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ABSTRACT

Lung adenocarcinoma is one of the leading causes of cancer-related death 
worldwide. We showed transcriptomic profiles in three pairs of tumors and adjacent 
non-tumor lung tissues using next-generation sequencing (NGS) to screen protein-
coding RNAs and microRNAs. Combined with meta-analysis from the Oncomine and 
Gene Expression Omnibus (GEO) databases, we identified a representative genetic 
expression signature in lung adenocarcinoma. There were 9 upregulated genes, and 
8 downregulated genes in lung adenocarcinoma. The analysis of the effects from each 
gene expression on survival outcome indicated that 6 genes (AGR2, SPDEF, CDKN2A, 
CLDN3, SFN, and PHLDA2) play oncogenic roles, and 7 genes (PDK4, FMO2, CPED1, 
GNG11, IL33, BTNL9, and FABP4) act as tumor suppressors in lung adenocarcinoma. 
In addition, we also identified putative genetic interactions, in which there were 5 
upregulated microRNAs with specific targets - hsa-miR-183-5p-BTNL9, hsa-miR-33b-
5p-CPED1, hsa-miR-429-CPED1, hsa-miR-182-5p-FMO2, and hsa-miR-130b-5p-IL33. 
These 5 microRNAs have been shown to be associated with tumorigenesis in lung 
cancer. Our findings suggest that these genetic interactions play important roles in 
the progression of lung adenocarcinoma. We propose that this molecular change of 
genetic expression may represent a novel signature in lung adenocarcinoma, which 
may be developed for diagnostic and therapeutic strategies in the future.

INTRODUCTION

Lung cancer is one of the leading causes of cancer-
related death worldwide [1]. The development and 

progression of lung cancer has been widely studied. 
Briefly, the genetic alterations or mutations occurred in 
a single cell, leading to cellular transformation and thus 
expansion into a malignant tumor [2]. Non-small cell 
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lung carcinoma (NSCLC) accounts for about 80–85% 
of all lung cancers [3, 4], of which lung adenocarcinoma 
(40%) is the most common subtype of NSCLC [5]. 
Surgery to remove cancer, with or without radiotherapy/
chemotherapy, is the standard approach for early stage 
lung cancer. However, the recurrence of distant metastasis 
[6, 7] or resistance to therapy [8, 9] often occurs, and such 
phenomenon is associated with critical genetic alterations 
involved in various biological mechanisms.

The genetic alterations related to cellular 
transformation are involved in various biological 
processes, including transcription [10], DNA repair [11], 
cell cycle progression [12], apoptosis [13], migration 
ability [14], and metabolism [15, 16]. In lung cancer, 
many genes have been identified as oncogenes or tumor 
suppressor genes, which modulate varieties of molecular 
functions involved in tumor development and progression 
[17, 18]. Recently, small RNAs have been found to play 
important roles in lung cancer. MicroRNAs are a group 
of small non-coding RNAs containing 20–26 nucleotides, 
which can regulate gene expression via binding to the 3’ 
untranslated region (3′UTR) of specific messenger RNAs 
(mRNAs). This interaction can cause mRNAs’ degradation 
or translation inhibition [19]. The signaling pathways 
associated with microRNAs targeting oncogenes or tumor 
suppressor genes have been reported to be involved in lung 
cancer progression [20]. Alterations of many microRNAs 
in chromosome regions associated with various cancers 
have also been implicated [21]. 

Next-generation sequencing (NGS) is a powerful 
method to screen the entire transcriptomic profile, 
including messenger RNAs or small RNAs [22]. In this 
study, we attempted to identify the differentially expressed 
genes and genetic interactions of target gene-microRNA in 
lung adenocarcinoma combined with systematic analysis, 
by using bioinformatics tools, including the Oncomine 
[23], Gene Expression Omnibus (GEO) [24], PrognoScan 
[25], Kaplan-Meier plotter [26], SurvExpress [27], and 
miRmap databases [28]. We sought to identify novel gene 
expression signature and/or genetic interactions in lung 
adenocarcinoma via systematic bioinformatics analysis. 
Hopefully, the approach and findings from this study will 
provide new perspectives on the development of diagnostic 
and therapeutic strategies for lung adenocarcinoma.

RESULTS

Identification of differentially expressed genes as 
a molecular signature in lung adenocarcinoma

To investigate genetic expression changes in lung 
adenocarcinoma, we analyzed the transcriptomic profiles 
in 3 pairs of human specimens from lung adenocarcinoma 
and its adjacent normal lung tissue using next-generation 
sequencing (Figure 1). We focused on protein-coding 
RNAs and Venn diagram analysis which showed that 9 

genes were upregulated (Figure 1A), whereas 8 genes 
were downregulated (Figure 1B) in lung adenocarcinoma 
tissue compared to adjacent normal lung tissue. The 
analysis criteria were fold change > 2 and fragments per 
kilobase million (FPKM) > 0.3. The hierarchical color 
clustering showed the expression pattern of each gene with 
z-scores (log2) in these 3 pairs of specimens (Figure 1C). 
The list of 17 differentially expressed genes with FPKM 
is shown in Table 1. To investigate whether this genetic 
expression pattern could represent a molecular signature 
in lung adenocarcinoma, we investigated these genes in 
the Oncomine database, which contains different data 
sets of specimens from lung adenocarcinoma and normal 
lung tissue. We selected 7 datasets from the Oncomine 
database for comparison of gene expression, including 
Hou (normal = 65 and lung adenocarcinoma = 45), Landi 
(normal = 49 and lung adenocarcinoma = 58), Selamat 
(normal = 58 and lung adenocarcinoma = 58), Okayama 
(normal = 20 and lung adenocarcinoma = 226), Su (normal 
= 30 and lung adenocarcinoma = 27), Wei (normal = 25 
and lung adenocarcinoma = 25), and Stearman (normal 
= 19 and lung adenocarcinoma = 20). The heatmap 
analysis indicated that the genetic expression patterns of 
17 genes were similar among these datasets (Figure 2), 
which suggests that this molecular change is consistent in 
lung adenocarcinoma, and may represent a novel genetic 
signature in lung adenocarcinoma.

We classified 17 differentially expressed genes into 
6 groups by biological and molecular functions, based 
on literature searches (Table 2; Supplementary  Table 1), 
including (1) transcription regulation – TOX3 and SPDEF, 
(2) metabolism – PDK4, FABP4, and FMO2, (3) cell cycle 
regulation – CDKN2A, PHLDA2, SFN, and NDRG4, 
(4) cellular migration – AGR2, AQP5, and CLDN3 (5) 
inflammation – IL33, and (6) undefined group – ZDHHC9, 
BTNL9, GNG11, and CPED1 (also known as C7orf58). 
To further elucidate the role of these genetic expression 
changes in cancer progression, we performed survival 
curve analysis using the PrognoScan, Kaplan–Meier 
plotter, and SurvExpress databases.

Analysis of TOX3 and SPDEF in lung 
adenocarcinoma

The mRNA expression of TOX3 and SPDEF 
between lung adenocarcinoma and normal lung tissue 
derived from the Oncomine database is listed in Table 3. 
The analysis criteria were fold change > 2, p-value <  
1E-04, and gene ranking in the top 10%. The results 
showed that both TOX3 and SPDEF are significantly 
upregulated in lung adenocarcinoma, compared to 
normal tissue. In addition, we selected a microarray 
with the accession number of GSE10072 from the Gene 
Expression Omnibus (GEO) database for gene expression 
analysis. This array contains 31 pairs of clinical lung 
adenocarcinomas and adjacent normal tissue. The results 
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showed that the mRNA expression of either TOX3 
(Figure 3A) or SPDEF (Figure 3B) is upregulated in 
lung adenocarcinoma. To further investigate the role of 
TOX3 and SPDEF expression in cancer progression, 
we performed a survival curve analysis to evaluate the 
effects of gene expression in lung cancer patients with 
lung adenocarcinoma. The results indicated that the 
population with higher TOX3 expression has better 
survival rates (Figure 3C–3G), whereas the population 
with higher SPDEF expression has poorer survival 
outcome (Figure 3H, 3I). The prognostic values of TOX3 
and SPDEF expression in lung adenocarcinoma were 
shown as forest plots (Figure 3J), which were derived 
from the PrognoScan database with a Cox p-value < 0.05, 

and the Kaplan–Meier plotter database with a log-rank  
p-value < 0.05. 

Analysis of PDK4, FMO2, and FABP4 in lung 
adenocarcinoma

mRNA expression of PDK4, FMO2, and FABP4 
between lung adenocarcinoma and normal lung tissue was 
analyzed by using the Oncomine database, and listed in 
Table 4. The expressions of PDK4, FMO2, and FABP4 
are significantly downregulated in lung adenocarcinoma 
compared to normal lung tissue in several datasets, 
and this phenomenon was also observed in GSE10072 
array (Figure 4A–4C). In cancer patients with lung 

Figure 1: Identification of differentially expressed genes in lung adenocarcinoma compared to adjacent normal tissue 
using next-generation sequencing. Venn diagram analysis showed 9 upregulated genes (A) and 8 downregulated genes (B) in lung 
adenocarcinoma, compared to adjacent non-adenocarcinoma tissue from 3 pairs of clinical specimens. The criteria were fold change > 2 
(tumor/normal) and fragments per kilobase million (FPKM) > 0.3. (C) The heatmap diagram showed the differentially expressed genes 
with z-score (log2) values by using color clustering on GENE-E web-tool. Green represents downregulation (minimum = –2.5), and red 
represents upregulation (maximum = 2.5).
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adenocarcinoma, the survival curve analysis indicated that 
the population with higher expression of PDK4 (Figure 
4D–4F), FMO2 (Figure 4G–4I), or FABP4 (Figure 4J) is 
correlated with better survival rates. The prognostic values 
of PDK4, FMO2, and FABP4 are shown in Figure 4K.

Analysis of CDKN2A, NDRG4, SFN, and 
PHLDA2 in lung adenocarcinoma

We observed that the expression of CDKN2A, 
PHLDA2, and SFN are upregulated and the expression 
of NDRG4 is downregulated in lung adenocarcinoma 
when compared to normal lung tissue, which was also 
confirmed by the Oncomine database, listed in Table 5. 
In the GSE10072 array, expression levels of CDKN2A, 
PHLDA2, and SFN are significantly upregulated in lung 
adenocarcinoma compared to normal lung tissue in several 
datasets (Figure 5A–5C), and NDRG4 is downregulated 
(Figure 5D). The survival curve analysis showed that lung 
adenocarcinoma patients with high levels of CDKN2A 
expression are associated with poorer survival rates 
(Figure 5E). The expression level of NDRG4, however, 
has no significant effects on survival outcomes for patients 
with lung adenocarcinoma (Figure 5F). Higher expressions 
of PHLDA2 (Figure 5G, 5H), or SFN (Figure 5I–5K) 

are also associated with poorer survival. The forest plots 
showed the prognostic values of CDKN2A, PHLDA2, 
SFN, and NDRG4 (Figure 5L). 

Analysis of AGR2, CLDN3, and AQP5 in lung 
adenocarcinoma

Analysis of mRNA expression from the Oncomine 
database revealed that AGR2, AQP5, and CLDN3 are 
upregulated in lung adenocarcinoma, compared to normal 
lung tissue, and these results are listed in Table 6. In the 
GSE10072 array, we also observed that expression levels 
of AGR2 and CLDN3 are significantly upregulated in 
lung adenocarcinoma when compared to normal lung 
tissue (Figure 6A, 6B). However, the expression of AQP5 
showed no significant change in the GSET10072 array 
(Figure 6C). The survival curve analysis showed that high 
expression of CLDN3 is correlated with poorer rates of 
survival in lung adenocarcinoma patients (Figure 6D). 
However, the population with a higher expression of 
AQP5 has better survival outcome (Figure 6E–6G). 
Higher expression of AGR2 is also associated with poorer 
survival rates (Figure 6H). The prognostic values of 
AGR2, CLDN3, and AQP5 were shown as forest plots 
(Figure 6I).

Table 1: Differentially expressed genes identified from next-generation sequencing data

Gene Description
FPKM ( fragments per kilobase million)

T/N
N1 T1 N2 T2 N3 T3

TOX3 TOX High Mobility Group Box 
Family Member 3 1.65 11.99 0.70 11.57 1.08 31.11 Up

AGR2 Anterior gradient 2, Protein Disulphide 
Isomerase Family Member 340.96 1530.74 126.15 864.49 148.26 955.51 Up

SPDEF SAM Pointed Domain Containing ETS 
Transcription Factor 5.11 37.10 0.48 3.91 0.88 5.90 Up

CDKN2A Cyclin-Dependent Kinase Inhibitor 2A 7.04 298.07 10.05 129.69 4.94 80.09 Up
AQP5 Aquaporin 5 41.76 333.28 12.70 59.02 14.62 107.83 Up

CLDN3 Claudin 3 24.83 104.71 6.02 38.53 7.31 39.11 Up
SFN Stratifin 27.16 75.72 7.48 59.63 9.59 65.88 Up

PHLDA2 Pleckstrin Homology-Like Domain, 
Family A, Member 2 9.07 96.14 2.60 19.93 2.36 18.58 Up

ZDHHC9 Zinc finger, DHHC-type containing 9 17.89 53.14 12.38 49.49 11.08 78.66 Up
PDK4 Pyruvate Dehydrogenase Kinase 4 30.91 10.82 72.24 3.18 47.76 7.63 Down
FMO2 Flavin Containing Monooxygenase 2 50.62 13.47 138.82 11.57 185.08 15.11 Down

NDRG4 NDRG Family Member 4 13.43 3.88 40.80 5.08 26.46 6.07 Down

CPED1 Cadherin-like and PC-esterase Domain 
Containing 1 16.73 5.70 19.42 5.68 23.24 5.39 Down

GNG11 G Protein Subunit Gamma 11 32.96 11.15 57.85 5.37 42.70 12.85 Down
IL33 Interleukin 33 117.77 33.34 133.98 16.49 153.31 15.49 Down

BTNL9 Butyrophilin-like 9 19.57 6.43 32.15 0.92 26.15 5.25 Down
FABP4 Fatty Acid Binding Protein 4 252.56 74.90 486.96 5.08 459.21 49.26 Down
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Table 2: Functional classification of differentially expressed genes
Functions Genes Fold change (Cancer/Normal) References#

Transcriptional regulation
TOX3 UP 1

SPDEF UP 2

Metabolism

PDK4 DOWN 3

FABP4 DOWN 4

FMO2 DOWN 5, 6

Cell cycle regulation

CDKN2A UP 7

PHLDA2 UP 8, 9

NDRG4 DOWN 10

SFN UP 11

Cellular migration

AGR2 UP 12

AQP5 UP 13

CLDN3 UP 14

Inflammation IL33 DOWN 15

Others

ZDHHC9 UP 16

BTNL9 DOWN 17

GNG11 DOWN 18

CPED1 DOWN 19

# References were list in Supplementray Table 1.

Table 3: Analysis of TOX3 and SPDEF mRNA expression in lung adenocarcinoma compared to 
normal tissue from Oncomine database

Gene Fold change 
(Cancer/Normal) P-value Gene Ranking 

(Top%)
Samples 

(Normal : Tumor) Dataset Probe

TOX3

8.685 1.18E-22 1 20 : 226 Okayama 215108_x_at
19.973 1.86E-24 1 25 : 25 Wei 214774_x_at
4.968 2.80E-18 2 49 : 58 Landi 216623_x_at
8.497 1.79E-9 1 30 : 27 Su 216623_x_at
3.15 3.09E-4 2 17 : 132 Bhattacharjee 37426_at

12.617 2.17E-7 3 19 : 20 Stearman 37426_at
3.764 4.72E-7 10 65 : 45 Hou 216623_x_at

SPDEF

3.719 1.54E-11 5 20 : 226 Okayama 213441_x_at
3.451 2.64E-12 1 25 : 25 Wei 220192_x_at
5.44 2.86E-9 1 30 : 27 Su 220192_x_at
2.12 1.94E-7 9 65 : 45 Hou 220192_x_at
3.844 9.6E-17 2 58 : 58 Selamat ILMN_2161330
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Analysis of IL33 in lung adenocarcinoma

The mRNA expression of IL33 is significantly 
downregulated in lung adenocarcinoma compared 
to normal tissue (Table 7). We also found that IL33 
expression is decreased in lung adenocarcinoma 
identified from the GSE10072 array (Figure 7A). The 
survival curve analysis performed using the SurvExpress 
database showed that the high risk population with 
lower expression of IL33 has poorer survival outcomes 
for lung adenocarcinoma patients (Figure 7B, 7C). This 
phenomenon was also observed in the PrognoScan  

(Figure 7D–7F) and Kaplan–Meier plotter databases 
(Figure 7G). The prognostic values of IL33 in lung 
adenocarcinoma was illustrated as a forest plot  
(Figure 7H).

Analysis of ZDHHC9, BTNL9, GNG11, and 
CPED1 in lung adenocarcinoma

The mRNA expression of BTNL9, GNG11, or 
CPED1 is downregulated in lung adenocarcinoma when 
compared to normal tissue, and ZDHHC9 is upregulated 
(Table 8). In the GSE10072 array, GNG11 (Figure 8A) 

Figure 2: Comparison of differentially expressed genes in clinical lung adenocarcinoma and normal lung tissue by 
Oncomine database analysis. Seven microarray datasets from the Oncomine database were used to analyze gene expression patterns 
(lung adenocarcinoma vs. normal), including (A) Hou, (B) Landi, (C) Selamat, (D) Okayama, (E) Su, (F) Wei, and (G) Stearman. Seventeen 
differentially expressed genes (9 up and 8 down) identified from 3 pairs of clinical lung adenocarcinoma were selected. Raw data were 
extracted and re-plotted by GENE-E web-tool, and the relative color scheme used for clustering analysis. Yellow represents high expression 
(maximum = 1) and blue represents low expression (minimum = 0). The gene symbols and corresponding specific probes are displayed on 
the right side of each diagram.
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Figure 3: Analysis of TOX3 and SPDEF in clinical lung adenocarcinoma patients using bioinformatics databases. 
The gene expression of TOX3 (A) and SPDEF (B), comparing 31 pairs of clinical lung adenocarcinoma (red) and adjacent normal tissue 
(blue), was performed on GSE10072 microarray from the GEO database. (3 probes for TOX3 and SPDEF respectively in GSE10072) The 
p-value of gene expression was calculated by t-test with Wilcoxon matched-pairs signed rank test. *** represents p < 0.001, ** represents  
p < 0.01. The survival curves comparing 2 populations with high (red) and low (black) gene expression in lung adenocarcinoma patients 
were performed on the PrognoScan database - TOX3 (C–F) and SPDEF (H, I), and the Kaplan–Meier plotter database - TOX3 (G). The 
analysis criteria of the PrognoScan and Kaplan–Meier plotter databases were Cox p-value < 0.05 and log-rank p-value < 0.05 respectively. 
The raw data of GEO and PrognoScan databases were extracted and re-plotted by GraphPad Prism 5 software. (J) The forest plots showed 
hazard ratios (95% CI, confidence interval) identified from PrognoScan and Kaplan–Meier plotter databases.
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and CPED1 (Figure 8B) expression is downregulated 
in lung adenocarcinoma. There is no specific probe for 
ZDHHC9 and BTNL9 in the GSE10072 array. Survival 
curve analysis revealed that lung adenocarcinoma patients 
with high expression of ZDHHC9 (Figure 8C), BTNL9  
(Figure 8D–8F), GNG11 (Figure 8G, 8H) or CPED1 
(Figure 8I–8K) are correlated with better survival 
outcomes. The forest plot showed the prognostic values 
of ZDHHC9, BTNL9, GNG11, and CPED1 (Figure 8L).

Identification of genetic regulation in lung 
adenocarcinoma using next-generation sequencing

We simultaneously performed small RNA-seq in 
these 3 pairs of specimens using next-generation sequencing 
(Figure 9). We focused on microRNAs and found 22 
upregulated microRNAs in lung adenocarcinoma using 
Venn diagram analysis (Figure 9A), which is listed in Table 
9. The analysis criteria were fold change > 2 and reads per 
million (RPM) > 1. No microRNA with downregulated 

changes were found in our analysis (Figure 9B). Heatmap 
color clustering showed the expression patterns of each 
upregulated microRNA from these 3 pairs of specimens 
(Figure 9C). To further elucidate the genetic interactions 
in lung adenocarcinoma, we performed miRmap database 
for target prediction. Among 22 upregulated microRNAs, 
there were 13 putative targets, shown in the “Targets” 
Venn diagram (Figure 9D). The prediction threshold was 
miRmap score > 90.0. The Venn diagram analysis between 
13 targets of microRNAs and 8 downregulated genes, 
shown in Figure 1B, indicates that there were 10 genetic 
interactions of microRNA-mRNA in lung adenocarcinoma 
(Figure 9D), which is listed in Table 10. Only 6 genes were 
involved in these 10 genetic interactions, due to the 3 genes 
have been attributed to different microRNAs. 

DISCUSSION

Lung cancer, one of the leading causes of cancer-
related death worldwide [29], still has much that requires 

Table 4: Analysis of PDK4, FMO2 and FABP4 mRNA expression in lung adenocarcinoma compared 
to normal tissue from Oncomine database

Gene Fold change 
(Cancer/Normal) P-value Gene Ranking 

(Top%)
Samples 

(Normal : Tumor) Dataset Probe

PDK4

–5.162 1.27E-24 1 20 : 226 Okayama 225207_at
–9.834 2.27E-13 2 25 : 25 Wei 225207 _at
–2.415 1.92E-16 4 49 : 58 Landi 205960_at
–4.074 2.98E-7 5 30 : 27 Su 205960_at
–4.33 1.56E-4 8 17 : 132 Bhattacharjee 36739_at
–2.618 1.77E-4 9 19 : 20 Stearman 36739_at
–4.593 6.29E-27 2 58 : 58 Selamat ILMN_1684982
–3.095 9.03E-7 7 10 : 86 Beer U54617_at

–10.368 2.77E-6 2 5 : 40 Garber IMAGE:78946

FMO2

–3.77 4.98E-18 1 20 : 226 Okayama 211726_s_at
–7.811 4.49E-15 2 25 : 25 Wei 228268_at
–5.528 6.60E-28 1 49 : 58 Landi 211726_s_at
–4.329 2.47E-10 2 30 : 27 Su 211726_s_at
–8.705 1.62E-53 1 58 : 58 Selamat ILMN_1732158
–9.102 1.02E-24 1 65 : 65 Hou 228268_at
–7.56 7.38E-6 2 5 : 39 Garber IMAGE:80507

–11.062 9.47E-19 1 10 : 86 Beer Y09267_at

FABP4

–14.421 9.74E-28 1 20 : 226 Okayama 203980_at
–20.112 1.42E-17 1 25 : 25 Wei 203980_at
–19.625 1.89E-17 1 30 : 27 Su 203980_at
–14.293 1.90E-37 1 49 : 58 Landi 203980_at
–68.043 3.67E-13 1 17 : 132 Bhattacharjee 38430_at
–13.918 2.07E-7 4 19 : 20 Stearman 38430_at
–26.532 1.26E-12 2 10 : 86 Beer J02874_at
–9.214 1.34E-5 3 5 : 40 Garber IMAGE:2308848

–12.842 5.80E-44 1 58 : 58 Selamat ILMN_1773006
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Figure 4: Analysis of PDK4, FMO2 and FABP4 in clinical lung adenocarcinoma patients using bioinformatics 
databases. The gene expression of PDK4 (A), FMO2 (B), and FABP4 (C), comparing 31 pairs of clinical lung adenocarcinoma (red) 
and adjacent normal tissue (blue), was performed on GSE10072 microarray from the GEO database. The p-value of gene expression was 
calculated by t-test with Wilcoxon matched-pairs signed rank test. *** represents p < 0.001. The survival curves comparing 2 populations 
with high (red) and low (black) gene expression in lung adenocarcinoma patients were performed on the PrognoScan database - PDK4 
(D, E), FMO2 (G), and FABP4 (J), and the Kaplan–Meier plotter database – PDK4 (F) and FMO2 (H, I). The analysis criteria of the 
PrognoScan and Kaplan–Meier plotter databases were Cox p-value < 0.05 and log-rank p-value < 0.05 respectively. Raw data of the GEO 
and the PrognoScan databases were extracted and re-plotted by GraphPad Prism 5 software. (K) The forest plots showed hazard ratios (95% 
CI, confidence interval) identified from the PrognoScan and Kaplan–Meier plotter databases.
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further study. In our project, we hoped to identify novel 
gene expression signature or genetic interactions of 
gene-microRNA in lung adenocarcinoma by using 
next-generation sequencing combined with systematic 
bioinformatics analysis.

We found 17 differentially expressed genes in lung 
adenocarcinoma compared to its adjacent normal lung 
tissue, which were classified into 6 functional groups 
based on a search of the literature. These results indicated 
that tumor progression is involved in alterations of various 
biological functions. We then summarized the potential 
oncogenic and tumor suppressor roles of these genes in 
lung adenocarcinoma (Supplementary  Table 2).

TOX3 contains an HMG-box (high mobility group 
box) domain. The function of TOX3 remains unclear, 
but it may be involved in various DNA-dependent 
processes [30–32]. TOX3 polymorphisms and epigenetic 
regulation have been demonstrated in breast cancer [33] 
and lung cancer [34] respectively. In our study, TOX3 

was significantly upregulated in lung adenocarcinoma, 
and higher expression of TOX3 is correlated with better 
survival outcome. We speculated that as more factors 
may be involved in TOX3-related mechanisms of 
tumor progression, more studies are needed to clarify 
the relationship between TOX3 expression and tumor 
progression. 

SPDEF containing ETS domain has been reported 
to be overexpressed in many cancers [35–37]. Our study 
suggests that SPDEF may play an oncogenic role in lung 
adenocarcinoma, although some reports have shown that 
SPDEF can suppress cancer metastasis [38]. However, 
contrary effects of SPDEF on tumorigenesis require 
further research.

PDK4 is a mitochondrial protein that can regulate 
glucose metabolism through inhibition of pyruvate 
dehydrogenase complex. An aberrant metabolism is one 
of the characteristics of cancer cells. In liver cancer, PDK4 
has been identified as a potential tumor suppressor [39]. 

Table 5: Analysis of CDKN2A, PHLDA2, SFN, and NDRG4 mRNA expression in lung 
adenocarcinoma compared to normal tissue from Oncomine database

Gene Fold change 
(Cancer/Normal) P-value Gene Ranking 

(Top%)
Samples 

(Normal : Tumor) Dataset Probe

CDKN2A

2.793 1.08E-8 1 20 : 226 Okayama 225207_at
3.203 2.43E-6 2 25 : 25 Wei 225207 _at
2.030 7.82E-11 4 49 : 58 Landi 205960_at
3.161 4.32E-9 5 65 : 45 Hou 205960_at
2.206 0.01 8 19 : 20 Stearman 36739_at
3.506 7.68E-4 9 10 : 86 Beer 36739_at

PHLDA2

4.207 4.25E-9 1 25 : 25 Wei 211726_s_at
5.73 1.80E-4 2 17 : 132 Bhattacharjee 228268_at
4.027 1.99E-19 1 49 : 58 Landi 211726_s_at
3.634 1.09E-7 2 30 : 27 Su 211726_s_at
2.387 1.42E-17 1 58 : 58 Selamat ILMN_1732158
2.212 1.35E-5 1 65 : 45 Hou 228268_at
4.015 9.11E-8 2 19 : 20 Stearman IMAGE:80507
2.799 2.05E-11 1 10 : 86 Beer Y09267_at

SFN

4.721 1.98E-11 2 25 : 25 Wei 33323_r_at
2.049 1.60E-12 5 49 : 58 Landi 33322_i_at
6.459 3.04E-8 2 30 : 27 Su 209260_at
2.410 4.06E-6 5 19 : 20 Stearman 33322_i_at
4.487 1.67E-24 1 58 : 58 Selamat ILMN_1806607
2.302 2.74E-5 6 10 : 86 Beer X57348_s_at

NDRG4

–3.519 1.78E-12 1 20 : 226 Okayama 203980_at
–5.009 1.03E-13 1 25 : 25 Wei 203980_at
–3.923 5.21E-9 1 30 : 27 Su 203980_at
–4.402 2.32E-7 4 19 : 20 Stearman 38430_at
–2.448 1.60E-14 2 65 : 45 Hou J02874_at
–2.152 4.63E-4 3 5 : 40 Garber IMAGE:2308848
–3.007 1.04E-18 1 58 : 58 Selamat ILMN_1773006



Oncotarget104841www.impactjournals.com/oncotarget

Figure 5: Analysis of CDKN2A, PHLDA2, SFN, and NDRG4 in clinical lung adenocarcinoma patients using 
bioinformatics databases. The gene expression of CDKN2A (A), PHLDA2 (B), SFN (C), and NDRG4 (D), comparing 31 pairs 
of clinical lung adenocarcinoma (red) and adjacent normal tissue (blue), was performed on a GSE10072 microarray from the GEO 
database. The p-value of gene expression was calculated by t-test with Wilcoxon matched-pairs signed rank test. *** represents p < 0.001,  
** represents p < 0.01. The survival curves comparing 2 populations with high (red) and low (black) gene expression in lung adenocarcinoma 
patients were performed on the Kaplan–Meier plotter database – CDKN2A (E) and NDRG4 (F), and PrognoScan database – PHLDA2  
(G, H) and SFN (I–K). The analysis criteria of PrognoScan and Kaplan–Meier plotter databases were Cox p-value < 0.05 and log-rank 
p-value < 0.05 respectively. Raw data of the GEO and PrognoScan databases were extracted and re-plotted by GraphPad Prism 5 software. 
(L) The forest plots showed hazard ratios (95% CI, confidence interval) identified from the PrognoScan and Kaplan–Meier plotter databases.
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Ironically, PDK4 exerts oncogenic effects in colon 
cancer [40]. In our study, PDK4 played a potential tumor 
suppressor role in lung adenocarcinoma. 

FMO2 is an NADPH-dependent enzyme that 
catalyzes the oxygenation of substrates [41], but the 
effect of FMO2 on tumorigenesis is unclear. Although 
genetic polymorphisms of FMO genes may influence drug 
metabolism [42], we found that FMO2 might have tumor 
suppressor effects in lung adenocarcinoma. 

FABP4 is involved in fatty acids trafficking and 
metabolism. Fatty acids serve as both an energy source 
and signaling molecules that can regulate various cellular 

functions [43]. The dysfunction of FABP proteins has been 
found to be associated with some metabolic diseases [44], 
and elevated FABP4 has been observed in many types of 
cancer [45–47]. Our data showed that FABP4 may have 
tumor suppressor effects in lung adenocarcinoma.

CDKN2A encodes two spliced transcripts, p16INK4a 
and p14ARF, which regulate cell cycle progression through 
inhibition of CDK4 kinase and p53 respectively [48]. 
CDKN2A has been shown as a tumor suppressor in 
cancer progression [49], and its alterations, including 
epigenetic modifications, deletion, and mutations, 
frequently occur in cancers [50]. In our study, 

Table 6: Analysis of AGR2, AQP5, and CLDN3 mRNA expression in lung adenocarcinoma 
compared to normal tissue from Oncomine database

Gene Fold change 
(Cancer/Normal) P-value Gene Ranking 

(Top%)
Samples 

(Normal : Tumor) Dataset Probe

AGR2

2.965 9.38E-11 6 20 : 226 Okayama 228969_at

5.586 1.83E-15 1 25 : 25 Wei 209173 _at

2.779 9.67E-11 7 49 : 58 Landi 209173_at

3.434 1.49E-8 1 30 : 27 Su 209173_at

2.902 0.003 3 17 : 132 Bhattacharjee 38827_at

2.677 1.80E-5 6 19 : 20 Stearman 38827_at

2.393 5.73E-11 7 58 : 58 Selamat ILMN_1814151

AQP5 2.841 2.80E-6 10 25 : 25 Wei 213611_at

CLDN3

3.287 5.33E-12 4 20 : 226 Okayama 203954_x_at

3.594 1.50E-11 1 25 : 25 Wei 203954_x_at

3.282 1.71E-7 2 30 : 27 Su 203954_x_at

2.193 4.34E-16 2 49 : 58 Landi 203954_x_at

3.707 1.61E-8 1 19 : 20 Stearman 33904_at

5.152 3.60E-5 1 17 : 132 Bhattacharjee 33904_at

3.154 3.74E-14 4 58 : 58 Selamat ILMN_1723042

Table 7: Analysis of IL33 mRNA expression in lung adenocarcinoma compared to normal tissue 
from Oncomine database

Gene Fold change 
(Cancer/Normal) P-value Gene Ranking 

(Top%)
Samples 

(Normal : Tumor) Dataset Probe

IL33

–3.809 6.11E-20 1 20 : 226 Okayama 209821_at
–4.325 1.04E-9 5 25 : 25 Wei 209821 _at
–3.276 1.23E-21 2 49 : 58 Landi 209821_at
–7.088 1.82E-9 3 30 : 27 Su 209821_at
–3.582 2.02E-11 7 65 : 45 Hou 209821_at
–2.163 8.36E-5 7 17 : 132 Bhattacharjee 35333_r_at
–2.351 5.08E-5 8 19 : 20 Stearman 35333_r_at
–4.258 5.82E-30 1 58 : 58 Selamat ILMN_1809099
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Figure 6: Analysis of AGR2, CLDN3, and AQP5 in clinical lung adenocarcinoma patients using bioinformatics 
databases. The gene expression of AGR2 (A), CLDN3 (B), and AQP5 (C), comparing 31 pairs of clinical lung adenocarcinoma (red) 
and adjacent normal tissue (blue), was performed on a GSE10072 microarray from the GEO database. The p-value of gene expression was 
calculated by t-test with Wilcoxon matched-pairs signed rank test. *** represents p < 0.001 and n.s. represents no significance. Survival 
curves comparing 2 populations with high (red) and low (black) gene expression in lung adenocarcinoma patients were performed on the 
Kaplan–Meier plotter – CLDN3 (D) and AQP5 (E), and PrognoScan databases – AQP5 (F, G) and AGR2 (H). The analysis criteria of the 
PrognoScan and Kaplan–Meier plotter databases were Cox p-value < 0.05 and log-rank p-value < 0.05 respectively. The raw data of the 
GEO and PrognoScan databases were extracted and re-plotted by GraphPad Prism 5 software. (I) The forest plots showed hazard ratios 
(95% CI, confidence interval) identified from the PrognoScan and Kaplan–Meier plotter databases.
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CDKN2A may have potential oncogenic effects in lung 
adenocarcinoma.

PHLDA2, located in an imprinted region on 
chromosome 11p15.5, has primarily been studied for its 
regulation of placental growth [51]. Although the role 
of PHLDA2 in cancer is unclear, our data showed that 

PHLDA2 may potentially exert oncogenic effects in lung 
adenocarcinoma.

SFN is involved in protein synthesis and epithelial 
cell growth. Numerous reports have demonstrated 
the molecular functions of SFN in keratinocytes and 
fibroblasts [52]. Furthermore, elevated expression of SFN 

Figure 7: Analysis of IL33 in clinical lung adenocarcinoma patients using bioinformatics databases. The gene expression 
of IL33 (A), comparing 31 pairs of clinical lung adenocarcinoma (red) and adjacent normal tissue (blue), was performed on a GSE10072 
microarray from the GEO database. The p-value of gene expression was calculated by t-test with Wilcoxon matched-pairs signed rank test. 
*** represents p < 0.001. (B) The survival curve was captured from the SurvExpress database, which divided lung adenocarcinoma patients 
into 2 populations of high (red) and low (green) risk, and (C) the box plots showed that the high risk (red) population has lower levels 
of IL33 expression, while the low risk (green) population has higher levels of IL33 expression. (D–F) The survival curves comparing 2 
populations with high (red) and low (black) gene expression in lung adenocarcinoma patients were performed on the PrognoScan and (G) 
Kaplan–Meier plotter databases. The analysis criteria of the PrognoScan and Kaplan–Meier plotter databases were Cox p-value < 0.05 and 
log-rank p-value < 0.05 respectively. Raw data of the GEO and the PrognoScan databases were extracted and re-plotted by GraphPad Prism 
5 software. (H) The forest plots showed hazard ratios (95% CI, confidence interval) identified from the PrognoScan and Kaplan–Meier 
plotter databases.
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has been reported in lung adenocarcinoma [53], and our 
study also found that SFN may exert oncogenic effects in 
lung adenocarcinoma.

NDRG4 is involved in the regulation of cell cycle 
progression [54] and has been identified as a novel 
tumor suppressor in colon cancer [55]. We found that 
NDRG4 levels were significantly decreased in lung 
adenocarcinoma, but with regard to survival analysis, the 
expression of NDRG4 has shown no significant influence 
on survival rates of lung cancer patients. 

AGR2 is an endoplasmic reticulum (ER) protein 
which can catalyze protein folding. Its oncogenic role 
and increased expression have been reported in different 
types of cancer [56–58]. In our study, we found that AGR2 
may serve as a potential prognostic biomarker of lung 
adenocarcinoma.

AQP5, aquaporin 5, is a water channel protein 
involved in pulmonary secretions, and elevated expression 
of AQP5 is associated with poor survival outcome in many 
types of cancer [59–61]. In our study, the expression of 
AQP5 was upregulated in lung adenocarcinoma, and its 
high expression correlated with better survival outcome.

CLDN3 regulates tight junctions of cell-cell 
adhesion in epithelial or endothelial cells and is 
overexpressed in ovarian [62] and colon cancer [63]. 
Loss of claudin 3 expression increases the metastatic 
ability of esophageal cancer [64], whereas claudin 3 is 
upregulated in lung adenocarcinoma [65]. Our study 

showed that claudin 3 may have oncogenic effects in lung 
adenocarcinoma.

IL33 is a cytokine involved in a spectrum of 
biological processes, and the chronic inflammatory 
signaling activation is known to be involved in cancer 
progression. The expression of IL33 in tumor tissues is 
depressed, but tumor stroma and serum have increased 
levels of IL33, suggesting the distinct functions of IL33 
in cancer cells from the microenvironment [66]. IL-33 
is shown to promote tumorigenesis and induce stemness 
in breast cancer [67]. In ApcMin/+ mice, epithelial-derived 
IL-33 can promote intestinal tumorigenesis [68]. These 
reports indicated the function of IL-33 in tumorigenesis 
is controversial. In our analysis, we found that IL33 may 
have tumor suppressor functions in lung adenocarcinoma.

ZDHHC9 is a palmitoyltransferase that can regulate 
palmitoylation of HRAS and NRAS. The function of 
ZDHHC9 in cancers is unclear, although inactivation 
of ZDHHC9 can reduce leukemogenic effects through 
repression of oncogenic NRAS [69]. According to 
our data, increased ZDHHC9 is observed in lung 
adenocarcinoma, but its high expression is correlated with 
better rates of survival.

BTNL9 belongs to the immunoglobulin superfamily, 
with the butyrophilin family modulating immune 
homeostasis [70]. Although the function of BTNL9 in 
tumorigenesis remains unclear, our results suggest that 
BTNL9 may serve as a tumor suppressor.

Table 8: Analysis of ZDHHC9, BTNL9, GNG11 and CPED1 mRNA expression in lung 
adenocarcinoma compared to normal tissue from Oncomine database

Gene Fold change 
(Cancer/Normal) P-value Gene Ranking 

(Top%)
Samples 

(Normal : Tumor) Dataset Probe

ZDHHC9
2.295 8.84E-12 5 20 : 226 Okayama 222451_s_at
2.621 9.16E-10 3 25 : 25 Wei 222451_s_at
2.377 3.27E-19 1 58 : 58 Selamat ILMN_1803824

BTNL9
–12.000 3.77E-14 3 20 : 226 Okayama 228434_at
–10.916 6.99E-26 1 25 : 25 Wei 228434_at
–9.102 1.02E-24 1 65 : 45 Hou 228434_at

GNG11

–3.630 9.97E-21 1 20 : 226 Okayama 204115_at
–4.337 6.55E-11 4 25 : 25 Wei 204115_at
–3.463 1.49E-12 1 30 : 27 Su 204115_at
–3.277 7.32E-23 2 49 : 58 Landi 204115_at
–3.485 7.75E-11 1 19 : 20 Stearman 37908_at
–20.213 2.51E-11 1 17 : 132 Bhattacharjee 37908_at
–6.202 6.90E-25 2 58 : 58 Selamat ILMN_1782419
–2.830 4.15E-11 3 10 : 86 Beer U31384_at
–4.296 3.94E-4 4 5 : 5 Wachi 204115_at

CPED1
–2.181 7.18E-14 2 25 : 25 Wei 220032_at
–3.108 1.13E-17 2 65 : 45 Hou 228728_at
–3.325 1.03E-34 1 58 : 58 Selamat ILMN_1677038
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Figure 8: Analysis of ZDHHC9, BTNL9, GNG11 and CPED1 in clinical lung adenocarcinoma patients using 
bioinformatics databases. The gene expression of GNG11 (A) and CPED1 (B), comparing 31 pairs of clinical lung adenocarcinoma 
(red) and adjacent normal tissue (blue), was performed on a GSE10072 microarray from the GEO database. The p-value of gene expression 
was calculated by t-test with Wilcoxon matched-pairs signed rank test. *** represents p < 0.001. The survival curves comparing 2 populations 
with high (red) and low (black) gene expression in lung adenocarcinoma patients were performed on the Kaplan–Meier plotter database – 
ZDHHC9 (C), BTNL9 (D) and CPED1 (I), and the PrognoScan database – BTNL9 (E, F), GNG11 (G, H), and CPED1 (J, K). The analysis 
criteria of the PrognoScan and Kaplan–Meier plotter databases were Cox p-value < 0.05 and log-rank p-value < 0.05 respectively. Raw data 
of the GEO and PrognoScan databases were extracted and re-plotted by GraphPad Prism 5 software. (L) The forest plots showed hazard 
ratios (95% CI, confidence interval) identified from the PrognoScan and Kaplan–Meier plotter databases.
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GNG11 is a lipid-anchored protein, which has been 
reported to inhibit cell growth [71] and regulate cellular 
senescence in lymphoma [72]. We found that GNG11 may 
exert suppressor functions in the tumorigenesis of lung 
adenocarcinoma. 

CPED1, also known as C7orf58, contains a 
cadherin-like beta sandwich domain [73], but the 
molecular function of CPED1 is unclear. Our data 
showed that CPED1 may play a role as a potential tumor 
suppressor in lung adenocarcinoma.

The summary of differentially expressed genes in the 
Oncomine database is shown in Supplementary  Table 3. 
Seven of a total of 11 datasets showed similar patterns 
of genetic expression, suggesting that this molecular 
change is constant between lung adenocarcinoma and 
normal lung tissue. Thus, those genes found in this study 
may represent a novel gene expression signature in lung 
adenocarcinoma (Figure 10). The increased expression of 
AGR2 and decreased expression of IL33 have also been 
identified in other reports. We also analyzed the expression 
of microRNAs in lung adenocarcinoma (Table 9). 
Twenty-too upregulated microRNAs were identified in 
lung adenocarcinoma. We focused on microRNAs with 

predictable putative targets - BTNL9, FMO2, IL33, 
CPED1, and PDK4. Among these microRNAs, elevated 
expression of hsa-miR-183-5p [74], hsa-miR-33b-5p [75], 
hsa-miR-429 [76], hsa-miR-182-5p [77], and hsa-miR-
130b-5p [78] have been associated with tumorigenesis in 
lung cancer. The function of hsa-miR-542-3p is unclear. 
However, since the genetic interactions of hsa-miR-183-
5p-BTNL9, hsa-miR-33b-5p-CPED1, hsa-miR-429-
CPED1, hsa-miR-182-5p-FMO2, hsa-miR-130b-5p-IL33, 
and hsa-miR-542-3p-IL33 have not been identified, these 
altered genetic regulations may play important roles in the 
progression of lung adenocarcinoma.

MATERIALS AND METHODS

Clinical lung adenocarcinoma specimens

Three pairs of tumors and adjacent non-tumor lung 
tissues were collected from the Division of Thoracic 
surgery and Division of Pulmonary and Critical Care 
Medicine, Kaohsiung Medical University Hospital 
(KMUH), Kaohsiung, Taiwan. Approval for these studies 
was obtained from the Institutional Review Board (IRB) 

Table 9: Differentially expressed microRNAs identified from next-generation sequencing data

miRNAs Precursor
RPM (Reads per million)

T/N
N1 T1 N2 T2 N3 T3

hsa-miR-1307-5p hsa-mir-1307 118.34 396.09 109.76 504.13 28.34 66.54 Up
hsa-miR-130b-5p hsa-mir-130b 2.31 12.19 1.71 5.58 1.29 3.25 Up
hsa-miR-130b-3p hsa-mir-130b 15.6 132.83 14.09 64.85 13.7 29.88 Up
hsa-miR-182-5p hsa-mir-182 926.7 5350.27 731.46 5334.41 1779.57 15146.54 Up
hsa-miR-183-5p hsa-mir-183 179.58 1197.91 111.57 917.47 471 2525.39 Up
hsa-miR-190a-5p hsa-mir-190a 6.7 30.48 11 26.46 2.76 6.5 Up
hsa-miR-200a-5p hsa-mir-200a 7.4 28.83 7.05 87.67 10.08 36.2 Up
hsa-miR-200b-3p hsa-mir-200b 459.71 1338.61 275.25 2046.74 245.19 494.41 Up
hsa-miR-21-3p hsa-mir-21 472.88 2282.29 448.1 7108.65 312.3 862.23 Up
hsa-miR-224-5p hsa-mir-224 15.95 85.34 17.72 150.97 15.16 68.89 Up
hsa-miR-301b-3p hsa-mir-301b 4.74 173.22 6.41 22.7 2.76 8.49 Up
hsa-miR-31-5p hsa-mir-31 91.18 452.09 5.98 65.76 5.17 55.44 Up
hsa-miR-33b-5p hsa-mir-33b 5.78 20.57 5.45 51.23 2.5 10.56 Up
hsa-miR-345-5p hsa-mir-345 34.44 97.53 28.29 178.85 54.97 139.04 Up
hsa-miR-424-3p hsa-mir-424 2.43 30.22 4.38 47.34 2.5 10.38 Up
hsa-miR-424-5p hsa-mir-424 35.82 240.9 34.27 164.07 17.83 54.17 Up

hsa-miR-429 hsa-mir-429 143.41 407.01 153.53 673.9 119.92 359.34 Up
hsa-miR-450a-5p hsa-mir-450a-1 4.39 25.53 5.87 28.4 2.93 8.67 Up
hsa-miR-450a-5p hsa-mir-450a-2 4.39 25.4 5.87 28.27 2.93 8.67 Up
hsa-miR-452-5p hsa-mir-452 11.79 36.95 23.81 72.5 20.16 45.05 Up
hsa-miR-542-3p hsa-mir-542 11.33 54.23 13.99 60.05 7.41 34.67 Up
hsa-miR-7705 hsa-mir-7705 3 14.6 4.91 28.4 3.27 7.4 Up
hsa-miR-96-5p hsa-mir-96 25.31 64 13.77 55.25 19.82 204.5 Up
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Figure 9: Identification of differentially expressed microRNAs in lung adenocarcinoma compared to adjacent normal 
tissue using next-generation sequencing. Venn diagram analysis showed 22 upregulated microRNAs (A) and 0 downregulated 
microRNAs (B) in lung adenocarcinoma, compared to adjacent normal tissue from 3 pairs of clinical specimens. The criteria were fold 
change > 2 (tumor/normal) and reads per million (RPM) > 1. (C) The heatmap diagram showed the differentially expressed genes with z-score 
(log2) values by using color clustering on the GENE-E web-tool. Green represents downregulation (minimum = –3.0), and red represents 
upregulation (maximum = 3.0). (D) The “Targets” Venn diagram shows the predicted genes of microRNAs from the “microRNAs” Venn 
diagram using the miRmap web-site database. The selection threshold was miRmap score ≥ 90.0. The intersection Venn diagram between 
“mRNAs” and “Targets” showed total of 6 potential microRNA-mRNA interactions.
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of KMUH, and informed consent was obtained from all 
patients in accordance with the Declaration of Helsinki.

Next-generation sequencing (NGS)

The expression profile of mRNA and microRNA 
was performed using NGS [22]. Three pairs of lung 
adenocarcinomas and adjacent normal specimens were used 
in this project. Total RNA was extracted by using Trizol® 
Reagent (Invitrogen, USA), according to the manufacturer’s 
instructions. The cell lysates were applied to Welgene 
Biotechnology Company (Welgene, Taipei, Taiwan) for 
RNA-seq and small RNA-seq analysis. The criteria for 
differentially expressed mRNA analysis were fold change 
> 2 and fragments per kilobase million (FPKM) > 0.3. The 
criteria for differentially expressed microRNAs’ selection 
were fold change > 2 and reads per million (RPM) > 1.

Oncomine database analysis

The Oncomine database contains over 18,000 
microarray experiments and 35 major cancer types 
[23]. The raw data of mRNA expression in clinical lung 
adenocarcinoma and normal specimens (cancer vs. 
normal) were extracted from the Oncomine database 
(http://www.oncomine.org, Compendia biosciences, 
Ann Arbor, MI, USA). The criteria in the analysis were 
P-value < 1E-4, fold change > 2, and gene rank in top 
10%. P-value was calculated using the Oncomine database 
through two-sided Student’s t-test. For the comparison 
of genes in each dataset, raw data was extracted and re-
plotted using the GENE-E web-tool (https://software.
broadinstitute.org/GENE-E/), and the relative color 
scheme was used for clustering as minimum = 0 (blue) 
and maximum = 1 (yellow). Eleven datasets were selected 

Table 10: Genes selected between differentially expressed genes and putative targets of microRNA
miRNA Predicted targets miRmap score

hsa-miR-183-5p BTNL9 92.2457

hsa-miR-200b-3p CPED1 97.3127

hsa-miR-33b-5p CPED1 91.5414

hsa-miR-429 CPED1 97.7498

hsa-miR-182-5p FMO2 98.0884

hsa-miR-345-5p FMO2 96.6797

hsa-miR-130b-5p IL33 98.1906

hsa-miR-542-3p IL33 96.593

hsa-miR-21-3p NDRG4 95.067

hsa-miR-424-5p PDK4 99.1986

Figure 10: The proposed novel molecular signatures of gene regulations involved in lung adenocarcinoma.
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for our analysis, including Hou (normal = 65 and lung 
adenocarcinoma = 45) [79], Landi (normal = 49 and lung 
adenocarcinoma = 58) [80], Selamat (normal = 58 and 
lung adenocarcinoma = 58) [81], Okayama (normal = 20 
and lung adenocarcinoma = 226) [82], Su (normal = 30 
and lung adenocarcinoma = 27) [83], Wei (normal = 25 
and lung adenocarcinoma = 25)[84], Stearman (normal 
= 19 and lung adenocarcinoma = 20) [85], Bhattacharjee 
(normal = 17 and lung adenocarcinoma = 132) [86], Beer 
(normal = 10 and lung adenocarcinoma = 86) [87], Garber 
(normal = 5 and lung adenocarcinoma = 40) [88], and 
Wachi (normal = 5 and lung adenocarcinoma = 5) [89].

SurvExpress database analysis

SurvExpress integrates the TCGA database (https://
tcga-data.nci.nih.gov) which provides microarray 
information, including cancer type, survival, and gene 
expression. The correlation between IL33 mRNA 
expression and survival rate was analyzed on the 
SurvExpress web-databse (http://bioinformatica.mty.
itesm.mx/SurvExpress). The dataset lung adenocarcinoma 
TCGA (N = 255) was used in our analysis. Samples 
of each dataset were split into 2 risk groups (high and 
low risk) of the same size, of which each group was 
determined by the ordered Prognostic Index (PI, high 
value for high risk) [27]. Prognostic Index (PI) is the 
linear component of the Cox model, computed by gene 
expression value multiplied with values estimated from 
the Cox fitting [90].

PrognoScan database analysis

PrognoScan collects information of the GEO (Gene 
Expression Omnibus) microarray database, including 
cancer type, survival rates, and gene expression. The 
correlation between gene expression and overall survival 
rates was performed on the PrognoScan web-databse 
(http://www.abren.net/PrognoScan/) [25]. The raw data 
were extracted and re-plotted by GraphPad Prism 5 
software (GraphPad Software, La Jolla, CA, USA). The 
threshold was determined as Cox p-value < 0.05. Samples 
of each dataset were divided into 2 expression groups 
(high and low) at the potential cutpoint. The cutpoint (from 
< 0.1 or > 0.9 quantile) was estimated by the minimum 
P-value approach [91], and the P-value correlation was 
calculated by the formula [92]. The hazard ratios (95% 
confidence intervals) of each dataset was calculated using 
the Cox proportional model, and are listed in the related 
Tables. HR = 0 represents no difference between 2 groups, 
HR < 1 represents better survival rate in the population 
with higher levels of expression, and HR > 1 represents 
better survival rates in the population with lower levels of 
expression. The specific probe of each dataset is listed in 
its related Figure.

Kaplan–Meier plotter database analysis

The Kaplan-Meier plotter is a web-database 
providing the information on 54675 genes’ expression 
and survival rates in 10461 cancer samples, including 
5143 breast, 1816 ovarian, 2437 lung, and 1065 gastric 
cancer patients [26]. The correlation of gene expression 
and overall survival rates in lung cancer was determined, 
and lung adenocarcinoma (N = 720) was selected in our 
analysis. Patients were split into 2 populations with the 
best cut-off, which was computed with median survival. 
The hazard ratios (95% confidence intervals) were 
calculated using the Cox proportional model, and are 
listed in the related Tables. The specific probe of each 
dataset was listed in its related Figure.

Gene expression omnibus (GEO) database 
analysis

GEO is a web-database providing submitted high 
throughput gene expression data of microarrays, chips, 
or NGS (https://www.ncbi.nlm.nih.gov/geo/) [24]. We 
selected the microarray with accession number GSE10072, 
published in 2008 [80], for this project. This microarray 
provides gene expression information of 180 clinical 
lung adenocarcinoma and non-tumor samples. Here, we 
selected 31 pairs of lung adenocarcinoma with adjacent 
normal tissue for gene expression analysis. The raw data 
were analyzed and extracted from GEO2R (https://www.
ncbi.nlm.nih.gov/geo/geo2r/), and re-plotted by GraphPad 
prism 5 software (GraphPad Software, La Jolla, CA, 
USA). The p-value was calculated by using t-test with 
Wilcoxon matched-pairs signed rank test.

miRmap database analysis

miRmap is a web-tool database providing analysis 
of microRNA targets prediction (http://mirmap.ezlab.
org/) [28]. It identifies the putative target genes by 
calculating the complementary ability of microRNA-
mRNA interactions. The strength of mRNA repression 
is estimated for ranking potential candidate targets by 
employing various features, including thermodynamic, 
evolutionary, probabilistic or sequence-based features. The 
prediction results show a list of putative target genes with 
miRmap scores, which are a predictive reference values. 
Putative targets with miRmap scores ≥ 90.0 were selected 
for this project.

Statistical analysis

The raw data extracted from GEO database were 
statistically analyzed using t-test with Wilcoxon matched-
pairs signed rank test by GraphPad Prism 5 software 
(GraphPad Software, La Jolla, CA, USA).
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