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ABSTRACT

In recent years, an epidemic of the highly pathogenic avian influenza H7N9 virus 
has persisted in China, with a high mortality rate. To develop novel anti-influenza 
therapies, we have constructed a machine-learning-based scoring function (RF-
NA-Score) for the effective virtual screening of lead compounds targeting the viral 
neuraminidase (NA) protein. RF-NA-Score is more accurate than RF-Score, with 
a root-mean-square error of 1.46, Pearson’s correlation coefficient of 0.707, and 
Spearman’s rank correlation coefficient of 0.707 in a 5-fold cross-validation study. 
The performance of RF-NA-Score in a docking-based virtual screening of NA inhibitors 
was evaluated with a dataset containing 281 NA inhibitors and 322 noninhibitors. 
Compared with other docking–rescoring virtual screening strategies, rescoring with 
RF-NA-Score significantly improved the efficiency of virtual screening, and a strategy 
that averaged the scores given by RF-NA-Score, based on the binding conformations 
predicted with AutoDock, AutoDock Vina, and LeDock, was shown to be the best 
strategy. This strategy was then applied to the virtual screening of NA inhibitors in 
the SPECS database. The 100 selected compounds were tested in an in vitro H7N9 NA 
inhibition assay, and two compounds with novel scaffolds showed moderate inhibitory 
activities. These results indicate that RF-NA-Score improves the efficiency of virtual 
screening for NA inhibitors, and can be used successfully to identify new NA inhibitor 
scaffolds. Scoring functions specific for other drug targets could also be established 
with the same method.

INTRODUCTION

Since the first report of human infection with the 
avian influenza H7N9 virus in China in March 2013, this 
new viral subtype has caused sustained annual epidemic 
in subsequent years [1, 2]. The newly issued monthly 

World Health Organization (WHO) risk assessment 
summary at the human–animal interface [3] has reported 
that, as of June 2017, avian influenza H7N9 has caused 
1533 laboratory-confirmed human infections, including 
at least 592 deaths. Recent studies have shown that the 
pandemic potential of avian influenza H7N9 is great [4, 
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5]. The emergence of new types of influenza viruses and 
the spread of drug-resistant strains [6] make the influenza 
virus a serious public-health threat.

Neuraminidase (NA) is an important surface 
glycoprotein of the influenza viruses. The main role of 
NA is to remove the sialic acid groups from glycoproteins 
at the surfaces of host cells, resulting in the release of 
virion progeny from infected cells. NA also allows the 
virus to move through the mucus layer of the respiratory 
tract in the early stage of infection, which is important 
if the virus is to reach and infect epithelial cells [7, 8]. 
NA also prevents the formation of viral aggregates at the 
surfaces of host cells, enhancing viral infectivity [9]. The 
amino acid residues in the active site of NA are highly 
conserved among all natural strains of influenza virus 
infections [10]. These features of NA make it an attractive 
target for the control and treatment of influenza virus [11]. 
Several NA inhibitors that target the active site of NA 
have been developed and shown to be effective in clinical 
trials [12-15]. Two NA inhibitors, oseltamivir (Tamiflu®) 
and zanamivir (Relenza®), have been approved by the 
Food and Drug Administration (FDA) in the USA for 
the treatment and prevention of influenza viral infection. 
However, the emergence and wide-ranging spread of 
oseltamivir-resistant strains [6, 16], the limited use of 
zanamivir because its oral bioavailability is poor [17], and 
the emergence of new and more aggressive strains, such 
as avian H5N1 and H7N9 [1], have amplified the need 
for the development of new and more-effective antiviral 
compounds.

Virtual screening based on molecular docking is 
becoming a powerful tool in identifying lead compounds 
[18, 19], and a series of potential NA inhibitors has been 
identified with this method [20-22]. Current NA inhibitor 
virtual screening studies usually use the score (binding 
affinity value) given by scoring functions integrated 
into molecular docking software to rank the compounds. 
Therefore, this score is the main basis for the selection 
of potential inhibitors. These scoring functions are 
designed to recognize correct binding conformations in 
the docking process, but perform poorly in ranking the 
compounds correctly in the order of their activity against 
a target. Cheng et al. examined the abilities of 16 popular 
scoring functions to predict binding affinities using a 
dataset containing 195 protein–ligand complexes and 
their experimental binding affinities, and showed that the 
best scoring function achieved a Pearson’s correlation 
coefficient of 0.644 [23]. The low accuracy of the scoring 
function is a major factor limiting the efficiency of 
molecular-docking-based virtual screening [24].

In recent years, machine-learning methods have 
been successfully used in many aspects of pharmaceutical 
research, such as drug-target interactions prediction 
[25, 26], synergistic drug combinations prediction [27, 
28], and drug toxicity prediction [29]. In the scope 
of virtual screening, new scoring functions based on 

modern machine-learning regression models have been 
introduced, and have been shown to outperform a wide 
range of classical scoring functions [30]. Khamis et al. 
[31] comprehensively evaluated 12 machine-learning-
based scoring functions and 20 classical scoring functions. 
Their results showed that the machine-learning-based 
scoring functions were a substantial improvement on 
classical scoring functions in both scoring power (binding 
affinity prediction) and ranking power (relative ranking 
prediction). Ashtawy and Mahatrapa [32] reported that 
machine-learning scoring functions using the random 
forests algorithm or boosted regression trees were most 
frequently associated with the best performance. With the 
accumulation of protein–ligand complex structural data in 
public databases, it is possible to design scoring functions 
for the more-efficient prediction of the binding affinity of 
specific proteins or protein families.

In this study, we developed an NA-specific scoring 
function using the random forests algorithm for the 
efficient virtual screening of NA inhibitors. The efficiency 
of various virtual screening strategies combining different 
docking software and scoring functions was then evaluated 
on a test dataset containing 281 NA inhibitors and 322 
noninhibitors. The best strategy was used to virtually 
screen for NA inhibitors in the SPECS database.

RESULTS

Performance of RF-NA-Score

Using 36 RF-Score features, 11 Vina features, and 
the experimental binding affinity values of the training set 
complexes (67 NA–ligand complexes from the PDBbind 
database version 2016) as input data, a scoring function 
specific for Influenza A virus NA, designated RF-NA-
Score, was trained with the method proposed by Ballester 
and Mitchell [33-35]. The performance of RF-NA-Score 
was rigorously validated with 5-fold cross-validation 
(5-CV) and leave-one-out cross-validation (LOOCV) 
methods. The performance measures are presented in 
Table 1. For comparison, RF-Score was also retrained 
on the refined set of the latest version of the PDBbind 
database (version 2016), which contains more complexes 
and should result in a more robust scoring function. 
The performance of RF-Score in predicting the binding 
affinities of the 67 NA–ligand complexes is also shown 
in Table 1.

As shown in Table 1, RF-NA-Score achieved root-
mean-square errors (RMSEs) of 1.46, 1.48, and 1.50 on 
5-CV, LOOCV, and resampling test, respectively, which 
are obviously smaller than the value of 1.63 achieved 
with RF-Score, indicating that the difference between the 
measured binding affinities and those predicted by RF-
NA-Score was smaller than that of RF-Score. On two other 
performance measures, Pearson’s correlation coefficient 
(Rp) and Spearman’s rank correlation coefficient (Rs), 
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RF-NA-Score was also better than RF-Score. This means 
that RF-NA-Score not only produces a higher linear 
correlation between the predicted and measured binding 
affinities, but also predicts a more accurate binding affinity 
rank for the ligands. These features should make virtual 
screening more efficient. The performance measures for 
RF-NA-Score and RF-Score suggest that RF-NA-Score is 
more accurate in predicting the binding affinities between 
ligands and NA, and could therefore be more efficient in 
the virtual screening of NA inhibitors.

Validation of the accuracy of molecular docking 
software

Because the accurate prediction of the complex 
structures combining NA and ligands is important for 
the use of scoring functions such as RF-NA-Score in 
virtual screening, we validated the accuracy of AutoDock, 
AutoDock Vina, and LeDock by comparing the predicted 
and experimentally determined complex structures of 
four NA inhibitors (oseltamivir carboxylate, zanamivir, 
laninamivir, and peramivir). Figure 1 shows the structures 
of NA complexed with oseltamivir carboxylate (Figure 
1A), zanamivir (Figure 1B), laninamivir (Figure 1C), 
and peramivir (Figure 1D) predicted by AutoDock 
(cyan), AutoDock Vina (magenta), and LeDock (yellow), 
superimposed on their corresponding crystal structures 
(green). Table 2 shows the root-mean-square deviation 
(RMSD) between the predicted and experimentally 
determined binding conformations of the four inhibitors. 
It can be seen from Figure 1 that all the predicted binding 
conformations are very close to the crystal structures. The 
RMSD values (Table 2) are very low, with an average 
of around 0.76 Å and no values > 2 Å, especially for 
AutoDock Vina and LeDock, in which the RMSD values 

are all < 1 Å. These results indicate that all three molecular 
docking software tools are accurate in docking ligands to 
influenza NA.

Evaluation of RF-NA-Score in the virtual 
screening of NA inhibitors

With a comprehensive search of the literature 
and the bindingDB database (see details in Materials 
and Methods), we collected a ligand dataset containing 
281 inhibitors and 322 noninhibitors of the group 2 NA 
enzymes of the influenza viruses. With this dataset, RF-
NA-Score was evaluated for its effectiveness in virtually 
screening for influenza virus NA inhibitors using the 
strategy illustrated in Figure 1. Briefly, these ligands were 
docked to the crystal structure of H7N9 NA (PDB ID: 
4MWJ) using the three docking software tools AutoDock, 
AutoDock Vina, and LeDock. The top-scoring binding 
complexes predicted by each software were then rescored 
with RF-Score and RF-NA-Score. The performances of 
the virtual screening strategies using the different docking 
software tools combined with different scoring methods 
were evaluated by comparing their score distributions of 
inhibitors and noninhibitors and their receiver operating 
characteristic (ROC) curves.

The score distributions of the inhibitors and 
noninhibitors are shown in Figure 2. Figure 2A-2C 
show the distributions of the original scores of the 
docking software tools. Although the peak values for the 
distributions of the inhibitors are greater than those of the 
noninhibitors for all three software tools, the distributions 
are strongly overlapping, which makes it difficult to 
distinguish inhibitors from noninhibitors. Rescoring with 
RF-Score increased the separation of the peak values and 
reduced the overlap (Figure 2E-2G), indicating that the 

Table 1: Performance measures of RF-NA-Score and RF-Score for 67 NA–ligand complexes, measured with the 
root-mean-square error (RMSE), Pearson’s correlation coefficient (Rp), and Spearman’s rank correlation coefficient 
(Rs) for the predicted and measured binding affinities

Method Number of test 
complexes

RMSE Rp Rs

5-CV fold1 13 1.47 0.846 0.841

5-CV fold2 13 1.86 0.740 0.714

5-CV fold3 13 1.51 0.630 0.758

5-CV fold4 14 1.57 0.577 0.565

5-CV fold5 14 0.88 0.744 0.657

5-CV average 13 1.46 0.707 0.707

70% resampling 
average

20 1.50 0.712 0.717

LOOCV 67 1.48 0.722 0.711

RF-NA-Score 67 1.63 0.670 0.593
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effectiveness of virtual screening was improved by RF-
Score. However, in the region with high scores (e.g., RF-
Score > 7), the inhibitors and noninhibitors still seriously 
overlapped. This can be quantified by the enrichment 
factor at 10% (EF10) which reflects the power of the 
virtual screening method in the enrichment of inhibitors in 
top 10% of results. As shown in Figure 2E-2G, the values 
of EF10 are decreased (except LeDock) after rescoring 
with RF-Score. Figure 2I-2K show the distribution of 
the scores provided by RF-NA-Score. RF-NA-Score 
clearly outperforms RF-Score and the original scores. The 
separation of the peak values is significantly improved 
and the overlap between the inhibitors and noninhibitors 
is clearly smaller than those resulting from RF-Score 

and the original scores. There are also significantly more 
inhibitors in the region of high scores. The values of EF10 
are significantly improved. Furthermore, the EF10 value 
of Vina (2.11) is close to the upper bound of 2.15. These 
results illustrate the effectiveness of RF-NA-Score in 
virtual screening.

We also computed an average score for each 
scoring method by averaging the scores of the three 
complex structures predicted with the different docking 
software tools. The distributions of the average scores are 
shown in Figure 2D, 2H, and 2L. Averaging the scores 
reduced the overlap of score distributions of inhibitors 
and noninhibitors for all three scoring methods. And the 
average RF-NA-Score displayed the best performance. 

Figure 1: Comparison of the NA inhibitor binding conformations predicted with the docking softwaretools and their 
corresponding crystal structures. (A) Oseltamivir carboxylate, PDB ID: 4MWQ; (B) zanamivir, PDB ID: 4MWR; (C) laninamivir, 
PDB ID: 4MWU; (D) peramivir, PDB ID: 4MWV. Small molecules with green, cyan, magenta, and yellow skeletons were derived from 
crystal structures and structures predicted with AutoDock, AutoDock Vina, and LeDock, respectively. The figure was prepared with PyMOL.

Table 2: RMSD (in Å) between the predicted and experimentally determined binding conformations of four 
inhibitors

Software Oseltamivir carboxylate Zanamivir Laninamivir Peramivir

AutoDock 1.43 1.55 1.23 0.58

AutoDock Vina 0.41 0.61 0.65 0.43

LeDock 0.35 0.69 0.69 0.50
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The EF10 value of average RF-NA-Score is 2.04 which is 
higher than that of the other two average method (1.82 and 
1.25) and slightly lower than that of vina combined with 
RF-NA-Score (2.11).

Student’s t test was used to evaluate the significance 
of the differences between the mean scores for the 
inhibitors and noninhibitors. The p value for the average 
RF-NA-Score strategy was 2.04 × 10−52, which was the 
lowest p value obtained for all strategies, and clearly 
suggests that the average RF-NA-Score outperformed the 
other strategies.

The ROC curves and the areas under the ROC 
curves (AUCs) are presented in Figure 3. The ROC curve 
analysis is a well-recognized method of evaluating how 
good a model is at selecting known active molecules and 
discarding inactive molecules [36, 37]. The AUC values 
range from 0.5 (corresponding to a random model) to 1 
(corresponding to an ideal model). In general, the greater 
the AUC, the more effective the virtual screening strategy 
is in discriminating active from inactive compounds. 
Comparing the AUC values of the different strategies 

clearly showed that RF-NA-Score outperformed the 
original score and RF-Score when combined with any of 
the three docking software tools. Figure 3 demonstrates 
that the best strategy is the average RF-NA-Score, which 
achieved an AUC value of 0.837. Overall, the results 
obtained from the ROC curve analysis are consistent with 
those obtained by comparing the scores distributions.

These results suggest that rescoring with RF-NA-
Score significantly improves the efficiency of virtual 
screening for influenza virus NA inhibitors. Among these 
virtual screening strategies, the best strategy involved 
docking with AutoDock, AutoDock Vina, or LeDock, 
rescoring with RF-NA-Score, and then averaging the 
scores. This strategy was used in subsequent virtual 
screening.

Screening the SPECS database

The best virtual screening strategy was used to 
screen candidate inhibitors of NA in a compound library 
containing 52,631 lead-like compounds (250 < molecular 

Figure 2: Score distributions of inhibitors (red) and noninhibitors (blue) provided by the docking software (A, B, C, D), RFScore (E, F, G, 
H), and RF-NA-Score (I, J, K, L) based on the top-scoring docking results of AutoDock (A, E, I), AutoDock Vina (B, F, J), and LeDock (C, 
G, K), and the average scores of these three software tools (D, H, L). To average the original scores, the scores were normalized to a range 
of 0–1 and then the average was calculated, because different scoring ranges are given by different docking software tools. The p values 
were calculated with Student’s t test. EF10 is the enrichment factor at 10%. The upper bound of EF10 is 2.15.
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weight < 350, and logP < 3.5) in the SPECS database. 
After virtual screening, the 1000 compounds with the best 
average RF-NA-Score scores were clustered, and 100 
compounds with wide chemical diversity were selected as 
candidate inhibitors.

These compounds were tested in an in vitro H7N9 
NA inhibition assay, using oseltamivir carboxylate 
as the positive control. Two of the compounds, AH-
034/11365875 and AH-262/08373040, were found to 
be active at concentrations of 100 μM (Figure 4), with 
inhibition rates of 40.8% and 31.0%, respectively. The 
dose–response effects of these two compounds were 
then evaluated to determine the half-maximal inhibitory 
concentrations (IC50), which were 107.0 μM and 194.2 

μM, respectively (Figure 5). These results suggest that 
AH-034/11365875 and AH-262/08373040 are moderate 
NA inhibitors.

The novelty of these two new NA inhibitors was 
also analyzed by calculating their structural similarity 
to the 281 previously reported inhibitors. The pairwise 
similarity of these inhibitors was calculated with the 
Tanimoto coefficient based on atom pair descriptors [38, 
39]. The similarity of compounds AH-034/11365875 and 
AH-262/08373040 to the most similar compounds among 
the previously reported inhibitors was 0.281 and 0.373, 
respectively. Thus, these two compounds have very low 
similarity to previously reported inhibitors, suggesting 
that AH-034/11365875 and AH-262/08373040 are 

Figure 3: ROC curves for the virtual screening strategies using the docking software tools AutoDock (A), AutoDock Vina (B), and 
LeDock (C) combined with different scoring methods: original score (red), RF-Score (green), and RF-NA-Score (blue). Strategy using the 
average scores of the three docking software tools (D).



Oncotarget83148www.impactjournals.com/oncotarget

NA inhibitors with novel scaffolds. Because these two 
inhibitors were screened from a lead-like library, they can 
be considered lead compounds for the development of 
new anti-influenza drugs. Our results also confirm that our 
virtual screening strategy is capable of discovering new 
NA inhibitor scaffolds.

DISCUSSION

In this study, we developed a machine-learning-
based influenza-virus-NA-specific scoring function, 
called RF-NA-Score, using 67 NA–ligand complexes and 
their experimental binding affinities obtained from the 

PDBbind database as the training data. The performance 
of RF-NA-Score in predicting the binding affinities of 
ligands and NA was validated with 5-CV and LOOCV, 
and RF-NA-Score was more accurate than RF-Score. 
We also validated the accuracy of AutoDock, AutoDock 
Vina, and LeDock in docking ligands to influenza NA. 
We then evaluated various docking–rescoring virtual 
screening strategies using different docking software 
tools combined with different scoring methods, using 
a ligand dataset containing 281 NA inhibitors and 322 
noninhibitors. The results suggest that rescoring with RF-
NA-Score significantly improves the efficiency of virtual 
screening and that the best strategy involves docking with 

Figure 4: Inhibition rates (%) of 100 candidate inhibitors at concentrations of 100 μM. Oseltamivir carboxylate was used 
as the positive control (red column). Two compounds (blue columns) inhibited NA activity by > 30%.

Figure 5: Dose-dependent inhibitory effects (IC50 values) of compounds AH-034/11365875 (A) and AH-262/08373040 (B).
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AutoDock, AutoDock Vina, or LeDock, rescoring with 
RF-NA-Score, and then averaging the scores. This strategy 
was then used to screen 52,631 lead-like compounds in the 
SPECS database. One hundred compounds were selected 
for testing in an in vitro H7N9 NA inhibition assay, and 
two compounds showed moderate anti-H7N9 NA activity. 
These two compounds were shown to be novel scaffolds, 
supporting the notable advantage of RF-NA-Score and this 
virtual screening strategy.

Despite the advantages of the virtual screening 
strategy proposed in this study, there are some noteworthy 
limitations. First, although we have validated the accuracy 
of AutoDock, AutoDock Vina, and LeDock in docking 
ligands to influenza NA, the docking software tools may 
still get incorrect results in docking other ligands, thus 

affecting the effectiveness of RF-NA-Score and the virtual 
screening strategy. Then, it needs to collect a large number 
of crystal structures of protein–ligand complexes as well 
as their experimental binding affinity values prior to the 
training of the machine-learning-based scoring function. 
But for most drug targets there is not enough data to 
establish a specific scoring function, which limits the scope 
of application of this strategy. Moreover, the proposed 
virtual screening strategy uses three docking software tools 
and a rescoring function to calculate binding affinity of a 
ligand, which requires significantly more computational 
power. If we only use the proposed strategy to evaluate 
the compounds that were top-ranked in traditional virtual 
screening, the computational cost should be significantly 
reduced, which should be further studied.

Figure 6: Virtual screening strategy using molecular docking software and RF-NA-Score.
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MATERIALS AND METHODS

Data preparation

The training dataset used to develop an influenza-
virus-NA-specific scoring function for the prediction of 
ligand binding affinities was derived from the PDBbind 
database version 2016 [40], a comprehensive collection 
of protein–ligand complexes with high-quality crystal 
structures and experimentally measured binding affinity 
data. The binding affinity data are presented as −log (Kd/
Ki/IC50) in the PDBbind database, which is a suitable 
format for training machine-learning-based scoring 
functions. In the present study, we searched the PDBbind 
database and collected 67 NA–ligand complexes with 
three-dimensional (3D) structures and binding affinity 
data. These 67 complexes were used as the training set 
for constructing the scoring function. The complete list 
of PDB codes and the corresponding binding affinities is 
provided in Supplementary Table 1. The binding affinities 
of the 67 selected complexes ranged widely from 2.0 to 
9.74, which implies that the ligands in the training dataset 
had diverse chemical structures.

To evaluate the performance of the scoring functions 
in the virtual screening process, comprehensive searches 
of the literature and the bindingDB database [41] were 
conducted to collect small molecules with known 
inhibitory activities (IC50 values) against influenza A virus 
NA. Because the aim of this study was to screen inhibitors 
of NA of the H7N9 influenza virus, and N9 belongs to 
the group 2 NAs (N2, N3, N6, N7, and N9) [42], we only 
collected the structures and corresponding IC50 values 
of group 2 NA inhibitors. In total, 706 molecules were 
finally collected, with IC50 values ranging from 0.1 nM 
to > 7 mM. Because the molecules were collected from 
multiple studies reported in the literature, the methods, test 
conditions, and sources of NA used for the NA inhibition 
assays were not exactly identical [43]. Therefore, there 
may have been some discrepancies in the IC50 value 
of these molecules. Consequently, we categorized the 
molecules with IC50 < 10 μM as inhibitors, and those with 
IC50 > 50 μM as noninhibitors. The molecules in the gray 
area (10 μM < IC50 < 50 μM) were removed to reduce the 
possible influence of variable IC50 values on the accuracy 
of our evaluation of the performance of the scoring 
functions [44-46]. Ultimately, the ligand dataset contained 
281 inhibitors and 322 noninhibitors. The details of the 
ligand dataset are given in Supplementary Table 2.

Because there were no experimentally determined 
3D structures for these collected molecules when 
complexed with NA, we predicted them with the 
molecular docking method. This is also the method used 
when virtual screening is performed. The accuracy of 
the molecular docking software tools in predicting the 
NA–inhibitor complexes was confirmed by testing the 
ability of the programs to redock the ligand into the 

crystal structure of NA. Four inhibitors, oseltamivir 
carboxylate, zanamivir, laninamivir, and peramivir, 
were docked to the crystal structure of H7N9 NA (PDB 
ID: 4MWJ), and the resulting inhibitor–NA complexes 
were then compared with their experimentally 
determined complex structures (oseltamivir carboxylate, 
4MWQ; zanamivir, 4MWR; laninamivir, 4MWU; and 
peramivir, 4MWV).

Building an NA-specific scoring function

RF-Score is a machine-learning-based scoring 
function built with the random forests algorithm of 
Ballester and Mitchell [33, 34]. The recent version of 
RF-Score has outperformed 22 state-of-the-art scoring 
functions on the PDBbind benchmark [35]. In the present 
study, we trained a new implementation of RF-Score on 
a refined set of the PDBbind database 2016 (containing 
3766 protein–ligand complexes), based on 36 RF-
Score features and 11 Vina features. The NA-specific 
scoring function (RF-NA-Score) was trained on 67 
NA–ligand complexes taken from the PDBbind database 
2016 using the same method as was used to train RF-
Score. The performance of RF-Score in predicting the 
binding affinity for NA was tested on the 67 NA–ligand 
complexes, and the performance of RF-NA-Score was 
rigorously validated with 5-fold cross-validation (5-
CV), leave-one-out cross-validation (LOOCV), and 
resampling test, which have been commonly used in the 
the evaluation of machine learning models [29, 47-49]. 
In 5-CV, the 67 complexes were randomly divided into 
five equal subsets: four subsets were used as training sets 
to predict the binding affinities of the complexes in the 
remaining one subset. This process was repeated five 
times until each subset has been used as the test set. In 
LOOCV, for each run, just one sample was used as the 
test set, and the other samples were used as the training 
set, and this process was repeated until all the samples 
has been used as the test sample. In resampling test, 70% 
of the complexes were randomly sampled to training data 
to build the scoring function, and the remaining 30% 
were used to test the scoring function [50]. The test was 
repeated for 10 times.

The performance of the scoring functions was 
evaluated with RMSE, Pearson’s correlation coefficient 
(Rp), and Spearman’s rank correlation coefficient (Rs) 
between the predicted and measured binding affinities, 
because these are widely used to evaluate scoring 
functions [35, 51, 52]. RMSE represents the differences 
between the predicted and measured binding affinity 
values. Rp measures the linear correlation between 
the predicted and measured binding affinities, and Rs 
measures the rank correlation between the predicted 
and measured binding affinities. Rs shows how well 
the scoring function ranks the ligands according to their 
binding affinities.
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Molecular docking calculations

For molecular docking, the 3D structures of all the 
ligands used in this study were download from ZINC15 
[53] or generated with CORINA Classic (https://www.mn-
am.com/online_demos/corina_demo). AutoDock (version 
4.2.6) [54], AutoDock Vina (version 1.1.2) [55], and 
LeDock (version 1.0) (http://www.lephar.com/) were used 
for molecular docking. The crystal structure of H7N9 NA 
(A/Anhui/1/2013) was download from the Protein Data 
Bank (PDB ID: 4MWJ) and used as the receptor in the 
docking process. The docking site of NA was determined 
based on the position of the co-crystalized ligand in the 
structure of the NA–oseltamivir carboxylate complex 
(PDB ID: 4MWQ). A description of each software and 
how it was used in this study is given briefly below.
Autodock

AutoDock is a popular noncommercial protein–
ligand docking program. The scoring function of 
AutoDock is a semi-empirical free-energy force field. 
To use AutoDock, the structure files of the receptor 
and ligands were processed with AutoDockTools in 
MGLTools (version 1.5.6) [54] to merge the nonpolar 
hydrogen, add Gasteiger atomic charges, and set atom 
type to the AutoDock-supported type. During docking, 
the Lamarckian genetic algorithm was used to optimize 
the ligand conformation and 10 docking runs were 
performed for each ligand. The population size was set 
to 150, the number of generations was set to 27,000, and 
the maximum number of energy evaluations was set to 
2,500,000.
Autodock vina

AutoDock Vina is a new docking software, offering 
multicore capability, high performance, and enhanced 
accuracy [55]. AutoDock Vina uses a new knowledge-
based empirical scoring function and the same receptor 
and ligand files as AutoDock. We used the default values 
for all the parameters, except that the number of CPUs 
was set to 1.
Ledock

LeDock is a newly released docking program based 
on a combination of simulated annealing and a genetic 
algorithm, using a physics/knowledge-based scoring 
scheme. LeDock displayed high accuracy and good speed 
in a recent comprehensive docking program evaluation 
study [56]. The protein is processed by LePro (http://www.
lephar.com/) and the ligands do not require processing. All 
the parameters were set to the default values.

Virtual screening strategy using molecular 
docking software and RF-NA-Score

RF-NA-Score was used for virtual screening as 
illustrated in Figure 6. A molecular docking software, such 

as AutoDock, AutoDock Vina, or LeDock, was used to 
predict the complex structures of NA and the ligands in the 
compound library. The top-scoring binding conformations 
for each docking software were then selected as putative 
complex structures. A new score for each complex 
structure was then calculated with a rescoring function, 
such as RF-Score or RF-NA-Score. An average score was 
also computed by averaging the scores for the complex 
structures predicted by the different docking software 
tools. The ligands were then sorted according to their 
scores, and the ligands with higher scores were more 
likely to be NA inhibitors. This process can be called a 
“docking–rescoring strategy”.

The effectiveness of various virtual screening 
strategies using this docking–rescoring method, with 
different docking software tools combined with different 
rescoring functions, was evaluated based on the ligand 
dataset collected in this study.

The performance of the virtual screening strategies 
was evaluated with several methods, including score 
distributions, p values from student’s t test, enrichment 
factors, ROC curves and the areas under the ROC 
curves (AUCs). The score distributions of inhibitors and 
noninhibitors were presented as histograms and density 
curves. The student’s t test was performed to evaluate the 
statistical significance of the mean scores of the inhibitors 
and noninhibitors. Enrichment factor reflects the ability of 
the virtual screening method to enrich inhibitors in top-
scored results. In this study, the enrichment factor at 10% 
(EF10) was calculated using the following formula [57]:

=EF
a
n

A
N

10  (1)

where a is the number of actives (inhibitors) in top-
scored 10% compounds, n is the number of compounds in 
10% of the dataset (in this study n=60), A is the number of 
actives (inhibitors) in the dataset (here A = 281), N is the 
number of compounds in the dataset (here N = 603). The 
EF10 has an upper bound of 2.15. The ROC curves and the 
areas under the ROC curves (AUCs) can give more detail 
diagnose on performance of virtual screening method.

Virtual screening of the SPECS database

The virtual screening strategy with the best 
performance was used to screen for influenza virus NA 
inhibitors in the SPECS database (http://www.specs.
net). The 3D structures of 52,631 lead-like compounds 
(250 < molecular weight < 350, and logP < 3.5) in the 
SPECS database were downloaded from ZINC15. These 
compounds were subjected to the virtual screening 
workflow, and the 1000 top-ranking compounds were 
clustered by their structural similarities using the binning 
clustering algorithm in ChemMine tools [58], with a 
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similarity cutoff of 0.4. To increase the diversity of the 
candidate structures, only one compound in each cluster, 
with the best score, was selected for bioassay validation. 
Because some clusters contained many compounds, we 
selected slightly more compounds from these clusters. 
Finally, 100 candidate compounds were selected and 
purchased from SPECS.

In vitro NA inhibition assay

The in vitro inhibitory activities of the candidate 
compounds against NA were assayed with the modified 
method of Potier et al. [59], using oseltamivir carboxylate 
(MedChem Express, HY-13318) as the positive control. 
2′-(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid 
(4MU-NANA, Sigma, M8639) in MES (Sigma, M8250) 
buffer (32.5 mM MES, 4 mM CaCl2, pH 6.5) was used as 
the substrate and NA from A/Anhui/1/2013(H7N9) (Sino 
Biological Inc., 40108-VNAHC) in MES buffer was used 
as the enzyme. The candidate compounds were dissolved 
in DMSO and diluted to 500 μM in MES buffer. For the 
assay, 10 μL of the compound sample solution was mixed 
with 10 μL of NA in a 96-well microplate and incubated 
for 30 min at 37 °C. Then 30 μL of 100 μM MUNANA 
was added and incubated for 60 min at 37 °C, after which 
150 μL of stop solution (0.1 M glycine, 25% ethanol, pH 
10.7) was added to each well to terminate the reaction. 
The fluorogenic end-product 4-methylumbelliferone (4-
MU) was detected with a SpectraMax M5 microplate 
spectrophotometer (Molecular Devices, Sunnyvale, CA, 
United States) at an excitation wavelength of 355 nm and 
an emission wavelength of 460 nm. Relative fluorescence 
units (RFU) were calculated by subtracting the background 
values. The inhibition rate (IR) was calculated with the 
formula: IR (%) = (RFUDMSO − RFUsample)/RFUDMSO × 100. 
IC50 was calculated by plotting IR against the compound 
concentration, using GraphPad PRISM 7. The assays for 
each compound were performed in triplicate.
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