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ABSTRACT
Objective: The analysis was aimed to evaluate the diagnostic accuracy of shear 

wave elastography (SWE) for malignant breast lesions through a meta-analysis.
Materials and Methods: Related articles were searched in databases of Pubmed, 

Embase and Cochrane library. Overall sensitivity and specificity were analyzed 
with DerSimonian and Laird random effects model. Area under curve (AUC) with 
corresponding 95% confidence interval were also analyzed to evaluate the diagnostic 
accuracy of SWE. P value < 0.05 predicted the significant heterogeneity between 
study. Sensitivity and publication bias were assessed as well.

Results: According to the inclusion criteria, 25 articles were selected. In the 
subgroup analysis, diagnostic sensitivity and specificity of SWE in Asian population 
were 0.84 (0.79–0.88) and 0.87 (0.84–0.90), respectively, while they were 0.92 
(0.86–0.96) and 0.89 (0.84–0.92) in Caucasian population. The diagnostic accuracy 
of SWE was a little higher for Caucasians than for Asians (0.95 vs. 0.92). The 
diagnostic sensitivity and specificity of virtual touch tissue quantification (VTTQ) 
were 0.85 (0.77–0.91) and 0.93 (0.88–0.96), respectively. It showed a little higher 
value in specificity and summary receiver operating curve (sROC) than that of SWE  
(0.93 vs. 0.87; 0.95 vs. 0.93). In addition, maximum stiffness exhibited higher 
detection sensitivity than that of mean stiffness (0.91 vs. 0.85).

Conclusions: SWE serves as an accurate diagnostic technology for discriminating 
malignant and benign breast lesions.

INTRODUCTION

Breast cancer is one of serious diseases threatening 
health in women and is also the major cause of death 
among women [1, 2]. Annually, about 1.38 million 
new cases and 458, 000 deaths happen worldwide [3]. 
Moreover, the occurrence rate of this cancer has risen in 
recent years. Early detection and diagnosis contribute to 
reducing mortality and improving prognosis. It is urgent 
to develop efficient detection technology for breast cancer.

Mammographic screening is a valuable tool for early 
detection of breast cancer [4]. However, the increase in 
breast tissue density significantly reduces the diagnostic 

accuracy [5]. Among other imaging methods, gray-scale 
ultrasonography is a valuable adjunct technique. It shows 
highly sensitive detection of benign breast lesions from 
malignant ones [6–8]. The Breast Imaging Reporting and 
Data System (BI-RADS) along with ultrasonography 
contribute to understanding the standardized terminology 
about ultrasonography features, assessments and 
recommendations [9, 10]. Nevertheless, this technique 
is subjective and poorly specific [10–12]. Ultrasound 
elastography emerges as an efficient tool to detect malignant 
solid lesions through measuring the stiffness. It exhibits 
86.5% sensitivity, 89.8% specificity and 88.3% accuracy 
in discriminating benign and malignant breast lesions [13]. 

                                                           Meta-Analysis
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In the ultrasound elastography test, the performance was 
conducted with freehand compression. The elasticity map 
largely depends on the the extent of tissue compression and 
organ’s compressibility limits. Moreover, the differences in 
skill of the operator may result in distinct results. 

Shear wave elastography (SWE), a newly developed 
technology, could overcome these above mentioned 
problems. It is performed by remotely inducing mechanical 
vibrations via acoustic radiation force produced by a 
focused ultrasound beam. The displacement induced at 
the focus produces shear wave which delivers information 
about viscoelastic properties of the tissue, thus generates 
the quantitative assessment to elasticity values. Until now, 
there has been many studies investigating the diagnostic 
role of SWE in discriminating benign and malignant breast 
lesions, however, no consistent results were obtained. 

The meta-analysis was initiated to get more accurate 
results, which contributes to the early diagnosis of breast 
cancer and improvement on the treatments.

MATERIALS AND METHODS

Article retrieval

The articles were retrieved in Pubmed, Embase 
and Cochrane databases. The following search terms 
were used to retrieve articles: “shear wave elastography”, 
“SWE”, “acoustic radiation force impulse”, “ARFI”, 
“virtual touch tissue quantification (VTTQ)”, “VTTQ” 
and “breast”. The references of retrieved articles were 
carefully checked for potential ones. Only the articles in 
English were considered.

Inclusion criteria

The studies were included if they met the following 
criteria: (1) The study investigated the role of SWE in 
the diagnosis of malignant and benign breast lesions. (2) 
Pathological biopsy or cytological (fine-needle aspiration) test 
was adopted as gold standard. (3) The data of true-positive 
(TP), false-positive (FP), false-negative (FP) and true-
negative (TN) were provided. The study with larger sample 
size was included for the studies with overlapping data.

Information extraction

The following information was extracted by two 
independent authors: name of first author, sample size, 
number of breast lesions, number of malignant and benign 
breast lesions, gold standard, SWE parameters, TP, FP, FN 
and TN. The ambiguity was solved with discussion.

Statistics

All the analysis was completed in Stata 12.0 
(StataCorp LP, College Station, TX, USA) software. 

Summary sensitivity and specificity were estimated with 
DerSimonian and Laird random effects model. Besides, 
summary receiver operating characteristic (sROC) curve 
was created according to the odds ratios (ORs) weight of 
sensitivity and specificity. Meanwhile, area under curve 
(AUC) with corresponding 95% confidence interval (CI) 
was analyzed to evaluate the diagnostic accuracy of SWE. 
P value was adopted to evaluate the heterogeneity between 
studies. P < 0.05 indicated significant heterogeneity. 
Deek’s funnel plot was used to assess the publication bias. 
Subgroup analysis based on ethnicity, technology and 
SWE parameters (maximum stiffness, mean stiffness and 
stiffness ratio) were also conducted.

RESULTS

Studies selection and characteristics of included 
studies

The retrieved studies were selected according to 
inclusion criteria. The selection process was showed 
in Figure 1. Total of 188 studies were retrieved from 
databases. Then, 124 studies were excluded for 
combination of SWE and other technology, review studies, 
not SWE analysis and comparison with SWE and other 
technology. Finally, 25 studies [14–38] were included after 
exclusion of studies for without available data and virtual 
touch tissue imaging (VTTI) analysis (Table 1). The meta-
analysis included 4128 patients and 4546 breast lesions. 
In the present meta-analysis, 18 articles were for Asian 
population, while 7 for Caucasian population. 6 articles 
were based on virtual touch tissue quantification (VTTQ) 
technology and 19 based on SWE. In the articles of SWE, 
13 articles adopted maximum stiffness and 10 adopted 
mean stiffness.

Summary sensitivity and specificity analysis

The diagnostic sensitivity and specificity of SWE 
were analyzed, and the results focused on the subgroup 
analysis based on ethnicity, technology and SWE 
parameters in Table 2 and Figures 2, 3. In the analysis 
of ethnicity, the detection sensitivity and specificity of 
SWE in Asian population were 0.84 (0.79–0.88) and 0.87  
(0.84–0.90), the data in Caucasians were 0.92 (0.86–
0.96) and 0.89 (0.84–0.92) (Figure 2). So the detection 
sensitivity and specificity of SWE in Caucasians were 
higher than that in Asians. According to SROC, AUC 
was 0.92 (0.90–0.94) in Asians and 0.95 (0.93–0.97) 
in Caucasians (Figure 4). Therefore, we found that 
the accuracy rate of diagnosis of SWE in benign and 
malignant breast lesions identification was also higher 
in Caucasian than in Asian populations. The subgroup 
analysis by technology, the results showed the detection 
sensitivity and specificity of VTTQ were 0.85 (0.77–0.91) 
and 0.93 (0.88–0.96), meanwhile, the detection sensitivity 
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Figure 1: Flow chart of articles selection.

Figure 2: Analysis of the capability for SWE in discriminating breast malignant lesions from benign lesions in subgroup 
analysis by ethnicity. (A) Sensitivity [0.84 (0.79–0.88)] and specificity [0.87 (0.84–0.90)] in Asian population. (B) Sensitivity [0.92 
(0.86–0.96)] and specificity [0.89 (0.84–0.92)] in Caucasian population. SWE shows higher sensitivity and specificity in Caucasians than 
in Asians.
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and specificity of SWE were 0.88 (0.84–0.91) and 0.87 
(0.84–0.89) (Figure 3) respectively. We can see the 
detection sensitivity of SWE was high, but the specificity 
was low, compared with VTTQ. Based on SROC, AUC 
of VTTQ was 0.95 (0.93–0.97) and in SWE was 0.93  

(0.90–0.95). the accuracy rate of diagnosis of VTTQ was 
slightly higher than that of SWE, but the difference was 
not significant. In addition, we investigated the diagnostic 
role of SWE parameters (maximum stiffness, mean 
stiffness and stiffness ratio). According to our synthesized 

Table 1: Basic characteristics of included studies
Author Year Country Patients, n Lesion, n Benign, n Malignant, n Gold standard Technology Parameters

Lo 2015 China 81 88 57 31 Pathology SWE -

Xiao 2014 China 93 125 81 44 Pathology SWE -

Sobczak 2015 Poland 76 84 43 41 Pathology SWE Emean

Zhang 2015 China 125 161 106 55 Pathology SWE Emax

Klotz 2014 France 142 167 65 102 Pathology SWE Emax, Emean

Au 2014 Canada 112 123 79 44 Pathology SWE Emax, Emean, Eratio

Yao 2014 China 146 206 163 43 Pathology VTTQ SWV

Olgun 2014 Turkey 109 115 83 32 Pathology SWE Emax, Emean, Emin, Eratio

Zhou 2014 China 193 193 137 56 Pathology SWE Emax, Emean, Emin

Bai 2012 China 108 143 102 41 Pathology VTTQ SWV

Jin 2012 China 95 122 66 56 Pathology VTTQ SWV

Meng 2011 China 86 92 65 27 Pathology VTTQ -

Tamaki 2013 Japan 180 182 26 156 Pathology VTTQ -

Tozaki 2012 Japan 158 161 70 91 Pathology VTTQ SWV

Evans 2010 UK 52 53 23 30 Pathology SWE Emax, Emean, SD

Chang 2011 Korea 158 182 93 89 Pathology SWE Emean

Berg 2012 England 939 939 650 289 Pathology SWE Emax

Chang 2013 Korea 129 150 79 71 Pathology SWE -

Gweon 2013 Korea 119 133 97 36 Pathology SWE SD

Lee-a 2013 Korea 139 156 120 36 Pathology SWE Emax

Lee-b 2013 Korea 134 144 77 67 Pathology SWE Emax, Emean, Eratio

Yoon-a 2013 Korea 199 222 175 47 Pathology SWE Emax

Yoon-b 2013 Korea 236 267 208 59 Pathology SWE Emax, Emean, Eratio

Youk 2013 Korea 146 163 115 48 Pathology SWE Emax

Evans 2012 UK 173 175 64 111 Pathology SWE Emax, Emean

Note: maximum stiffness, Emax; mean stiffness, Emean; minimum stiffness, Emin; standard deviation, SD; ratio of stiffness of the mass to the background, 
Eratio; shear wave velocity, SWV; VTTQ, virtual touch tissue quantification; SWE, shear wave elastography.

Table 2: Subgroup analysis of meta-analysis
Subgroup Sensitivity (95% CI) Ph Specificity (95% CI) Ph

Ethnicity 
Asian 0.84 (0.79–0.88) 0.00 0.87 (0.84–0.90) 0.00

Caucasian 0.92 (0.86–0.96) 0.00 0.89 (0.84–0.92) 0.00
Technology 

SWE 0.88 (0.84–0.91) 0.00 0.87 (0.84–0.89) 0.00
VTTQ 0.85 (0.77–0.91) 0.00 0.93 (0.88–0.96) 0.00

SWE Parameters
Emax 0.91 (0.87–0.94) 0.00 0.84 (0.80–0.87) 0.00
Emean 0.85 (0.71–0.93) 0.00 0.84 (0.79–0.88) 0.01
Eratio 0.88 (0.80–0.93) 0.02 0.88 (0.77–0.94) 0.00

Notes: Ph, P value for heterogeneity.
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data, maximum stiffness exhibited higher detection 
sensitivity than both stiffness ratio and mean stiffness 
(0.91 vs. 0.88 vs. 0.85, respectively); while stiffness ratio 
showed higher specificity than maximum stiffness and 
mean stiffness (0.88 vs. 0.84 for both comparisons). 

Sensitivity and publication bias analysis

Sensitivity analysis was performed by deleting one 
study each time to observe the changes of results. The 
analysis indicated that the results were stable. Moreover, 

no publication bias was found in the meta-analysis 
(VTTQ: P = 0.216; SWE: P = 0.08, Figure 5).

DISCUSSION

SWE is a highly reproducible technology [39]. It 
determines the propagation velocity of shear waves within 
the tissues to quantify the stiffness in kPa or m/s [29, 40]. 
Many tissue elasticity characters can be determined within 
the region-of-interest (ROI), including maximum (Emax), 
mean (Emean) and minimum (Emin) stiffness, standard 

Figure 3: Analysis of the capability for SWE in discriminating breast malignant lesions from benign lesions in 
subgroup analysis by technology. (A) Sensitivity [0.85 (0.77–0.91)] and specificity [0.93 (0.88–0.96)] for VTTQ. (B) Sensitivity [0.88  
(0.84–0.91)] and specificity [0.87 (0.84–0.89)] for SWE. VTTQ shows lower diagnostic sensitivity than SWE, but demonstrates higher 
specificity than SWE.

Figure 4: SROC analysis in subgroup analysis by technology. (A) SROC results for VTTQ. (B) SROC results for SWE. The 
value of AUC is higher for VTTQ [0.95 (0.93–0.97)] than for SWE [0.93 (0.90–0.95)].
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deviation (SD) and ratio of stiffness of the mass to the 
background (Eratio). Qualitative SWE pattern classification 
is also reported to show good diagnostic performances 
[30, 32]. Emax and Emean refers to the general stiffness of 
the mass, while Eratio represent the relative stiffness of the 
mass to the fat tissue, the elasticity value of which is 3 kPa 
[28]. SD and pattern classification illustrate the internal 
heterogeneity of the mass [32], as the malignant masses 
are almost histologically heterogeneous. The quantitative 
measurements of SWE have been recognized as more 
objective information about the breast mass [39, 40]. 

Among the included studies, the evaluation 
about SWE in discriminating malignant and benign 
breast lesions was controversial. In the study of Zhou 
et al. [22], 193 women with 193 breast lesions were 
included to analyze the diagnostic performance of SWE 
in discriminating benign and malignant breast lesions, 
in which Emax, Emean and Emin were adopted to represent 
tissue stiffness. However, the diagnostic sensitivity 
(0.52, 0.55 and 0.77) and specificity (0.86, 0.78 and 0.78) 
of these three parameters were all low compared with 
other studies. Meanwhile, Youk et al. [37] reported high 
detection sensitivity (0.92) and specificity (0.92) of SWE, 
in which Emax represent tissue elasticity. Evans et al. (2012) 
[38] found that the detection sensitivity of SWE was 0.97 
(0.92–0.99), while specificity was only 0.69 (0.56–0.80). 
On the contrary, Evans et al. (2010) [28] reported 0.53 
detection sensitivity and 0.83 detection specificity. The 
variances in results may lie on the differences in characters 
of patients, ethnicity or SWE parameters.

Subgroup analysis based on ethnicity, technology 
and SWE parameters was performed in our analysis. 
The diagnostic sensitivity, specificity and AUC of SWE 
in Caucasian population were all higher than in Asian 
population. As we all know, acoustic radiation force 
impulse (ARFI) includes VTTI and VTTQ. The result of 
VTTI is featured by elastographic image, while the result 
of VTTQ is quantitated by SWV (m/s). Soft tissue shows 

slow SWV, compared to hard tissue [41]. VTTQ has been 
used for diagnosis in thyroid, prostate, pancreas, liver and 
breast [42–46]. In our study, subgroup analysis according 
to technology (VTTQ and SWE) was conducted. VTTQ 
showed higher detection specificity and accuracy than 
SWE, but its sensitivity was lower than SWE. So, the 
result is usually unsatisfactory using single technique 
for breast lesions identification and combination of SWE 
and VTTQ may be a good technique. In terms of SWE 
parameters, Emax showed higher diagnostic sensitivity than 
Emean and Eratio, and Eratio possessed higher specificity than 
the other two parameters. 

Due to the different study population, sample 
size, exploration factors or examinee-level errors of 
measurement, the diagnosis results presented in every 
eligible study were inconsistent. Thus the meta-analysis 
was the common method to solve the controversy as 
much as possible. This meta-analysis was based on 4128 
patients and 4546 breast lesions. The results were reliable 
and stable. However, some defects must be pointed out. 
The number of articles based on Caucasian population was 
much less than that of Asian population. The accuracy of 
results on Caucasian population might be affected. In our 
analysis, the performance of SWE seemed to be better in 
Caucasians than in Asians, especially for sensitivity, and 
this phenomenon need to be explored in future special 
researches, considering the interested topic and space 
limitation in the present meta-analysis. In previous study, 
the diagnosis technique of breast lesions distinguish was 
also different by ethnicity. The diagnostic accuracy of 
breast lesions based on ultrasound elastography (UE) was 
88.4% in Japanese [47] and the percentage was 80.6% in 
Chinese. Therefore, the diagnosis accuracy difference of 
the same technique by different races have to be allowed 
to exist because of variant genetic background and relative 
environmental factors. In addition, there existed significant 
heterogeneity between studies. The heterogeneity might 
result from multiple internal and external factors, such as 

Figure 5: Deek’s funnel plot in subgroup analysis of technology. (A) Funnel plot for VTTQ (P = 0.216). (B) Funnel plot of SWE 
(P = 0.080).
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different threshold values adopted in individual studies, 
uneven patients’ number, various basic features of patients 
and diverse test conditions. However, limited to confined 
information from our included studies, further subgroup 
analyses based on age and other potentially relevant 
factors were not performed, so possible sources for the 
heterogeneity were not identified in this meta-analysis.

Our meta-analysis demonstrates that SWE is an 
accurate and reliable diagnostic tool in discriminating 
malignant and benign breast lesions. The outcome 
is significant in clinic, which contributes to the early 
diagnostic of breast cancer.
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