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ABSTRACT
The diagnostic values of diffusion weighted imaging (DWI) and 

18F-fluorodeoxyglucose positron emission tomography/computed tomography 
(18F-FDG PET/CT) for N-staging of gastric cancer (GC) were identified and compared. 
After a systematic search to identify relevant articles, meta-analysis was used to 
summarize the sensitivities, specificities, and areas under curves (AUCs) for DWI and 
PET/CT. To better understand the diagnostic utility of DWI and PET/CT for N-staging, 
the performance of multi-detector computed tomography (MDCT) was used as a 
reference. Fifteen studies were analyzed. The pooled sensitivity, specificity, and AUC 
with 95% confidence intervals of DWI were 0.79 (0.73–0.85), 0.69 (0.61–0.77), 
and 0.81 (0.77–0.84), respectively. For PET/CT, the corresponding values were 0.52 
(0.39–0.64), 0.88 (0.61–0.97), and 0.66 (0.62–0.70), respectively. Comparison of 
the two techniques revealed DWI had higher sensitivity and AUC, but no difference 
in specificity. DWI exhibited higher sensitivity but lower specificity than MDCT, 
and 18F-FDG PET/CT had lower sensitivity and equivalent specificity. Overall, DWI 
performed better than 18F-FDG PET/CT for preoperative N-staging in GC. When the 
efficacy of MDCT was taken as a reference, DWI represented a complementary imaging 
technique, while 18F-FDG PET/CT had limited utility for preoperative N-staging.

INTRODUCTION

Although the incidence and mortality have 
dramatically decreased over the past 50 years, gastric 
cancer (GC) remains the fourth common cancer and the 
second leading cause of cancer-related deaths, with poor 
prognosis worldwide [1, 2]. The variety of therapeutic 
options available for GC, such as radical resection, 
endoscopic submucosal dissection, and neoadjuvant 
chemotherapy [3], makes accurate preoperative TNM 
staging for GC patients a necessity [4–6]. Lymph node 
assessment is crucial to treatment strategy and to 

determining prognosis in GC patients [7, 8]. In cases 
without distant metastases, extended lymphadenectomy 
based on precise lymph node staging is an important 
procedure in radical gastrectomy, which could improve the 
outcome for GC patients [9, 10]. According to Japanese 
Gastric Cancer Association, for differentiated T1a early 
GC without lymph node metastasis, endoscopic resection 
or partial resection plus D1/D1+ lymphadenectomy is 
indicated, but patients with lymph node metastasis need 
a standard D2 lymphadenectomy [11]. Closely correlated 
with tumor size, infiltrating degree, and vascular tumor 
thrombus, lymph node metastasis is regarded as a key 
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independent predictor of recurrence and is one of the 
indications for adjuvant chemotherapy in GC patients 

[10, 12]. Statistically, the 5-year survival rate (after 
surgical treatment) in patients with N0 GC is 86.1%, 
whereas the survival rates in patients with N1, N2, and 
N3 GC dramatically decrease to 58.1%, 23.3%, and 
5.9%, respectively [13]. Therefore, accurate preoperative 
lymph node assessment might facilitate the selection of 
candidates for neoadjuvant chemotherapy, optimize radical 
surgery strategy, and predict prognosis of GC [14].

Several tools to diagnose lymph node metastasis 
of GC are available, such as multi-detector computed 
tomography (MDCT), endoscopic ultrasonography (EUS), 
positron emission tomography/computed tomography 
(PET/CT), and magnetic resonance imaging (MRI) [15]. 
MDCT is most widely used to assess lymph node staging 
of GC patients, mainly on the basis of lymph node size [16, 
17], but the limited sensitivity of MDCT results in false 
negative findings [18–21]. EUS provides good information 
on lymph node status around lesions but was inadequate 
for predicting extra-perigastric and distant lymph node 
metastasis because of the limited penetration range of the 
ultrasound beam [15, 22]. Therefore, finding more accurate 
imaging techniques for N-staging of GC is essential.

Diffusion weighted imaging (DWI) and 
18F-Fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) are relatively 
new imaging techniques used for preoperative staging of 
numerous cancers. Studies have suggested that diffusion 
MRI is helpful in distinguishing malignant from benign 
lesions by use of apparent diffusion coefficient (ADC) 
measurements [23–27]. The theory is that malignant 
tumors have restricted diffusion whereas benign lesions do 
not [28, 29]. Although the value of this imaging modality 
in the differentiation of metastatic lymph nodes from 
non-metastatic lymph nodes has been shown in patients 
with neck, lung, prostate and colorectal cancers [30–33], 
no enough evidence is available to support the generally 
accepted use of DWI in nodal staging of GC patients.

18F-FDG PET/CT, which integrates the anatomical 
details from CT with the functional status from PET, 
facilitates early detection of primary lesions and 
differentiation of metastases in various cancers, including 
GC [34]. PET/CT have several advantages to PET alone or 
CT alone, and PET/CT is increasingly used in diagnostic 
staging, treatment decisions and prognosis evaluations 
[35–37]. The usefulness of PET/CT in the assessment 
of preoperative lymph node involvement is hindered 
by unsatisfactory sensitivity compared with contrast-
enhanced CT, despite PET/CT showing better specificity 
[38, 39]. Furthermore, the few published studies on 
the subject exhibited a wide range of sensitivities and 
specificities in the preoperative diagnostic performance 
of 18F-FDG-PET/CT in nodal assessment of GC [40, 41].

The value of conventional imaging techniques, such 
as MDCT, EUS, MRI, and PET, has been investigated 

by meta-analyses [42–45]. However, the efficacy of 
DWI and 18F-FDG-PET/CT in lymph node staging were 
not determined and no relevant meta-analyses were 
performed. Therefore, we performed a systematic review 
and meta-analysis to confirm and compare the diagnostic 
values of DWI and 18F-FDG PET/CT for lymph node 
staging in GC patients.   

RESULTS

Study selection and description

A total of 299 articles were screened in the primary 
literature search. After removing the ineligible study in 
each step, 15 studies (six studies [46–51] for DWI and 
nine studies [21, 38–41, 52–55] for 18F-FDG PET/CT were 
finally selected on basis of the inclusion and exclusion 
criteria. A flowchart depicting the study selection process 
is shown in Figure 1.

The principal characteristics of the 15 selected 
articles are listed in Table 1. Of these articles, 12 were 
retrospective, and three were prospective. Patients in 
11 articles were Asians while another four articles were 
Caucasians. All the reference standards are based on 
pathological analysis after surgery, although the operation 
methods differed. Considering the complexity of the MRI 
technique, Table 2 summarizes the field strength, imaging 
evaluation, b value, the number of reporting radiologists, 
pulse sequence and diagnostic criteria of DWI in each 
study. Similarly, the characteristics of 18F-FDG PET/CT 
in nine studies are displayed in Table 3.

Quality assessment

Figure 2 showed the methodological quality 
assessment for six studies of DWI and nine studies 
of 18F-FDG PET/CT. All the included studies used 
pathological diagnosis as a reference. There of six DWI 
studies and only one of nine 18F-FDG PET/CT studies 
reported time intervals between examinations and 
pathological confirmations. Six of six DWI studies and 
eight of nine 18F-FDG PET/CT studies had the same 
reference standard. Two of six DWI studies reported 
that references were blinded from MRI and no studies 
described blind measurements of reference tests without 
knowledge of 18F-FDG PET/CT. Six of six DWI studies 
and six of nine 18F-FDG PET/CT studies provided clinical 
data when interpreting the two imaging techniques.

Diagnostic accuracy of DWI and 18F-FDG PET/
CT

The pooled results are shown in Figure 3 and Table 
4. On the basis of six studies, DWI had a sensitivity of 0.79 
(95% CI: 0.73–0.85) and a specificity of 0.69 (95% CI: 
0.61–0.77). In nine studies, PET/CT achieved a sensitivity 
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and specificity of 0.52 (95% CI: 0.39–0.64) and 0.88 (95% 
CI: 0.61–0.97), respectively. The fitted summary receiving 
operator characteristics (sROC) curves estimated the area 
under summary receiver operating characteristic curves 
(AUCs) of 0.81 (95% CI: 0.77–0.84) for DWI and 0.66 
(95% CI: 0.62–0.70) for 18F-FDG PET/CT (Figure 4). 

To confirm the summary estimates of two imaging 
techniques in the evaluation of nodal staging of GC 
patients, we conducted the comparison between DWI and 
18F-FDG PET/CT on the pooled sensitivity, specificity and 

AUC by using the Z test. The results indicated that DWI 
had an advantage over 18F-FDG PET/CT in sensitivity 
(0.79 vs. 0.52, P < 0.001) and AUC (0.81 vs. 0.66, P < 
0.001), and no differences in specificity between the two 
imaging examinations was detected (0.69 vs. 0.88, P = 
0.06). 

To better understand the clinical diagnostic 
performance of the two imaging techniques, we used 
the corresponding values of MDCT from Wang’s meta-
analysis as a reference, which was published in 2015 [43]. 

Table 1: Principle characteristics of included studies
Author
(Year)

Country 
(Ethnicity) Number Design Mean age 

(Years)
Gender 
(M/F)

Imaging 
examination Reference standard*

Giganti 2017 [46] Italy
(Caucasian) 89 R 71 (66–78)# 58/31 DWI

Pathological analysis after Ivor-Lewis  
(n = 5), subtotal gastrectomy (n = 52) and 
total gastrectomy (n = 32)

Giganti 2016 [47] Italy
(Caucasian) 52 P 68.5 (43-85) 33/19 DWI

Pathological analysis after Ivor-Lewis  
(n = 2), subtotal gastrectomy (n = 28) and 
total gastrectomy (n = 22)

Joo 2015 
[48]

Korea 
(Asian) 47 P 61.5 (38–91) ND DWI Pathological analysis after curative or 

palliative gastrectomy and LN dissection

Hasbahceci 2015 
[49]

Turkey 
(Caucasian) 23 P 59.4 ± 10.9$ 11/12 DWI

Pathological analysis after radical 
resection of gastric tumor with standard 
D1+ or D2 LN dissection

Zhou 2014 [50] China 
(Asian) 52 R 60 (28–80) 34/18 DWI

Pathological analysis after D1 (n = 15), 
D2 (n = 24) and D3 lymphadenectomy 
(n = 13)

Lei 2013 
[51]

China 
(Asian) 39 R 52 (31–82) 26/12 DWI Pathological analysis after surgery

Altini 2015 [52] Italy 
(Caucasian) 45 R 66 (44–86) 27/18 PET/CT Pathological analysis after surgery

Filik 2015 
[41]

Turkey 
(Caucasian) 31 R 58.9±12.6 24/7 PET/CT

Pathological analysis after curative 
surgery including gastrectomy and lymph 
node dissection

Namikawa 2014 
[53] Japan (Asian) 90 R 72 (19–89) 70/20 PET/CT Pathological analysis after gastrectomy: 

D2 (n = 56), D1 (n = 25), D0 (n = 9)

Park 2014 [39] Korea 
(Asian) 74 R 67 (38–88) 56/18 PET/CT

Pathological analysis after standard 
gastrectomy and regional LN dissection 
(at least D2 dissection)

Youn 2012 [40] Korea 
(Asian) 396 R 59 (27–86) 278/118 PET/CT

Pathological analysis after radical subtotal 
or total gastrectomies (n = 384), open and 
closure (n = 4) and palliative surgery  
(n = 8)

Ha 2011 
[21]

Korea 
(Asian) 78 R 61 (31–85) 53/25 PET/CT Pathological analysis after standard 

lymphadenectomy (at least D2).

Kim 2011
[38]

Korea 
(Asian) 71 R 58 (27–77) 53/25 PET/CT

Pathological analysis after radical surgery 
such as total gastrectomy  
n = 30) or subtotal gastrectomy (n = 41) 
in conjunction with lymphadenectomy

Oh 2011 
[54] Japan (Asian) 136 R 64.4 ± 10.5 98/38 PET/CT Pathological analysis after gastrectomy

Yang 2008 [55] Japan (Asian) 78 R 65.6 ± 1.1 57/21 PET/CT
Pathological analysis after radical 
gastrectomy (D1+beta for EGC, D2 for 
AGC)

#Data in brackets were represented as age range; $Data were represented as mean ± standard deviation. *D0, D1, D1+, D2 and D3 refers to the classification 
of LN dissection depending on the extent of lymph nodes removed at the time of gastrectomy. Abbreviations: DWI = diffusion weighted imaging; PET/CT 
= positron emission tomography/computed Tomography; P = prospective; R = retrospective; EGC = early gastric cancer; AGC = advanced gastric cancer; 
LN = lymph node; M = male; F = female; ND = not documented.
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This meta-analysis included 30 studies, and pooled the 
sensitivity, specificity and AUC were 0.67, 0.84 and 0.83, 
respectively (Table 4). When compared with MDCT, DWI 
had higher sensitivity (0.79 vs. 0.67, P < 0.001) but lower 
specificity (0.69 vs. 0.84, P < 0.001), and 18F-FDG PET/
CT had lower sensitivity (0.52 vs. 0.67, P < 0.001) and 
equivalent specificity (0.88 vs. 0.84, P = 0.66). For value 
of AUC, neither the DWI (0.81) nor 18F-FDG PET/CT 
(0.66) had advantages over MDCT (0.83) in preoperative 
lymph node assessment of GC.

Heterogeneity analysis 

Our analysis disclosed strong heterogeneity in both 
sensitivity (I2 = 89.7%, P < 0.001) and specificity (I2 = 
98.4%, P < 0.001) among 18F-FDG PET/CT studies instead 
of DWI (I2 = 26.2%, P = 0.35 for sensitivity, I2 = 0.0%, 
P = 0.60 for specificity). The Spearman rank correlation 
test indicated the absence of a threshold effect both in 
DWI studies (coefficient = 0.27, P = 0.52) and in 18F-FDG 
PET/CT studies (coefficient = 0.30, P = 0.62). To further 
identify the resources of heterogeneity for 18F-FDG PET/
CT studies, meta-regression and subgroup analyses were 
performed on the basis of the ethnicity of subjects, number 
of subjects in each included study (sample size larger than 
100 vs. sample size smaller than 100), the manufacturer of 
PET/CT (General Electric [GE] vs. non-GE) and imaging 
evaluation (qualitative analysis vs. quantitative analysis). 

The univariable meta-regression and subgroups 
analyses of sensitivity and specificity of 18F-FDG PET/
CT are presented in Figure 5 and Table 5. Eight studies 
that utilized qualitative analyses showed much lower 
sensitivity than in quantitative analyses (0.47 vs. 0.84, P < 
0.001) but failed to explain the heterogeneity of specificity. 
Six studies that utilized GE equipment exhibited a higher 
specificity (0.96 vs. 0.47, P < 0.001) than a study that 
utilized non-GE equipment. Seven studies with the 
number of subjects < 100 showed higher specificity than 
studies with the number of subjects > 100 (0.93 vs. 0.25, 
P < 0.001). The ethnicity of participants failed to explain 
the heterogeneity (P = 0.44 for sensitivity, P = 0.83 for 
specificity, respectively). Deeks’ funnel plots provided 
evidence of publication bias for PET/CT studies (P < 
0.001) rather than DWI studies (P = 0.58) (Figure 6).

DISCUSSION

The treatment strategies and prognoses of GC 
subjects are heavily dependent on accurate staging 
before surgery. Generally, preoperative N-staging 
assessment based on imaging modalities, compared with 
T-staging, remains less precise and leaves much room for 
improvement [56–58]. Among the conventional imaging 
modalities for lymph node evaluation of GC patients, 
the value of MDCT, EUS, MRI and PET have been 
investigated by meta-analyses [42–44]. DWI and PET/

Figure 1: Flow diagram of literature search and study selection.
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Table 2: Characteristics of DWI of included studies

Study,
year

Field 
strength

Imaging 
evaluation

B value 
(s/mm2)

Number of 
reporting 

radiologists
Pulse sequences Diagnostic criteria

Giganti, 
2017 1.5T QL and QN 0, 600 Two radiologists 

(independently)

Multiplanar T2-
weighted study, 
followed by a 
DW-MRI protocol 
and a dynamic 
T1-weighted 
study

Quantitative measurements 
were obtained tracing a 
small region of interest 
on the ADC map, so as to 
minimize partial volume 
effects

Giganti, 
2016 1.5T QL 0, 600 Two radiologists 

(independently)

Dynamic 
T1WI with fat 
suppression, 
T2WI with 
and without fat 
suppression, DWI

SAD ≥ 6 mm for round 
perigastric LNs and 
hyperintensity on DWI

Hasbahceci, 
2015 1.5T QL and QN 50, 400 

and 800
One radiologist

Axial and coronal 
TSE-T1WI, axial 
and coronal fat 
saturated TSE-
T2WI, axial and 
coronal SPGR-
T1WI, axial T2W 
fat saturated 
sequence, axial 
SS-SE-EP DWI 
with a selective 
fat suppression

QL: SAD ≥ 5 mm 
with heterogeneous 
enhancement, or 
heterogeneous signal 
intensity than muscle as 
seen on DWI. QN: ADC 
value < 1.1 × 10-3 mm2/s

Joo, 
2015 3T QL

0, 100, 
500, and 

1000

Two radiologists
(in consensus)

Axial GRE-3D-
T1W, HASTE-
T2W, True-FISP, 
DWI

SAD ≥ 8 mm or any LN 
with higher signal intensity 
than muscle on DWI with b 
values of 500 or 10002/sec

Zhou, 
2014 3T QN 0, 1000 Two radiologists 

(independently)

TSE-T2WI 
without fat 
suppression, SS-
SE-EP DWI with 
fat suppression.

ADC value < 1.189 × 
10-3mm2/s

Lei, 
2013 1.5T QL 600 ND

Cross-sectional 
and coronal 
oblique T1 
FSPGR, T2 
SSFSE, T2 
ASSET, DWI

SAD of perigastric LN > 5 
mm and distalis perigastric 
LN > 6 mm

Abbreviations: QL = qualitative; QN = quantitative; SAD = short-axis diameter; LN = lymph node; MRI = magnetic 
resonance imaging; DWI = diffusion weighted imaging; T1WI = T1 weighted imaging; T2WI = T2 weighted imaging; ADC 
= apparent diffusion coefficient; SE = Spin echo; TSE = turbo spin-echo; SPGR = spoiled gradient recalled echo; SS-SE-EP 
= single-shot spin-echo echo-planar imaging; GRE = gradient recalled echo; HASTE = half-fourier acquisition single-shot 
turbo spin-echo; True-FISP = true fast imaging with steady-state precession; FLASH = fast low angle shot; SSFSE = single-
shot fast spin-echo; ASSET = array spatial sensitivity encoding technique; FSPGR = fast spoiled gradient-recalled; ND = 
not documented.



Oncotarget84478www.impactjournals.com/oncotarget

CT are updated imaging techniques, but their diagnostic 
efficacy for lymph node involvement in GC has been 
inconsistently reported [40, 41, 49, 51]. We performed this 
systematic review and meta-analysis to provide evidence 
for a better selection for imaging assessment of metastatic 
lymph node in patients with GC. 

Among the 15 DWI and 18F-FDG PET/CT studies 
included in our meta-analysis, DWI achieved a higher 
sensitivity than PET/CT for lymph node staging in GC 
patients (0.79 vs. 0.52, respectively, P < 0.001). However, 
no difference in specificity between the DWI and 18F-FDG 
PET/CT was detected (0.69 vs. 0.88, respectively, P 
= 0.06). Consequently, the superiority of DWI can be 
explained by the observation that DWI produced fewer 
false-negative results (1 – sensitivity) for N staging of 
GC. However, the specificity was not fully satisfactory, 
and thus excessive treatment and excision range might 
occur because of a relatively greater false-positive results 
(1 – specificity). The poor sensitivity of 18F-FDG PET/
CT resulted in a high number of false-negative findings 
(1–sensitivity), which was similar to the results of Yun 
et al. [59] and Yang et al. [55], suggesting that positive 

lymph nodes would be missed and potentially resectable 
GC patients would receive inappropriate therapy.

The sROC curve and its AUC are used to describe 
the relation between the sensitivity and specificity in 
a study and the overall estimation of test performance 
[60]. A preferred test has an AUC close to 1, whereas a 
poor test has an AUC close to 0.5. The AUC for DWI is 
significantly higher than that for 18F-FDG PET/CT (0.81 
vs. 0.66, P < 0.001), indicating that DWI might be more 
accurate for nodal staging in GC patients. However, 
neither of the AUCs of the two techniques are high enough 
to be sufficient for nodal staging of GC patients in clinical 
practice. 

Currently, MDCT is the most frequently used 
imaging modality for GC staging before surgery [61]. To 
better understand the clinical value of DWI and 18F-FDG 
PET/CT for N-staging of GC patients, we compared 
the summarized sensitivities, specificities, and AUCs of 
the two imaging modalities with those of MDCT in a 
previous meta-analysis performing by Wang et al. [43]. 
This meta-analysis covering 6,726 subjects estimated 
the sensitivity, specificity, and AUC to be 0.67, 0.84, and 

Figure 2: Quality assessment of included studies using QUADAS-2. (A) For DWI studies; (B) For 18F-FDG PET/CT studies.
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0.83, respectively. The poor sensitivity of MDCT is not 
adequate for the detection of metastasized lymph nodes, 
so it is essential to obtain the accuracy of other imaging 
techniques for N-staging of GC patients and analyze the 
possibilities of these techniques replacing MDCT. In 
this study, DWI achieved higher sensitivity but lower 
specificity, and 18F-FDG PET/CT had lower sensitivity and 
equivalent specificity when compared with MDCT (data 
are shown in Table 4). DWI and 18F-FDG PET/CT had no 
obvious advantages of AUC over MDCT in preoperative 
lymph node assessment of GC patients, and the two 
techniques are more costly and require longer scanning 
times than MDCT. Thus, DWI and 18F-FDG PET/CT were 
unlikely to take the place of MDCT in the short term for 
lymph node staging of GC patients. Nevertheless, the 
higher sensitivity and lower specificity of DWI indicates 

that DWI and MDCT could be complementary imaging 
modalities and the combined utilization of the two 
techniques might improve the accuracy of lymph node 
staging [62].

DWI, a magnetic resonance imaging (MRI) 
technique, can recognize the restricted diffusion of 
water molecules among tissues at the cellular level 
by the measurement of ADC value [23, 63]. DWI has 
increasingly been used to characterize various diseases 
and diseased lymph nodes, including alimentary tract 
cancers such as gastric or colorectal cancers, and has 
shown promising results [27, 64–66]. However, the value 
of DWI in the detection and characterization of lymph 
nodes in GC remains controversial [48, 49, 64]. In the 
past, DWI of the abdomen and pelvis was easily distorted 
by respiratory motion and gastrointestinal peristalsis 

Table 3: Characteristics of 18F-FDG PET/CT of included studies
Study
(year) Manufacturer

CT Scanner 
(detector rows,
slice thickness)

Imaging 
evaluation

Injected
dose

Number of 
reviewers

Diagnostic criteria of positive lymph node 
metastases

Altini 2015 GE 16, 3.75 mm QL 4.6 MBq/kg# a nuclear physician Higher 18F-FDG uptake in at least one lymph 
node

Filik 2015 GE ND, 5 mm QL 8-10 mCi ND Higher 18F-FDG uptake than adjacent tissues 
and blood pool activity

Namikawa 
2014 GE 14, 1.25 mm QL 3.5 MBq/kg ND

18F-FDG uptake similar to or higher than that 
of the liver

Park 2014 GE 8, 1.25 mm QL 7.4 MBq/kg ND
18F-FDG uptake similar to or higher than that 
of the blood pool

Youn 2012 Siemens ND, 5 mm QL ND One nuclear 
physician

Higher 18F-FDG uptake than normal tissues

Ha 2011 Siemens ND, 5 mm QL 5-6 MBq/kg ND
18F-FDG uptake of lymph node bearing areas 
regardless of size

Kim 2011 GE ND, 4.3 mm QL 370 MBq

Two subspecialty-
trained abdominal 
radiologists
and one nuclear 
medicine physician 
(in consensus)

A focal 18F-FDG uptake was higher than the 
normal biodistribution of background FDG 
activity

Oh 2011 Philips ND, ND QN 7.4 MBq/kg ND P-SUV > 3.2 kBq/mL or higher 18F-FDG 
uptake in lymph nodes

Yang 2008 GE ND, ND QL 200 MBq ND Higher 18F-FDG uptake in at least one lymph 
node

#MBq/kg meant that the injected dose of 18F-fluorodeoxyglucose was based on the weight of patients who received PET/CT scanning. Abbreviations: CT: 
computed tomography; GE = American General Corporation; 18F-FDG = 18F-fluorodeoxyglucose; QL = qualitative analysis; QN = quantitative analysis; 
ND = not documented; P-SUV = peak-standardized uptake value.

Table 4: Comparison of diagnostic efficacy of preoperative N-staging in gastric cancer using 
18F-FDG PET/CT, DWI and MDCT based on meta-analyses

Study Techniques Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)
Present study PET/CT 0.52 (0.39–0.64) 0.88 (0.61–0.97) 0.66 (0.62–0.70)
Present study DWI 0.79 (0.73–0.85) 0.69 (0.61–0.77) 0.81 (0.77–0.84)

Wang et al. [43] MDCT 0.67 (0.66–0.69) 0.84 (0.83–0.85) 0.83 (ND)
Abbreviations: 18F-FDG PET/CT, 18F-fluorodeoxyglucose positron emission tomography/computer tomography; DWI = 
diffusion weighted imaging; MDCT = multi-detector computed tomography; 95% CI = 95% confidence intervals; AUC = 
area under summary receiver operating characteristic curve; ND = not documented.
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[67, 68]. Recent technological developments in MRI, 
including new sequences (echo-planar imaging sequence, 
multichannel coils and parallel imaging), the high-field 
magnet and volumetric acquisition of T1-weighted 
images, allow the acquisition of DWI that is largely free 
of motion artifacts and provide excellent anatomical detail 
[23, 69, 70]. By performing this meta-analysis, we found 
that DWI displays an acceptable sensitivity and moderate 
specificity for N-staging, but based on the AUC value, the 
DWI is not adequate for nodal staging of GC patients in 
clinical practice. 

In the N-staging of GC patients, the accuracy of 
DWI is poor when based only on the size of lymph node 
in imaging, but when integrated with the ADC value as the 
diagnostic standard, the detection rate is much improved 
[23, 50, 71]. Zhou et al. [50] reported that the mean ADC 
value of metastatic lymph nodes (1.059 × 10–3 mm2/s) was 
lower than that of non-metastatic lymph nodes (1.4029 
× 10–3 mm2/s). The overall accuracy is higher when the 
reference standard is based on ADC (ADC < 1.189×10–3 
mm2/s) than when based on the short axis diameter (SAD) 
(SAD > 5.05 mm) [50]. A study by Giganti et al. proved 
that ADC value significantly differed according to local 
invasion, nodal involvement and the AJCC Cancer Staging 

Manual, 7th Edition TNM stage groups for GC, indicating 
that the ADC was potentially useful in the staging and risk 
stratification of GC patients [46]. Although Hasbahceci 
et al. [49] demonstrated that ADC value did not aid in 
distinguishing metastatic lymph nodes, this contrary 
conclusion was based on study of only 23 GC subjects and 
was not convincing. In addition, the ADC value correlates 
with the histological features, response to treatment 
and long-term prognosis [72–75]. The increased ADC 
signifies long-term survival [72]. Thus, the quantitative 
analysis measured by ADC value is a promising method 
for N-staging assessment in the future.

Although no wild heterogeneity was assessed by 
the I2 test among the selected studies of DWI, a wide 
variation in imaging techniques including preparations 
(gastric emptying, reduced peristole and filling-
expansion of the stomach), instruments (field strength, 
pulse sequence, b value), procedures (breathholding, 
measuring method of ADC value) still existed [47–51]. 
These inconsistencies could inhibit the accuracy of DWI 
for staging [76, 77].  However, because of the limited 
number of included studies of DWI, no subgroup analyses 
were carried out to explore their impacts on the diagnostic 
performance of DWI. As a result, large-scale, high-

Figure 3: Forest plots of DWI and 18F-FDG PET/CT in evaluating preoperative N-staging in patients with gastric 
cancer.  (A) Pooled sensitivity of DWI; (B) Pooled specificity of DWI; (C) Pooled sensitivity of 18F-FDG PET/CT; (D) Pooled specificity 
of 18F-FDG PET/CT.
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quality trials are expected to standardize the preparations, 
parameters of instrument, procedures, and cutoff values of 
DWI for lymph node diagnosis.

Integrated PET/CT directly combines PET data 
on metabolic changes with highly detailed anatomic 
CT information, which help detect lesions earlier and 
provide more precise location information than CT 
or PET alone in numerous cancers [78]. Even though 
18F-FDG PET/CT achieved inadequate sensitivity, it 
was not undertaken to evaluate lymph node metastasis 

in GC patients. On one hand, physiologic uptake was 
originally high in GC. Thus when primary tumor uptake 
was not dramatically increased, the detection of lymph 
node metastasis is difficult [79, 80]. On the other hand, 
most of the included studies only adopted the qualitative 
analysis by radiograph reading, without combining with 
the value of maximum standardized uptake (SUVmax) 
[21, 38–41, 52, 53, 55]. In our subgroup analysis, the 
quantitative analysis based on SUVmax displayed a much 
higher sensitivity than qualitative analysis (0.84 vs. 0.47), 

Table 5: The results of subgroup analysis for 18F-FDG PET/CT
subgroups No. of studies Sensitivity (95% CI) P Value Specificity (95%) P Value
Ethnicity
Asian 6 0.49 (0.36–0.63)

0.44
0.83 (0.59–1.00)

0.63
Caucasian 3 0.62 (0.35–0.88) 0.99 (0.94–1.00)
Number of subjects
< 100 7 0.50 (0.36–0.64)

0.53
0.93 (0.87–0.99)

0.00
≥ 100 2 0.59 (0.35–0.84) 0.25 (0.02–0.53)
Manufacturer
GE 6 0.50 (0.34–0.65)

0.60
0.96 (0.90–1.00)

0.00
Non-GE 3 0.57 (0.36–0.77) 0.47 (0.05–0.89)
Imaging evaluation
Qualitative analysis 8 0.47 (0.38–0.56)

0.00
0.90 (0.75–1.00)

0.06
Quantitative analysis 1 0.84 (0.72–0.92) 0.68 (0.23–1.00)

Abbreviations: GE = American General Corporation; 95% CI = 95% confidence intervals.

Figure 4: The summary ROC curves of DWI and 18F-FDG PET/CT in evaluating preoperative N-staging in patients 
with gastric cancer.  (A) For DWI; (B) For 18F-FDG PET/CT .
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with the imaging analysis being regarded as a potential 
resource of heterogeneity in our meta-analysis [54]. In 
fact, a lack of unified criteria prevents confirmation of the 
diagnosis of lymph node metastasis and the cutoff values 
of SUVmax differing in quantitative analysis [54, 81, 82]. 
When coupled with the long scanning-acquisition time 
and expense, 18F-FDG PET/CT is not recommended as 
the first choice for clinically assessing lymph node staging 
in GC patients [38, 41, 80]. Finding another sensitive 
imaging agent and establishing the criteria for N-staging 

are proposed to improve the present situation of PET/CT  
[54, 83, 84]. 

The present meta-analysis has several limitations. 
First and foremost, no head-to-head comparison between 
MRI and 18F-FDG PET/CT were done in a single study, 
which might cause some bias in patient selection, or even 
adjustment. Second, the assessment of the two techniques 
for lymph node staging in some included studies were 
patient-based. A region-by-region or node-by-node 
comparison that could provide crucial information and 

Figure 5: Univariable meta-regression & subgroups analyses of diagnostic performance of 18F-FDG PET/CT. 
(Abbreviations: GE = American General Corporation; QL = qualitative analysis; QN = quantitative analysis).

Figure 6: Deeks’ funnel plot asymmetry tests for assessing potential publication bias. (A) For DWI; (B) For 18F-FDG PET/
CT.
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a more accurate assessment was not performed in this 
study. Third, a wide variation in imaging techniques 
likely influenced the assessment of diagnostic accuracy of 
18F-FDG PET/CT and DWI, which are potential resources 
of heterogeneity. Forth, no single reference standard 
strategy for the histopathologic analyses was applied, and 
a wide variation in histopathologic types of GC was found 
in all studies. This factor was not analyzed because it was 
too mixed to classify. Finally, potential publication bias 
was found in 18F-FDG PET/CT studies by use of Deeks’ 
funnel plot.

In conclusion, DWI achieved a higher sensitivity 
and equivalent specificity than 18F-FDG PET/CT in 
preoperative N-staging of GC patients. When the efficacy 
of MDCT was taken as a reference, DWI represented a 
complementary imaging technique and 18F-FDG PET/
CT had limited usefulness in the preoperative assessment 
of N-staging. Therefore, large-scale randomized control 
trials are needed to confirm their clinical values and to 
establish reference standards for measurement, analysis, 
and cutoff values of lymph node diagnosis for both DWI 
and 18F-FDG PET/CT.

MATERIALS AND METHODS

Search strategy

A comprehensive computer-aided literature search 
of PubMed, Cochrane Library, and Embase databases was 
carried out to find relevant articles about DWI or PET/
CT for N-staging in GC subjects (last update July 12th, 
2017). We used a search algorithm based on a combination 
of the following parameters: (“DW-MRI” OR “diffusion-
weighted magnetic resonance imaging”) OR (“FDG” OR 
“18F-FDG” OR “FDG-18F” OR “fluorodeoxyglucose” OR 
“PET/CT” OR “positron emission tomography/computed 
tomography”) AND (“stomach cancer” or “gastric cancer” 
or “stomach carcinoma” or “gastric carcinoma” or “GC”) 
AND (“lymph node metastasis” or “nodal metastases” or 
“lymphatic metastasis” or “lymph node involvement” or 
“nodal involvement” or “lymph node status” or “lymph 
node staging” or “N staging” or “TNM”).

Inclusion and exclusion criteria

The inclusion criteria were as follows: (i) Studies 
investigating the diagnostic value of DWI or 18F-FDG 
PET/CT in distinguishing lymph node metastasis in GC 
were identified. (ii) Pathological analyses were used as 
the gold standard of diagnosis. (iii) The values of true 
positive, false positive, false negative, and true negative 
could be obtained or calculated in the original literature. 
(iv) Studies were based on a per-patient or per-lesion 
analysis. (v) For eligible studies with data published more 
than once, we only included the studies with the largest 
sample sizes.

The exclusion criteria were as follows: (i) Studies 
focused on DWI or 18F-FDG PET/CT in monitoring 
chemoradiotherapy response or prognosis rather than on 
lymph node diagnoses. (ii) Studies included subjects who 
received preoperative radiotherapy or chemotherapy, which 
might cause tumor down-staging. (iii) Articles were case 
reports, reviews, meeting abstracts, in vitro studies, or 
animal experiments for GC, or the studies had fewer than 20 
samples. (iv) Studies had data errors in statistical analyses.

Data extraction and quality assessment

Two reviewers (XZ and YL, respectively) 
independently reviewed titles and abstracts of the 
retrieved articles according to the above-mentioned 
selection criteria. Articles were excluded if clearly 
ineligible. Then the full-text versions of the selected 
articles were evaluated to determine their eligibility for 
inclusion. Finally, the above two reviewers cross-checked 
each independently selected study. Any controversy 
was resolved by consultation with a third author (BC). 
For each eligible study, the following information was 
extracted: first author, year of publication, country and 
ethnicity of the study subjects, study design, technique 
characteristics for DWI and 18F-FDG PET-CT, reference 
standard, and diagnostic criteria. The values of true-
positive, false-positive, true-negative, and false-negative 
were also extracted. The methodological quality was 
assessed according to the revised tool of the Quality 
Assessment of Diagnostic Accuracy Studies (QUADAS-2) 
, which consists of 11 question items with responses “yes,” 
“no,” or “not available” [85]. Two reviewers (XZ and YL, 
respectively) independently extracted the relevant data and 
assessed the methodological quality from each included 
study. Any discrepancies were resolved by discussion.

Statistical analysis

For patient-based analyses, we identified the pooled 
sensitivities and specificities of DWI and PET/CT, as well 
as their 95% CI using the weighted average method. The 
sROC curve was constructed for recruited studies and 
AUC was calculated to estimate the overall accuracy. 
Comparison between the two techniques was performed 
by use of the Z test, which could detect diagnostic 
differences between sensitivity, specificity, and AUC 
of the two imaging modalities. The following formula 
was used: Z = (VAL1−VAL2)/SORT (SE1

2+SE2
2). VAL 

indicated the means of sensitivity, specificity, and AUC, 
and SE was the standard error of corresponding variables.

To better understand the diagnostic performance of 
the two imaging techniques, we took the performance of 
MDCT for nodal staging of GC as a reference. The pooled 
estimates of sensitivity, specificity and AUC with 95% 
CIs was derived from Wang’s meta-analysis, which was 
published in 2015 [43]. 
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Heterogeneity among those eligible studies was 
assessed by the I2 test, with I2 > 50% suggesting mild 
heterogeneity among studies. When I2 index was higher than 
50%, a random-effect model was used; otherwise, a fixed-
model was used. If mild heterogeneity existed among those 
included studies, the potential sources of heterogeneity 
were identified by meta-regression and subgroup analyses. 
Threshold effect was an important additional source of 
variation in meta-analysis. To assess whether the threshold 
effect existed, the Spearman’s correlation test was used. 

Deeks’ funnel plots were to determine potential 
publication bias for DWI and 18F-FDG PET/CT in assessing 
preoperative N-staging of primary GC subjects. Stata 14.0 
software was used to run all the statistical analyses. Values 
of P < 0.05 were considered statistically significant.
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