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ABSTRACT

Although sorafenib has been approved for treating hepatocellular carcinoma 
(HCC), clinical results are not satisfactory. Polypharmacology (one drug with multiple 
molecular targets) is viewed as an attractive strategy for identifying novel mechanisms 
of a drug and then rationally designing more-effective next-generation therapeutic 
agents. In this study, a polypharmacological study of sorafenib was performed by 
mining the next-generation Connectivity Map (CMap) database, CLUE (https://clue.
io/). We found that sorafenib may act as a histone deacetylase (HDAC) inhibitor based 
on similar gene expression profiles. In vitro experimental analyses demonstrated 
that sorafenib indirectly inhibited HDAC activity in both sorafenib-sensitive and 
-resistant HCC cells. A cancer genomics analysis using the cBioPortal online tool 
showed the frequent upregulation of HDAC mRNAs. Furthermore, HCC patients with 
higher expressions of HDAC1 and HDAC2 had worse overall survival. Taken together, 
our study suggests that inhibition of HDAC by sorafenib may provide clinical benefits 
against HCC, and enhancement of HDAC-inhibitory activity of sorafenib may improve 
its therapeutic efficacy. In addition, our study also provides a novel strategy to study 
polypharmacology.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most 
common cancers and a leading cause of cancer-related 
deaths worldwide [1]. Major remedial treatments for HCC 
are surgical resection and liver transplantation. However, 
only 15%~25% of patients are suitable for these treatments 
[2]. In addition, HCC tends to develop chemoresistance 

and is highly refractory to chemotherapy. Furthermore, no 
effective therapy can be used on patients with advanced 
or metastatic disease [2]. Molecular targeted therapy is 
considered a new treatment option. Sorafenib, a multi-
kinase inhibitor, was approved to treat advanced HCC in 
2007 [3]. Unfortunately, it seems that sorafenib treatment 
does not achieve satisfactory results in HCC patients, 
because less than 3 months of actual survival time was 
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gained in both Western and Asian populations [3, 4]. 
Thus, a better understanding of the action mechanism of 
sorafenib is urgently needed to improve its therapeutic 
efficacy.

Polypharmacology is one drug exhibiting actions 
on more than one molecular target [5]. Predicting 
the polypharmacology of clinical drugs provides an 
opportunity to improve their therapeutic efficacies 
through discovering novel action mechanisms [6]. In 
recent years, large-scale databases have continually been 
established to correlate drug-induced changes in gene 
or protein expressions with their phenotypes on a global 
scale [7]. Utilization of these databases will be highly 
useful in investigating polypharmacology. For example, 
the Connectivity Map (CMap) is a database containing 
gene expression profiles from cultured human cancer cells 
treated with small bioactive molecules. By mining and 
comparing gene-expression signatures, this tool can be 
used to find connections among small molecules sharing 
similar action mechanisms [8]. The Library of Integrated 
Cellular Signatures (LINCS), the next generation of 
CMap, generates gene expression signatures using the 
L1000 platform [9]. The L1000 assay is a messenger (m)
RNA expression profiling technique based on a reduced 
representation of the genome whereby 1000 carefully 
selected transcripts are monitored, and from which the 
remainder of the transcriptome can be computationally 
inferred [9]. Compared to CMap, LINCS contains gene 
expression profiles of small molecules and also those of 
genetic constructs for knocking-down genes (short hairpin 
(sh)RNA) or over-expressing genes (complementary (c)
DNA). LINCS has greater numbers of gene expression 
signatures (8870 perturbagens) and cell lines (nine cancer 
cell lines) than CMap, and thus may provide more-reliable 
predictions. Previously, LINCS was accessed through a 
web-based interface, lincscloud (http://www.lincscloud.
org/), that was recently replaced by CLUE (https://clue.io/).

In this study, we mined the CLUE database to 
discover novel actions of sorafenib. We found that 
inhibition of histone deacetylase (HDAC) activity is a 
novel function of sorafenib. In vitro experimental analyses 
validated that sorafenib indirectly inhibits HDAC activity 
in both sorafenib-sensitive and -resistant HCC cells. A 
cancer genomics analysis indicated that higher mRNA 
expressions of HDAC1 and HDAC2 in HCC were 
associated with a worse overall survival of HCC patients. 
Therefore, inhibition of HDAC activity is associated with 
the anticancer activity of sorafenib against HCC.

RESULTS

CMap analysis predicts sorafenib as a potential 
HDAC inhibitor

It is believed that CMap is a suitable tool for 
discovering novel mechanisms of drugs by comparing 

similarities of gene expression profiles among drugs. By 
querying CLUE (https://clue.io/), the next generation 
CMap database, for the polypharmacology of sorafenib, 
we accidentally found similarities of HDAC inhibitors 
with sorafenib (Figure 1). Surprisingly, the gene 
expression profile of sorafenib was more similar to 
those of HDAC inhibitors compared to BRAF/RAF1, 
MEK, and vascular endothelial growth factor receptor 
(VEGFR) inhibitors (Figure 1). To investigate whether 
this is a general phenomenon of protein kinase inhibitors, 
we queried the CLUE database and compared drug 
similarities among sorafenib and other common protein 
kinase inhibitors (their names and functional descriptions 
are listed in Supplementary Table 1). As shown in Figure 
2, the gene expression profile of canertinib (connectivity 
score = 99.3914), like sorafenib (connectivity score = 
99.7771), was very similar to those of HDAC inhibitors. 
Other inhibitors, including bosutinib, dasatinib, and 
neratinib, also had higher connectivity scores (> 90). 
However, other compounds were not as similar to HDAC 
inhibitors as was sorafenib. Therefore, the CMap analysis 
indicated that inhibition of HDAC may be a novel and 
specific function of sorafenib.

Sorafenib indirectly inhibits HDAC activity in 
both sorafenib-sensitive and -resistant HCC cells

To investigate the effects of sorafenib on HDAC 
activity, two HCC cell lines, HepG2 and PLC/PRF/5 
(PLC5), were used. First, their sensitivities to sorafenib 
were determined by an MTT cell viability assay. As 
shown in Figure 3A, HepG2 cells were more sensitive to 
sorafenib than PLC5 cells, suggesting primary resistance 
of PLC5 cells to sorafenib. To test whether sorafenib can 
directly inhibit HDAC activity, nuclear lysates of HepG2 
and PLC5 cells were incubated with sorafenib in vitro, and 
then an HDAC activity assay was performed. However, 
sorafenib did not inhibit HDAC activity (Figure 3B). 
Next, we examined if sorafenib could indirectly inhibit 
HDAC activity. HepG2 and PLC5 cells were treated with 
sorafenib for 24 and 48 h, and then nuclear lysates were 
prepared for an HDAC activity assay. As shown in Figure 
3C, sorafenib significantly inhibited HDAC activity at 24 
and 48 h. We noted that the inhibitory effect of sorafenib 
on HDAC activity in PLC5 cells was slightly attenuated 
at 48 h (Figure 3D), which implied that the HDAC-
inhibitory ability of sorafenib was partially affected by 
the primary sorafenib-resistant property of cancer cells. 
To confirm this phenomenon, a HepG2 (HepG2-SR) cell 
line with sorafenib-acquired resistance was generated. 
A cell viability analysis demonstrated the resistance of 
HepG2-SR cells to sorafenib (Figure 4A). Sorafenib was 
able to inhibit HDAC activity in both HepG2 and HepG2-
SR cells at 24 and 48 h (Figure 4B, 4C). Similarly, slight 
resistance of HepG2-SR cells to sorafenib-induced HDAC 
inhibition at 24 and 48 h was also observed (Figure 4B, 
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Figure 1: CMap analysis of drug connections with sorafenib. Connections of sorafenib with other compounds were analyzed 
using an online Touchstone tool of the CLUE database as described in “Materials and Methods”. Drug connections were viewed as a 
heatmap. Perturbational classes were ranked based on summary connectivity scores.
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4C). Therefore, sorafenib inhibits HDAC activity in both 
sorafenib-sensitive and -resistant HCC cells, although this 
effect was partially affected by primary and acquired drug 
resistance of cancer cells.

Clinical intervention with the HDAC-inhibitory 
activity of sorafenib in HCC

To gain more insights into the clinical benefits of 
sorafenib through its HDAC inhibition, genetic alterations, 
including the mutation status, copy number alterations, 
and mRNA expressions, were examined by accessing the 
cBioPortal for Cancer Genomics (http://www.cbioportal.
org/) [10, 11]. There are 18 HDACs identified in humans, 
which are classified based on homologies to yeast HDACs 
[12, 13]. Classes I (HDACs 1, 2, 3, and 8), IIa (HDACs 4, 

5, 7, and 9), IIb (HDACs 6 and 10), and IV (HDAC11) are 
zinc-dependent deacetylases [12, 13]. Class III HDACs 
(sirtuins 1~7) are zinc-independent and require NAD+ 
for their activities [14]. Herein, we focused on zinc-
dependent deacetylases. As shown in Figure 5A, 58% of 
HCC patients showed genetic alterations of class I, IIa/b, 
and IV HDACs. The most common alteration of HDACs 
was mRNA upregulation. To confirm this result, another 
five HCC patient datasets [15–18] were used to compare 
mRNA overexpressions of HDAC isoforms by mining 
the Oncomine database (http://www.oncomine.org/) [19]. 
As shown in Figure 5B, mRNAs of HDAC1, HDAC2, 
HDAC4, and HDAC5 were significantly upregulated in 
these datasets. To further investigate the essential role 
of each HDAC isoform in the overall survival of HCC 
patients, a Kaplan-Meier (KM) survival analysis using the 

Figure 2: CMap analysis comparing drug connections with sorafenib and other protein kinase inhibitors. Connections 
of sorafenib with other protein kinase inhibitors were analyzed using an online Repurposing tool of the CLUE database as described in 
“Materials and Methods”. Drug connections were viewed as a heatmap. Perturbational classes were ranked based on summary connectivity 
scores of sorafenib. Only the most similar perturbational classes and a summary of each drug are shown. The original figure is shown in 
Supplementary Figure 1.
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Figure 3: Effects of sorafenib on the cell viability and histone deacetylase (HDAC) activity in HepG2 and PLC5 cells. 
(A) HepG2 and PLC5 cells were treated with 0~10 μM sorafenib for 72 h. Cell viability was examined by an MTT assay. (B) Nuclear 
lysates of HepG2 and PLC5 cells were incubated with 20 μM sorafenib for 0.5 h. Then an in vitro HDAC activity assay was performed. (C, 
D) HepG2 and PLC5 cells were treated with 0~10 μM sorafenib for 24 h (C) and 48 h (D). Nuclear lysates were prepared for an in vitro 
HDAC activity assay.
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Figure 4: Effects of sorafenib on cell viability and histone deacetylase (HDAC) activities in HepG2 and HepG2-SR 
cells. (A) HepG2 and HepG2-SR cells were treated with 0~10 μM sorafenib for 72 h. Cell viability was examined by an MTT assay. (B, 
C) HepG2 and HepG2-SR cells were treated with 10 μM sorafenib for 24 h (B) and 48 h (C). Nuclear lysates were prepared for an in vitro 
HDAC activity assay.
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PROGgeneV2 prognostic database (http://www.compbio.
iupui.edu/proggene/) [20] was performed. Interestingly, 
only patients with high expression of HDAC1 or HDAC2 
had shorter overall survival (Figure 6). These results 
indicated that inhibition of HDAC1 and HDAC2 may 
provide clinical benefits for HCC patients.

Connectivity analysis between sorafenib and 
HDAC isoforms

To investigate the drug-gene connectivity of 
sorafenib and HDAC isoforms, gene expression profiles of 
sorafenib-treated cells were compared to those in specific 

Figure 5: Cancer genomics and Oncomine analysis of genetic alterations of histone deacetylases (HDACs). (A) Genetic 
alterations of class I, IIa/b, and IV HDACs were analyzed using the online tool, cBioPortal. (B) Oncomine analysis of mRNA expressions 
of HDAC isoforms in hepatocellular carcinoma (HCC) was performed as described in “Materials and Methods”.
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HDAC isoform-knockdown cells. As shown in Figure 
7A, sorafenib-HDAC connectivity varied among these 
cells. In general, knockdown of HDAC1, HDAC3, and 
HDAC5 had similar gene expression profiles (summary 
connectivity score > 60) to sorafenib. In HepG2 cells, 
however, knockdown of HDAC1, HDAC2, HDAC5, and 
HDAC11 had higher connectivity scores (> 50). These 
results indicated that sorafenib may have the ability to 
inhibit HDAC1 and HDAC2 in HCC cells.

To investigate whether sorafenib can downregulate 
HDAC expression, protein levels of HDAC1, HDAC2, 
HDAC3, HDAC4, and HDAC6 in sorafenib-treated 
HepG2, HepG2-SR, and PLC5 cells were analyzed by 
Western blotting. As shown in Figure 7B, expressions 
of HDAC1 and HDAC6 were not altered by sorafenib in 
these cells. Expressions of HDAC2, HDAC3, and HDAC4 
were reduced by sorafenib in both HepG2 and HepG2-
SR cells. PLC5 cells had lower expressions of HDAC3 
and HDAC4, which were further reduced by sorafenib. 

Figure 6: Role of each histone deacetylase (HDAC) isoform in the overall survival of hepatocellular carcinoma (HCC) 
patients. Overall survival of HCC patients with high or low expression of each HDAC isoform was analyzed using the online tool, 
PROGgeneV2.
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Figure 7: Connectivity analysis of sorafenib with each histone deacetylase (HDAC) isoform. (A) Connections of sorafenib 
with the knockdown of each HDAC isoform (except HDAC9) were analyzed using an online Touchstone tool of the CLUE database 
as described in “Materials and Methods”. Sorafenib-HDAC isoform connections were viewed as a heatmap ranked by the summary 
connectivity score. (B) HepG2, HepG2-SR, and PLC5 cells were treated with 0~10 μM sorafenib for 24 h. Protein expressions of HDAC1, 
HDAC2, HDAC3, HDAC4, and HDAC6 were analyzed by Western blotting.
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Therefore, sorafenib selectively downregulated protein 
expressions of HDAC isoforms.

DISCUSSION

It is currently accepted that polypharmacology (one 
drug interacts with multiple targets) is a general property 
of small molecules. Polypharmacological studies can 
be applied not only for drug repurposing (new uses for 
old drugs) but also for identifying novel mechanisms of 
drugs [6]. Gene expression profiling for drug connectivity 
in large-scale perturbation databases, such as CMap and 
LINCS, provides enormous opportunities for exploring 
polypharmacology [21]. For example, we previously 
performed a LINCS analysis to demonstrate functional 
disparities between two structurally and mechanistically 
similar DNA-hypomethylating agents, azacytidine and 
decitabine [22]. In addition, we identified novel action 
mechanisms of a Chinese herbal medicine, berberine, 
and repurposed the cyclin-dependent kinase inhibitor, 
GW8510, as a ribonucleotide reductase M2 inhibitor by 
CMap analyses [23, 24].

Sorafenib is a multi-kinase inhibitor that inhibits 
cell surface tyrosine kinase receptors (such as VEGFR 
and platelet-derived growth factor receptor (PDGFR)) and 
downstream intracellular serine/threonine kinases (such 
as RAF family kinases) [25]. Our analysis using CLUE 
indeed predicted kinase targets of sorafenib. Interestingly, 
HDACs were also predicted to be molecular targets of 
sorafenib. An in vitro experimental analysis showed that 
sorafenib indirectly inhibited HDAC activities through 
downregulating protein expressions. Overexpressions of 
HDACs were found in tumors, leading to the epigenetic 
silencing of tumor-suppressor genes. Therefore, inhibition 
of HDACs is considered a potential strategy for treating 
cancers through reactivating tumor-suppressor genes [26]. 
Our analysis using the cBioPortal for Cancer Genomics 
also indicated the frequent upregulation of HDAC mRNAs 
in HCC. Specifically, HDAC1 and HDAC2 upregulation 
was associated with poor overall survival of HCC patients. 
Therefore, the HDAC-inhibitory property of sorafenib 
may cause epigenetic changes in gene expressions 
and provide clinical benefits for HCC patients through 
reactivating tumor-suppressor genes.

The mechanism for inhibiting HDAC activities by 
sorafenib was not resolved in the current study. Direct in 
vitro incubation of sorafenib with nuclear cell lysates did 
not reduce HDAC activities, suggesting that sorafenib 
indirectly inhibits HDAC activities. The substrate used for 
the in vitro HDAC activity assay was Ac-Lys(Ac)-pNA. 
Theoretically, this assay can detect all HDACs that can 
deacetylate histone. Sorafenib selectively downregulated 
HDAC protein expressions; however, this seemed to 
incompletely explain the actions of sorafenib, because 
protein expressions of HDACs examined in this study 
were only partially reduced by sorafenib in HepG2 cells. 

Therefore, other mechanisms may exist. Phosphorylation 
of HDACs is important for their activation [27]. For 
example, HDAC1 and HDAC2 are phosphorylated by 
casein kinase 2 (CK2) [28–30]. Because sorafenib is a 
multi-kinase inhibitor, we hypothesized that it may inhibit 
HDAC kinase activities and then inhibit HDAC activities.

Although sorafenib can extend the median survival 
time of HCC patients by about 3 months [3, 4], drug 
resistance usually develops. A better understanding of 
the underlying mechanisms will help develop therapeutic 
strategies for overcoming sorafenib resistance. Our study 
indicated that inhibition of HDAC activities is associated 
with the anticancer activity of sorafenib, and loss of this 
effect partially contributes to the development of sorafenib 
resistance. In other words, amplification of the HDAC-
inhibitory activities of sorafenib might be able to enhance 
its anticancer activity and overcome drug resistance. 
Indeed, previous studies demonstrated that HDAC 
inhibitors can enhance the anti-HCC activity of sorafenib 
[31, 32]. Furthermore, novel combination treatments with 
herbal medicines or approved drugs which can inhibit 
HDAC activity could also be a promising strategy, because 
these agents are less-toxic and more-safe. For example, 
Ginkgo biloba extracts, retrieved from the Chinese herbal 
medicine, displayed HDAC-inhibitory activity [33]. A 
recent clinical trial indicated that a combination of Ginkgo 
biloba extracts with sorafenib was safe and tolerable 
for advanced HCC patients and slightly improved their 
overall survival [34]. Statins, the cholesterol-lowering 
drugs prescribed to prevent heart attacks, inhibits HDAC 
activity and overcomes the hypoxic resistance of HCC 
cells to sorafenib [35, 36]. Our previous study also showed 
that methotrexate, an anti-folate drug for treating cancers 
and autoimmune diseases, can inhibit HDAC activity [37]. 
Synergistic anticancer effect of methotrexate and sorafenib 
in HCC has also been reported recently [38]. Therefore, 
based on our observations that HDACs are novel targets 
for sorafenib, drug combinations focusing on HDACs may 
be an effective strategy for managing HCC. However, 
it should be noted that the direct relationship between 
HDAC inhibition and the synergistic anticancer activity of 
sorafenib and HDAC-targeting drugs has not been clearly 
demonstrated in these studies.

In summary, our study demonstrated that gene 
expression profiling using large-scale drug connectivity 
databases, such as CMap and LINCS, is highly useful 
for polypharmacological studies. By comparing drug 
connectivity profiles with sorafenib, we identified that 
inhibition of HDAC activities was associated with the 
anticancer activities of sorafenib in HCC cells. Our study 
provides a novel aspect of sorafenib for treating HCC and 
a novel strategy to study polypharmacology. However, 
there were still limitations in our study. For example, the 
mechanism(s) and the clinical benefits of the HDAC-
inhibitory effect of sorafenib were not fully elucidated. 
These issues should be addressed in future investigations.
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MATERIALS AND METHODS

CMap analysis

Connections of sorafenib and protein kinase 
inhibitors to other compounds or sorafenib to HDAC 
isoform knockdown were directly obtained from the 
CLUE database (https://clue.io/) using the “Touchstone” 
online tool (May 4, 2017, date last accessed). The 
“Perturbational Class” was set to “CMap Class” for 
searching drugs similar to sorafenib and protein kinase 
inhibitors. Drug connections (type: PCL) can be viewed 
as a heatmap. The option “Strong connections” was 
selected. For the connectivity analysis of sorafenib and 
HDAC isoform knockdown, the perturbational type was 
set to “Gene Knock-Down”, and a name filter was set to 
visualize the heatmap of HDAC isoforms.

The Cancer Genome Atlas (TCGA) analysis

A cancer genomics analysis was performed (May 
4, 2017, date last accessed) by querying the online 
cBioPortal for Cancer Genomics (http://www.cbioportal.
org/) [10, 11]. The dataset “Liver Hepatocellular 
Carcinoma (TCGA, Provisional)” was used. Genomic 
profiles including mutations, putative copy-number 
alterations, and mRNA expressions (with z-scores = ±2) 
were selected for querying HDACs. Results are shown as 
OncoPrint. The overall survival of HCC patients (TCGA 
dataset) with high or low HDAC isoform expression was 
analyzed using the PROGgeneV2 database (http://www.
compbio.iupui.edu/proggene/) [20].

Oncomine analysis

Oncomine (http://www.oncomine.org/) is a 
collection of cancer microarray databases with a web-
based data-mining platform [19]. To investigate the 
mRNA expression of each HDAC isoform, a comparison 
of the transcriptome data in hepatocellular carcinoma with 
respect to normal tissues was performed. Thresholds for 
significance were multiple of expression > 2, p value < 
0.05, and ranking of gene in the analyses > top 10%. Red 
signifies gene overexpression, and blue signifies gene 
underexpression. The intensity of the color signifies the 
best ranking of genes in those analyses.

Materials

Fetal bovine serum (FBS) was purchased from 
Gibco. Dulbecco's modified Eagle medium (DMEM), 
L-glutamine, sodium pyruvate, non-essential amino 
acids (NEAAs), and an antibiotic-antimycotic (penicillin 
G, streptomycin, and amphotericin B) were purchased 
from Life Technologies. HDAC1, HDAC2, HDAC3, and 
HDAC4 antibodies were purchased from Cell Signaling. 

The GAPDH antibody was purchased form GeneTex. 
Horseradish peroxidase-labeled goat anti-rabbit and 
anti-mouse secondary antibodies were purchased from 
Jackson ImmunoResearch. Sorafenib was purchased from 
Cayman Chemical. Dimethyl sulfoxide (DMSO) and 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 
bromide (MTT) were purchased from Sigma. Protease 
and phosphatase inhibitor cocktails were purchased from 
Roche. Other chemicals or reagents were purchased from 
OneStar Biotechnology.

Cell culture

HepG2 and PLC/PRF/5 (PLC5) cells were 
purchased from the Bioresources Collection and Research 
Center (BCRC), Food Industry Research and Development 
Institute (Hsinchu, Taiwan). Sorafenib-resistant HepG2-
SR cells were established by repeatedly exposing them to 
an increasing dose of sorafenib for several months. Cells 
were cultured in DMEM supplemented with 10% FBS, 1 
mM sodium pyruvate, 1% L-glutamine, 1% NEAAs, and a 
1% antibiotic-antimycotic solution, and incubated at 37 °C 
in a humidified incubator containing 5% CO2.

Cell viability assay

Cell viability was examined with an MTT assay. 
Briefly, cells were spread on 96-well plates and treated 
with drugs for 72 h. Then, 0.5 mg/mL of MTT was added 
to each well, and cells were cultured for an additional 4 
h. The blue MTT formazan precipitates were dissolved 
in 200 μL of DMSO. The absorbance at 570 nm was 
measured using a multi-well plate reader.

HDAC activity assay

Nuclear lysates with or without sorafenib treatment 
were prepared using a Nuclear/Cytosol Fractionation Kit 
(BioVision) according to the manufacturer's instructions. 
Pan-HDAC activity was measured with an HDAC Activity 
Colorimetric Assay Kit (BioVision). Nuclear lysates were 
incubated at 37°C with or without sorafenib, and the 
HDAC reaction was initiated by adding the Ac-Lys(Ac)-
pNA substrate. After 3 h, lysine developer was added, 
and the mixture was incubated for another 30 min. The 
absorbance at 405 nm was measured using a multi-well 
plate reader.

Abbreviations

CMap, Connectivity Map; HCC, hepatocellular 
carcinoma; HDAC, histone deacetylase; HepG2-SR, 
sorafenib-resistant HepG2 cells; LINCS, The Library of 
Integrated Cellular Signatures; PDGFR, platelet-derived 
growth factor receptor; PLC5, PLC/PRF/5; VEGFR, 
vascular endothelial growth factor receptor.
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