived activator of 
caspase (SMAC) in response to caspase-8 and granzyme B 
[132]. Accordingly, enhanced specific CTL response was 
described when combinatorial treatment with bortezomib 
and vaccine was administered [133].

Heat shock protein 90 (HSP90) is a major chaperone 
involved in maintaining correct folding of multiple client 
proteins, including several oncoproteins that regulate cell 
growth. HSP90 inhibitor disrupts the association between 
HSP90 and its client proteins, resulting in the degradation 
of client proteins [134]. As to the immunomodulatory 
effects, HSP90 inhibitor induces degradation of client 
proteins, which may be digested to short peptides and then 
be presented with MHC class I on cancer cells, thereby 
increasing tumor sensitivity to immune elimination 

[135, 136]. In addition, HSP90 inhibitors also augment the 
expression of natural killer group 2D (NKG2D) ligands, 
facilitating tumor recognition and elimination by NK cells 
[137, 138].

Considerations for the clinical development of 
combined therapy

Combination therapy may integrate the benefits of 
the high frequency of rapid tumor regressions achievable 
with targeted therapies with the durable responses induced 
by immunotherapy. However, some key considerations 
for such combinations include identifying predictive 
biomarkers, optimizing dosing regimen and schedule, and 
minimizing treatment-related toxicities. 

First, the top of any treatment algorithms will be the 
selection of patients for initial therapy. Though it is well 
known that patients harboring specific genetic alterations 
respond to corresponding targeted agents, the predictive 
biomarkers for immunotherapy remain elusive. Moreover, 
as the effect on host anticancer immunity induced by 
targeted agents is still less characterized, combining 
or sequential use of targeted and immune therapy will 
further complicate the identification of biomarkers for 
determining patients who will benefit. 

Then, optimization of the dosing regimen and 
schedule is needed to potentiate benefits. Would 
combining bring a greater survival benefit compared with 
sequencing of targeted and immune therapy? If sequencing 
administration is better, then what is the optimal 
sequence? Will immunotherapy before targeted agents 
be more beneficial or vice versa? Within the limited data 
concerning melanoma, ipilimumab given prior to a BRAF 
inhibitor appears to be more effective in BRAF mutation–
positive melanoma. In a retrospective analysis, longer 
OS was observed when ipilimumab was given prior to a 
BRAF inhibitor (BRAFi) compared with BRAF inhibitor 
followed by ipilimumab, or with either agent alone [139]. 
However, there is a caveat: different criteria were used to 
select patients for initial ipilimumab or BRAFi therapy. 
Patients with a poorer prognosis, e.g., rapid disease 
progression or brain metastases, are more likely to receive 
upfront BRAFi treatment. The author suggested that 
the lower efficacy of ipilimumab after BRAFi might be 
due to the reduction of the tumor melanocytic antigen 
expression and T-cell infiltration at progression. Another 
explanation for the worse prognosis of patients receiving 
initial BRAFi followed by ipilimumab might be that the 
group of patients, who generally have several unfavorable 
prognostic features prior to therapy, experience aggressive 
tumor growth and short survival after progressing on 
BRAFi therapy and therefore are hardly able to benefit 
from ipilimumab, which typically requires weeks 
or months to show response. Notwithstanding these 
limitations, the data suggested that first-line ipilimumab 
might be a preferred option for BRAF-mutant metastatic 
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melanoma patients with low risk of rapid progressing 
disease. However, this is not the case for PD1 inhibitors. 
PD1 blockade therapy was shown to be associated 
with high response rates and a rapid tumor regression. 
Moreover, BRAFi treatment increases T-cell infiltration 
into the tumor and may upregulate PD-L1 expression, 
which may result in a tumor microenvironment more 
predisposed to respond to subsequent anti-PD-1 therapy 
following initial BRAFi [140, 141]. And recent studies 
lend support to this hypothesis. In an open-label, 
randomized phase III study, patients who progressed 
after both ipilimumab and a BRAFi treatment still had 
a higher response rate with nivolumab compared with 
chemotherapy [142]. Similar results were reported in a 
randomized phase II trial of pembrolizumab [143]. Hence, 
awareness should be raised that immunotherapeutic agents 
acting on different immune signaling pathway may have 
distinct biological and clinical implications when it comes 
to sequential using with targeted therapy. 

Most of the data regarding the sequence of the use 
of immunotherapy and targeted agents hitherto is derived 
from studies in melanoma. However, the scenario could 
vary wildly in other cancer types. For instance, current 
evidence showed that ipilimumab is effective in both 
BRAF mutation–positive or wild patients. In contrast, 
non-small-cell lung carcinoma (NSCLC) harboring EGFR 
mutations or ALK rearrangements, as found in a recent 
study, are associated with low rates of concurrent PD-
L1 expression and CD8+ T-cells pre- and post-targeted 
treatment, as well as low response rates to PD-1/PD-L1 
inhibitors, which argues against both combinational and 
sequential use of targeted agents and immune checkpoint 
inhibitors. In spite of discrepancies among various cancer 
types, it is anticipated that learnings obtained from 
melanoma will somehow apply to other tumor types as 
well.

Last but not least, avoiding toxicity associated with 
combinatorial therapy is crucial. A phase I trial evaluating 
concurrent vemurafenib and ipilimumab treatment in 
patients with BRAF V600 mutation–positive melanoma 
demonstrated dose-limiting hepatotoxicity and was 
terminated [144]. And it remains to be further investigated 
that if the hepatotoxicity resulted from an autoimmune 
damage caused by the combination of vemurafenib and 
ipilimumab-induced hyper-immunity, or a direct liver 
injury inflicted by the combing use of vemurafenib 
and ipilimumab. The result of this study highlights the 
importance of rigorous clinical trial aimed at evaluation 
and optimization of combined use of targeted and immune 
therapy in order to optimize the overall risk-benefit ratio.

CONCLUSIONS

It is increasingly clear that targeted agents, which 
are initially developed to inhibit tumor-intrinsic drivers of 
growth, have underappreciated but highly relevant effects 

on antitumor immunity. The aim of combined approaches is 
to bring the durable clinical benefit of immunotherapy along 
with the high response rates and rapid remission elicited 
by targeted therapy. To this end, future research should 
continue focusing on investigating the complex interplay 
between targeted agents and immunotherapy and optimizing 
parameters such as administration timing, dosage, and 
sequence that may maximize therapeutic index.
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