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ABSTRACT

Detection and diagnosis of cancer are especially important for early prevention 
and effective treatments. Traditional methods of cancer detection are usually time-
consuming and expensive. Liquid biopsy, a newly proposed noninvasive detection 
approach, can promote the accuracy and decrease the cost of detection according 
to a personalized expression profile. However, few studies have been performed to 
analyze this type of data, which can promote more effective methods for detection of 
different cancer subtypes. In this study, we applied some reliable machine learning 
algorithms to analyze data retrieved from patients who had one of six cancer subtypes 
(breast cancer, colorectal cancer, glioblastoma, hepatobiliary cancer, lung cancer 
and pancreatic cancer) as well as healthy persons. Quantitative gene expression 
profiles were used to encode each sample. Then, they were analyzed by the maximum 
relevance minimum redundancy method. Two feature lists were obtained in which 
genes were ranked rigorously. The incremental feature selection method was applied 
to the mRMR feature list to extract the optimal feature subset, which can be used 
in the support vector machine algorithm to determine the best performance for the 
detection of cancer subtypes and healthy controls. The ten-fold cross-validation for 
the constructed optimal classification model yielded an overall accuracy of 0.751. 
On the other hand, we extracted the top eighteen features (genes), including TTN, 
RHOH, RPS20, TRBC2, in another feature list, the MaxRel feature list, and performed 
a detailed analysis of them. The results indicated that these genes could be important 
biomarkers for discriminating different cancer subtypes and healthy controls.
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INTRODUCTION

Cancer has generally been regarded as a general term 
to describe a group of diseases associated with abnormal 
cell growth with invasive and metastatic characteristics [1-
3]. Based on statistics from the WHO, every year, more 
than 8.2 million people die from cancer, accounting for 
approximately 13% of deaths worldwide, indicating that 
cancer is one of the most threatening diseases in the world 
[4, 5]. According to a prediction of the WHO, in the next 
two decades, the incidence of cancer may be elevated by 
more than 70% [5]. Therefore, it is urgent to study the 
biological foundations of cancer and modify clinical 
treatment strategies [6]. However, more than 100 types 
of cancer have been identified, each of which need to be 
diagnosed and treated specifically [5]. Considering the 
complexity of cancer diagnosis and treatment, it is quite 
important to establish a convenient and effective method 
for the early detection and identification of various cancer 
subtypes.

Traditionally, detection and identification of cancers 
relied on three basic groups of testing methods: lab tests, 
imaging procedures and biopsies [7, 8]. Lab tests mainly 
pay attention to specific substances in the body and 
generally involve the detection of body fluids, including 
blood, urine, cerebrospinal fluid (CSF), and so on [9-
11]. However, lab tests reflect the overall conditions of 
the body with the use of only a few markers for tumor 
screening, such as carcino-embryonic antigen, CEA and 
alpha fetoprotein, AFP [10]. Doctors cannot diagnose 
cancer only based on lab tests. For further detection, 
imaging procedures, including CT scan, nuclear scan, 
ultrasound, MRI and X-rays, are used [12-14]. With the 
help of such medical apparatuses, doctors can see deeper 
into the body, which may simplify the diagnosis of cancer. 
However, most screening is expensive and has potential 
pathogenic effects, though screening may be quite safe at 
normal doses. Such characteristics may impose restrictions 
on large-scale screening of cancer patients. Medical 
imaging can only be applied to patients with certain 
clinical symptoms or tumor markers identified by lab 
tests for further identification and classification. Biopsies 
have been widely regarded as the gold standard for tumor 
diagnosis. With a needle, an endoscope, or during surgery, 
doctors directly withdraw tissue or fluid from patients 
for further pathological diagnosis [15-17]. Although 
such testing methods can obtain accurate pathological 
information from the patients or the tumor itself for correct 
diagnosis, as an invasive detection method, it not only can 
be quite expensive and time-consuming but can also have 
a risk of infection [18-20]. Tumor patients with certain 
infections may not be suitable for such detection.

Recently, gene detection has been introduced for the 
detection and diagnosis of tumors. Based on the genetic 
characteristics of tumor cells, people can precisely classify 
tumors (even those with similar clinical symptoms) into 

different molecular subtypes, which can be treated by 
appropriate therapeutic strategies [21]. However, detection 
relies on tumor tissues, which can only be obtained by 
invasive methods, such as biopsies, which are unsuitable 
for large-scale detection and early screening. To solve this 
problem, a new concept, liquid biopsy, has been presented 
[16, 22-24]. Liquid biopsy is a specific detection method 
that relies on the sampling and analysis of non-solid 
tissues, including blood, lymphatic fluid and CSF [25]. 
Unlike traditional biopsy, such a detection system is nearly 
non-invasive, with comparable accuracy [22, 24]. The 
combination of gene detection and liquid biopsies provides 
us with a new effective tool for accurate and non-invasive 
detection of tumors. In addition, it is suitable for large-
scale detection and early screening. However, to apply 
such effective methods for tumor diagnosis, identification 
of effective markers turn out to be the premise problem for 
further development of liquid biopsy.

Based on multi-omics data, various approaches 
have been presented to identify and distinguish different 
tumor subtypes. In 2015, Zhang et al. reported an effective 
computational method to classify ten types of major 
cancer subtypes that threaten human health by reverse 
phase protein array profiles, implying the availability and 
feasibility of tumor detection by protein profiling [26]. 
Further, late in 2016, Zhang et al. presented a systematic 
analysis algorithm that contributes to the classification 
of cancers based on the copy number variation (CNV) 
landscape, confirming that the CNV landscape may also 
be an effective detection index for tumor classification 
[27]. Apart from such an analysis at the genomic and 
proteomic level, Best et al. reported an effective method 
to distinguish cancer subtypes solely based on RNA-seq 
results of tumor-educated platelets, a functional blood 
component that can be easily obtained by liquid biopsy 
[28]. Tumor-educated platelets contain specific pre-
mRNAs of the bone marrow, spliced circulating mRNAs 
of primary and metastatic tumors, and specific spliced 
mRNAs of the platelets themselves induced by the tumor 
microenvironment, making tumor-educated platelets 
a perfect source for liquid biopsy. Such fundamental 
research achievements confirmed that the combination 
of genetic characteristics (either DNA-seq or RNA-
seq results) and liquid biopsy might accomplish non-
invasive, early detection and identification of different 
tumor subtypes. However, many markers and genes are 
redundant, and the genes that can be detected for diagnosis 
in liquid biopsy are limited [28]. Therefore, it is urgent 
to provide a computational method to analyze such data, 
thereby screening core and aberrantly expressed genes for 
further detection.

In this study, based on the RNA-seq results of tumor-
educated platelets, we applied computational methods to 
screen core mRNA markers that can distinguish cancer 
subtypes from healthy controls. The gene expression 
profiles of blood from patients who had one of six cancer 
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subtypes and healthy persons were analyzed by maximum 
relevance minimum redundancy (mRMR) [29]. Upon 
further analysis of the feature lists yielded by the mRMR 
method, eighteen important genes were extracted that may 
be essential biomarkers for the classification of cancer 
subtypes and healthy controls. In addition, an optimal 
classification model using a support vector machine 
(SVM) algorithm [30, 31] as the classifier was built, which 
provided good performance with an overall accuracy of 
0.751 for diagnosing different cancer types and healthy 
controls.

RESULTS

Results of the mRMR method

In this study, each patient or healthy sample was 
represented by 13,445 features as described in Section 
“Dataset and feature construction”, each of which 
indicates the expression level of some gene. To analyze 
them, the mRMR method was employed. According to 
the relevance between features and targets, all features 
were ordered in the MaxRel feature list, in which features 
with high relevance to targets obtained high ranks. In 
addition, another feature list, mRMR feature list, was 
also yielded by the mRMR method by further considering 
the redundancies between features. These two lists are 
provided in Supplementary Table 1 and 2, respectively.

Results of the IFS method

The IFS method was applied to the mRMR feature 
list yielded by the mRMR method to identify optimal 

features for classification. In this method, several feature 
sets were constructed, which consisted of some first 
features in the mRMR feature list. Then, for each feature 
set, the SVM was executed on the dataset, in which 
samples were represented by feature in the set. However, 
testing all of the possible feature subsets would take much 
time due to our limited computational power because 
13,445 features were used in this study. In view of this, 
we designed an IFS method that contained two stages. In 
the first stage, we only tested some special feature subsets 
to determine the possible range of optimal features. In 
the second stage, all of the feature subsets in the possible 
range were tested to identify the optimal feature subset.

In the first stage, we tested the feature subsets Fi, 
where i is a multiple of ten, i.e., the numbers of features 
in these subsets were multiples of ten. For each of these 
feature subsets, the SVM was executed on all samples 
that were represented by features in this subset, with 
its performance evaluated by ten-fold cross-validation. 
The predicted results were counted as accuracies and 
specificity, as mentioned in Section “Measurements”. 
After all of these feature subsets had been tested, several 
accuracies and specificities were obtained, which are 
provided in Supplementary Table 3 and 4. Because 
the overall accuracy TACC was selected as the major 
measurement, we plotted a curve, namely, an IFS-curve, 
with TACC as the Y-axis and the number of features as 
the X-axis, which is shown in Figure 1, to extract the 
feature subset that can yield the best performance for the 
SVM. It can be observed that the IFS-curve first follows a 
sharp increasing trend and reaches the maximum overall 
accuracy (0.747) when 2030 features were used before 
becoming stable and following a slow decreasing trend.  

Figure 1: IFS-curves for the results yielded in the first stage of the IFS method. The Y-axis represents the overall accuracy, 
and the X-axis represents the number of features used for classification. The high overall accuracies (no less than 0.740) all cluster between 
2000 and 2200.
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The high overall accuracies (no less than 0.740) all 
clustered at approximately 2100. Thus, we believed that 
the possible range of optimal features was between 2000 
and 2200.

In the second stage, we further tested the feature 
subsets Fi with 2000≤i≤2200. The obtained accuracies 
and specificities mentioned in Section “Measurements” 
are provided in Supplementary Table 5 and 6. For ease 
of observation, we plotted a curve with the overall 
accuracy (TACC) as the Y-axis the number of features 
as the X-axis, as shown in Figure 2. We can see that the 
highest TACC was 0.751 when the top 2,047 features in 
the mRMR feature list were used for classification. Thus, 
these features were deemed to be optimal features and 
comprised the optimal feature subset. By using these 
optimal features, an optimal classification model was 
built. The detailed performance of this model is shown in 
Figure 3. It can be seen that the specificity for each class is 
quite high (more than 0.920) and the prediction accuracy 
for each class (i.e., sensitivity) is quite high, except for the 
accuracy for hepatobiliary cancer. The possible reason for 
the low accuracy of hepatobiliary cancer may be the small 
size of this class, which only contained fourteen samples, 
while the other classes contained at least 35 samples 
(more than twice as many samples than those available 
for hepatobiliary cancer).

Comparison with commercial cancer detection 
panels

There are already some commercial cancer detection 
panels. Here, we collected cancer panel genes from the 
following seven commercial cancer detection panels: (I) 

CancerNext (http://www.ambrygen.com/tests/cancernext), 
(II) CancerNextExpanded (http://www.ambrygen.com/
tests/cancernext-expanded), (III) CloudHealth (http://
en.chgenomics.com/products/hereditary), (IV) GeneDx 
(https://www.genedx.com/test-catalog/available-tests/
comprehensive-cancer-panel/), (V) Illumina (https://
www.illumina.com.cn/products/by-type/clinical-research-
products/trusight-rna-pan-cancer.html), (VI) NanoString 
(https://www.nanostring.com/products/gene-expression-
panels/hallmarks-cancer-gene-expression-panel-
collection/pancancer-pathways-panel), (VII) xGen (https://
www.idtdna.com/pages/products/nextgen/target-capture/
xgen-lockdown-panels/xgen-pan-cancer-panel). The 
retrieved genes from these seven panels were provided in 
Supplementary Table 7.

Using the same procedures for building the optimal 
classification model mentioned in Section “Results of the 
IFS method”, genes retrieved from each panels can yield 
an optimal classification model. The performance of these 
classification models are listed in Table 1, from which we 
can see that the performance of these models were much 
inferior to the proposed model.

Important genes

For the MaxRel feature list yielded by the mRMR 
method, extensive investigation of some of the top 
features may lead to novel biomarkers for distinguishing 
different cancer patients. In the MaxRel feature list, each 
feature was measured by an MI value. A feature with a 
high MI value indicates that it is quite important. Thus, 
we set a threshold of 0.360 to select important features, 
i.e., features with MI values larger than 0.360 were 

Figure 2: IFS-curves for the results yielded in the second stage of the IFS method. The Y-axis represents the overall accuracy, 
and the X-axis represents the number of features used for classification. The highest overall accuracy was 0.751 when 2047 features were 
used.
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extracted, corresponding to the eighteen genes listed 
in Table 2. We also investigated ranks of these eighteen 
genes in the mRMR feature list and listed them in the last 
column of Table 2. It can be seen that the maximum rank 
was 122, indicating that these important eighteen genes 
were all in the optimal feature subset that consisted of the 
top 2,047 features in the mRMR feature list. It can partly 
prove that these eighteen genes were quite essential for 
classification of six cancer subtypes and healthy samples. 
In the following section, these features were extensively 
analyzed to uncover the differences of the biological 
processes and molecular functions between the six cancer 
subtypes and healthy samples.

DISCUSSION

In Section “Important genes”, eighteen important 
genes, listed in Table 2, were extracted. These 18 genes 

are deemed to be important for distinguishing six cancer 
subtypes and healthy samples. Figure 4 shows the heat map 
of all samples using the important eighteen genes. It can be 
seen that the healthy samples were clearly clustered together 
and among the cancer samples, the Glioblastoma samples 
were most similar with healthy samples. Generally based 
on our results, we summarized two specific biological and 
functional characteristics of various functional genes have 
been predicted. First, various immune associated genes 
like CD3G have been predicted, indicating the distinctive 
expression pattern in tumor and normal tissues. During the 
tumorigenesis of various cancer subtypes, like breast cancer, 
colorectal cancer, glioblastoma, the immune system of 
patients have been confirmed to be systemically suppressed, 
especially in the tumor microenvironment (cancer adjacent 
tissues) [32-34]. Therefore, it is quite reasonable to predict 
genes that contributing to immune reaction as potential 
differentially expressed genes and biomarkers. Another 
specific characteristic turns out to be that glioblastoma as 
a brain cancer has the most similar expression pattern with 
normal patients based on liquid biopsy of blood platelet. 
Recent publications confirmed that during the initiation and 
progression of brain cancer like glioblastoma, the Blood 
Brain Barrier (BBB) acts as an effective protective screen, 
preventing the spread of characteristic biomarkers from the 
brain to the circulating system, resulting in the major liquid 
biopsy biomarkers that have been identified are mostly based 
on cerebrospinal fluid detection [35, 36]. Therefore, the 
expression profile of blood platelet from brain cancer patients 
and normal controls may appear to be the most similar, 
comparing to other cancer subtypes. Here, in our study, 
based on detailed expression profiling data, we successfully 
validated the similarity between the blood biopsy result 
of brain cancer patients and normal controls and further 
identified the potential biomarkers that can recognize brain 

Figure 3: The performance of the optimal classification model evaluated by ten-fold cross-validation.

Table 1: The performance of the optimal classification 
models using different reference gene sets

Reference gene set TACC

This study 0.751

Genes in CancerNext 0.407

Genes in CancerNextExpanded 0.463

Genes in CloudHealth 0.421

Genes in GeneDx 0.400

Genes in Illumina 0.656

Genes in NanoString 0.618

Genes in xGen 0.519
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cancer patients, confirming that similar as blood expression 
pattern of brain cancer patients with normal controls, there 
still remain potential biomarkers to reflect the tumorigenesis 
processes. As for elaborating biological processes that the 
important gene may participate in, the detailed analysis of 
each functional gene can be seen below.

Based on recent publications, the specific functions 
of these genes and the specific biological processes that 
these genes participate in, it can be confirmed that these 
genes may form grouping standards for cancer subtype 
identification and differential diagnosis. For clarity, these 
eighteen genes were clustered into three groups, as shown 
in Figure 5. The following sections analyze the genes we 
extracted and divided into different groups one by one.

Confirmed tumor associated genes

Among the eighteen genes, a specific oncogene, 
TTN (ENSG00000155657), has been regarded as a 
crucial marker for the distinction of six cancer subtypes 

and healthy controls. Encoding the protein Titin, this gene 
has been confirmed to contribute to platelet activation 
and cardiac conduction [37, 38]. This gene has also been 
reported to be a specific cancer-associated gene that can 
distinguish healthy controls from the other six subgroup 
of cancers, which all have been confirmed by recent 
publications [39-41]. Recent publications also confirmed 
that TTN might affect the composition of serum proteins, 
as it is expressed in hematopoietic cells, thus implying that 
TTN can be used as a potential marker in liquid biopsies 
[42]. Another gene, ENSG00000168421, is the tumor 
suppressor RHOH, a member of the Ras superfamily. 
Considering that this gene is expressed in hematopoietic 
cells, it is quite suitable for it to act as a liquid biopsy 
marker for the differential diagnosis of tumor [43, 44]. 
Although this gene has been confirmed to contribute to 
tumorigenesis, there are few reports on it. This implies 
that, currently, RHOH can only be used to differentiate 
between tumor samples and normal controls. ATM, 
Ataxia Telangiectasia Mutated serine/threonine kinase 

Table 2: The top 18 features in the MaxRel feature list

Order Feature name Gene name Description MI 
value

Rank in the mRMR 
feature list

1 ENSG00000155657 TTN Titin 0.416 1

2 ENSG00000008988 RPS20 Ribosomal Protein S20 0.407 13

3 ENSG00000177600 RPLP2 Ribosomal Protein Lateral 
Stalk Subunit P2

0.405 6

4 ENSG00000211772 TRBC2 T Cell Receptor Beta 
Constant 2

0.396 19

5 ENSG00000168028 RPSA Ribosomal Protein SA 0.393 35

6 ENSG00000142534 RPS11 Ribosomal Protein S11 0.384 64

7 ENSG00000142676 RPL11 Ribosomal Protein L11 0.381 48

8 ENSG00000105193 RPS16 Ribosomal Protein S16 0.380 57

9 ENSG00000160654 CD3G CD3g Molecule 0.379 25

10 ENSG00000168421 RHOH Ras Homolog Family 
Member H

0.373 3

11 ENSG00000139193 CD27 CD27 Molecule 0.369 8

12 ENSG00000131469 RPL27 Ribosomal Protein L27 0.368 106

13 ENSG00000163682 RPL9 Ribosomal Protein L9 0.368 86

14 ENSG00000071082 RPL31 Ribosomal Protein L31 0.367 78

15 ENSG00000149311 ATM ATM Serine/Threonine 
Kinase

0.367 17

16 ENSG00000149806 FAU FAU, Ubiquitin Like And 
Ribosomal Protein S30 

Fusion

0.366 31

17 ENSG00000109475 RPL34 Ribosomal Protein L34 0.366 122

18 ENSG00000089009 RPL6 Ribosomal Protein L6 0.366 117
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(ENSG00000149311), has been widely reported to 
contribute to the regulation of the cell cycle as a member 
of the PI3/PI4-kinase family [45, 46]. Based on recent 
publications, this tumor-associated gene contributes 
to abnormal proliferation and invasion of tumor cells 
in multiple tumor subtypes [47, 48]. Furthermore, a 
2013 Blood report showed that ATM might participate 
in the secretion of exosomes during tumorigenesis and 
angiogenesis, confirming the possibility of its early 
detection by liquid biopsy [49]. Among our candidate 
subtypes, this gene has been confirmed to contribute to 
all six cancer subtypes, implying that this gene may be 
a functional marker to distinguish healthy samples from 
specific cancer subtypes [50-55].

Ribosome associated genes

For a long time, ribosome associated genes which 
contribute to ribosome biogenesis have been confirmed 
to be a group of functional tumor associated genes 
regulating the proliferation rate of tumor cells [56, 57]. 
Among the important eighteen genes, some were ribosome 
associated genes. RPS20 (ENSG00000008988) has also 
been predicted to be a candidate biomarker. This gene has 
been reported to encode a ribosomal protein component 
of the 40S subunit [58, 59]. Different from genes that 
contribute to all six cancer subtypes, RPS20 has only been 
identified in limited cancer subtypes, including colorectal 
cancer and glioblastoma [60, 61]. Therefore, in our seven 
types of samples, this gene can distinguish colorectal 
cancer and glioblastoma from the other four cancer 
subtypes and healthy controls. Further research on this 
gene also confirmed that it can be identified in exosomes 
of colorectal carcinoma, which can be further detected by 
liquid biopsy, validating our prediction [62]. As another 
ribosome associated gene, RPSA (ENSG00000168028) 
may also be differentially expressed in our candidate 

seven groups. Based on recent publications, this gene 
has only been identified in colorectal cancer, lung cancer, 
esophageal squamous cancer and acute leukemia [63]. 
As for the six candidate cancer subtypes and healthy 
controls in our study, RPSA can distinguish colorectal 
cancer and lung cancer from the other subtypes [63, 64]. 
Similarly, another ribosome-associated gene, RPS11 
(ENSG00000142534), has also been found to be a 
candidate biomarker. This gene also encodes a specific 
component of the 40S subunit. Recent publications have 
identified it in breast cancer, glioblastoma, lung cancer and 
colorectal cancer, allowing us to distinguish samples of 
those four cancers from hepatobiliary cancer samples and 
normal controls [60, 65, 66]. Similarly, as a homologue 
of RPS11 analyzed above, RPS16 (ENSG00000105193) 
was also listed as a candidate biomarker in our study. 
Like RPS11, this gene encodes a ribosomal protein 
that is a component of the 40S subunit. According to 
recent publications, various systematic diseases have 
been attributed to RPS16, including Diamond-Blackfan 
Anemia and cancer [67-69]. Furthermore, based on recent 
publications, only hepatobiliary cancer has been reported 
to be associated with abnormal functions of this gene, as 
detected in blood samples, implying that this gene can be 
a candidate liquid biopsy marker for hepatobiliary cancer 
[68]. Similar to RPS20, as analyzed above, all of the 
homologues of RPS20 can also be functional components 
of exosomes, implying the differentiated role of RPS20 
and its homologues for the detection of cancer by liquid 
biopsy [70, 71].

ENSG00000177600, RPLP2, also has ribosome-
associated functions. This gene encodes a component 
of the 60S subunit [72]. Based on recent publications, 
this gene has been identified in the blood component 
of only three tumor subtypes in our study: colorectal 
cancer, breast cancer and hepatobiliary cancer, indicating 
its potential contribution to pathological typing [73-

Figure 4: The heat map of all samples using the important eighteen genes.
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75]. As another component of the 40S subunit, RPL11 
(ENSG00000142676) encodes another sub-component of 
the ribosome 40S subunit. Based on recent publications, 
this gene has been confirmed to contribute to the RPL11-
HDM2-p53 nucleolar stress response pathway, which is 
coupled with the Akt/mTORC1 signaling axis, implying 
its function during tumorigenesis [76]. However, based 
on recent findings, there is no direct evidence for RPL11 
to contribute to one or a few specific cancer subtypes, 
implying that it can only differentiate between the normal 
control and the other six subtypes of cancers. Combined 
with its specific expression in exosomes, RPL11 may be an 
effective biomarker for tumor liquid biopsy, validating our 
prediction [77]. Similarly, RPL31 (ENSG00000071082), 
as a functional component of the 60S ribosome, has also 
been confirmed to be a candidate biomarker [78]. Until 
now, this gene has only been identified in four cancer 
subtypes: breast cancer, prostate cancer, pancreatic cancer 
and gastric carcinoma [69, 79-83]. Therefore, considering 

the specific expression profile of RPL31 in exosomes, it 
is quite reasonable to use this gene as a crucial standard 
for the further classification of different tumor subtypes, 
distinguishing breast cancer and pancreatic cancer from 
the other four specific cancer subtypes and healthy 
controls.

FAU, as a ubiquitin-like and ribosomal protein 
S30 fusion (ENSG00000149806), has been wildly 
reported to contribute to the biological processes related 
to Finkel-Biskis-Reilly (FBR)-murine sarcoma virus as a 
potential secretory protein [84, 85]. This gene has been 
confirmed to contribute to the initiation of breast cancer, 
implying that it may be a functional biomarker for the 
identification and differential diagnosis of breast cancer 
[86]. ENSG00000109475, RPL34, has also been predicted 
to be a candidate gene to distinguish between the six 
cancer subtypes and healthy control. As another ribosomal 
protein, this gene has only been identified in lung cancer 
and gastric cancer. Furthermore, this gene has also been 

Figure 5: The eighteen important genes found in the MaxRel feature list were clustered into three groups.
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identified in the extracellular environment in a mouse 
model [87]. Thus, it may act as a potential liquid biopsy 
biomarker for the further classification of candidate tumor 
subtypes [88, 89]. RPL6 (ENSG00000089009) is also a 
component of the 60S ribosome. Based on the existing 
literature, this gene has been identified in colorectal 
cancer, lung cancer, breast cancer and gastric cancer, 
implying its potential as a typing marker for distinguishing 
colorectal cancer, breast cancer and lung cancer from 
the other three cancer subtypes and healthy control [90-
92]. Similar to other ribosomal protein ligands, RPL6 
has also been identified in the exosome as a functional 
ribosome associated component, implying that RPL6 may 

Table 3: Breakdown of 285 RNA-seq samples

Cancer subtype Number of samples

Breast cancer 39

Colorectal cancer 42

Glioblastoma 40

Hepatobiliary cancer 14

Lung cancer 60

Pancreatic cancer 35

Healthy control 55

Figure 6: The flow chart of constructing the mRMR feature list in the mRMR method.
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be a potential biomarker. RPL27 (ENSG00000131469) 
is a crucial component of the 60S subunit [93, 94]. In 
gastric cancer, head and neck squamous cell carcinoma, 
oral squamous cell carcinoma, hepatobiliary cancer and 
breast cancer, this gene has been confirmed to contribute 
to the initiation and progression of tumors, with specific 
expression in bodily fluids, including blood [95-99].

Cell surface proteins (receptors and antigens)

Cell surface proteins can be generally divided into 
receptors and antigens based on their specific biological 
functions. Based on recent publications, such two group 
of proteins have been confirmed to be differentially 
expressed in tumor comparing to normal cells, which 
can be attributed to the different biological function 
and recognition mechanism of tumor cells. Differential 
expressed proteins not only act as potential biomarkers 
for tumor identification and classification but also reflect 
the diverse potential oncogenic mechanisms of different 
tumor subtypes. TRBC2, ENSG00000211772, encodes a 
specific region of the T-cell receptor beta-2 chain [100]. 
Based on recent publications, this gene has also been 
identified in multiple cancer subtypes, including the six 
cancer subtypes used in this study, implying that this gene 
is a crucial marker for the distinction of cancer patients 
and healthy controls. ENSG00000160654, CD3G, has 
also been extracted as a candidate biomarker. CD3G has 
been widely reported to participate in antigen recognition 
associated biological processes, coupling antigen 
recognition to specific intracellular signal transduction 
pathways [101, 102]. Encoding a specific protein that 
can be easily detected by liquid biopsy, CD3G has been 
confirmed to be differentially expressed, and may be 
a direct target of different functional microRNA targets 
different subtypes [103]. In breast cancer and colorectal 
cancer, this gene has been confirmed to be differentially 
expressed compared to normal controls, implying that 
CD3G can distinguish breast cancer and colorectal cancer 
samples from other tumor subtypes and normal controls 
[103]. Considering that CD3G and its regulatory miRNAs 
have already been detected in peripheral blood, it may be 
reasonable to use CD3G as a potential biomarker for liquid 
biopsy, validating our prediction [103]. Another cluster of 
differentiation (CD) protein, CD27 (ENSG00000139193), 
was also found in this study. As a member of the TNF-
receptor superfamily, this gene has been identified 
in various cancer subtypes, including glioblastoma, 
breast cancer and colorectal cancer, but not lung cancer, 
pancreatic cancer or hepatobiliary cancer, by blood 
detection [104, 105]. Other studies have also confirmed 
that during tumorigenesis, CD27-containing exosomes can 
be identified in the peripheral blood of patients suffering 
from various cancer subtypes, validating the applicability 
and practicability of our predicted biomarkers [106]. 
Considering the differential expression of this gene in 

different cancer subtypes, it is quite reasonable to regard 
this gene as a potential biomarker for differential diagnosis. 
RPL9, or ribosomal protein L (ENSG00000163682), may 
also contribute to the classification of cancer subtypes and 
normal control based on the liquid biopsy results. As a 
ribosome-associated gene of the 60S subunit, this gene 
has been reported to contribute to various cancer subtypes, 
including lung cancer, hepatobiliary cancer, breast cancer 
and colorectal cancer, but not glioblastoma or pancreatic 
cancer [107]. Therefore, this gene can be a useful marker 
to distinguish glioblastoma, pancreatic cancer and healthy 
samples.

This study attempted to identify novel biomarkers 
(genes) that contribute to the classification of different 
cancer subtypes by analyzing gene expression data 
from RNA-seq results through computational methods. 
Eighteen identified genes were found to be differentially 
expressed in six cancer subtypes and healthy controls. 
All of these biomarkers were further classified into three 
groups, implying their crucial roles for tumorigenesis. 
In addition, we also propose an optimal classification 
method for the identification of six cancer subtypes and 
healthy controls, which can be a novel tool for diagnosing 
different cancer subtypes.

MATERIALS AND METHODS

Dataset and feature construction

We downloaded gene expression profiles of blood 
from 285 samples from the Gene Expression Omnibus 
(GEO) under the accession number GSE68086 [28]. These 
285 samples were collected from patients who had one 
of the following cancer subtypes: breast cancer, colorectal 
cancer, glioblastoma, hepatobiliary cancer, lung cancer, or 
pancreatic cancer or from healthy controls. The detailed 
number of samples in each cancer subtype or healthy 
samples is listed in Table 3.

Because the expression levels of some genes from 
the 285 samples are quite weak, we discarded genes 
whose expression level in more than 90% of samples was 
zero, leaving 13,445 genes. Thus, each sample can be 
represented by 13,445 features, each of which indicates 
the expression level of a gene in the sample. Furthermore, 
the gene expression profiles were processed with quantile 
normalization and log2 transformed. The purpose of 
this study was to find optimal blood biomarkers for 
distinguishing various cancer patients.

Feature selection method

As mentioned in Section “Dataset and feature 
construction”, all samples were represented by the 
expression levels of 13,445 genes. By extensively 
analyzing the samples, we can extract the genes that may 
be important biomarkers for different cancer subtypes. In 
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this study, we employed a widely used and reliable feature 
selection method, the mRMR method [29], which has been 
applied to address different complicated biological and 
medical problems [108-121].

The mRMR method is a mutual information (MI) 
based feature selection method. The correlations between 
features and targets are evaluated by the following MI 
equation:

 ∫∫=I x y p x y p x y
p x p y

dx dy( , ) ( , ) log
( , )
( ) ( )

  (1)

where p(x, y) is the joint probabilistic density and 
p(x) and p(y) are the marginal probabilistic densities. A 
large MI value means that two variables have a strong 
correlation. The mRMR method evaluates each feature 
based on its relevance to targets and its redundancy to 
other features. Thus, two excellent criteria are used in the 
mRMR method: Max-Relevance and Min-Redundancy. 
The former indicates the importance of each feature 
based on its relevance to targets, while the latter assesses 
the importance of each feature using its redundancy to 
other features. By these two criteria, the mRMR method 
can produce two feature lists, the MaxRel feature list 
and mRMR feature list, in which all features are ranked 
rigorously. The MaxRel feature list ranks features 
according to their relevance to targets, i.e., features are 
ranked in this list by the decreasing order of their MI 
values to targets. Production of the mRMR feature list is 
listed below and shown in Figure 6.

Given a dataset with N features, let Ω be a set 
consisting of all N features, Ωs be a set containing selected 
features and Ωt be the set consisting of the remaining 
features, i.e., Ωt=Ω-Ωts. Initially, Ω s is set to be an empty 
set and all features are in Ωt. Then, a loop procedure 
is executed to move the features in Ωt one by one to 
Ωs. For each feature f in Ωt, its relevance to targets c is 
calculated by D = I(f, c) and its redundancy to features 

in Ωs is calculated by ( ∑=
Ω ∈Ω

R I f f1
( , ')

s f ' s

). Because both 

the criteria of Max-Relevance and Min-Redundancy are 
considered when producing the mRMR feature list, we 
further calculate D-R for each feature in Ωt. The feature 
with the maximum D-R is selected and moved from Ωt to 
Ωs. When all of the features are in Ωs, the loop procedure 
stops. Accordingly, the mRMR feature list can be ordered 
according to the selection orders of features, i.e., the first 
selected feature occupies the first place, followed by the 
second selected feature, the third selected feature, and 
so forth. For formulation, the mRMR feature list was 
formulated as

 =F f f f[ , , , ]N1 2   (2)

The mRMR method only provides two feature lists for 
a given dataset. Clearly, the mRMR feature list can be used to 

extract the optimal subset of features for building an optimal 
classification model. Furthermore, a feature with a high rank 
in the mRMR feature list is more important for classification. 
However, we do not know how many top features in this list 
should be selected. To determine how many top features in 
this list should be selected, the incremental feature selection 
(IFS) method was employed in this study. This method 
evaluates the importance of several feature sets that contain 
some of the top features in F by testing their discriminating 
power in a classification algorithm.

In detail, for a feature set, say Fi = {f1,f2,…,fi}, 
containing the top i features in F, all samples are 
represented by the features in Fi. Then, a classification 
algorithm is executed on these samples with its 
performance evaluated by one of the cross-validation 
methods [122-128]. After all of the possible feature 
sets have been tested, the feature set yielding the best 
performance can be found. This feature subset is deemed 
to be the optimal feature subset, and the features in this 
subset are called optimal features. At the same time, an 
optimal classification model can be built, which adopts 
the optimal features to represent samples. However, in 
many cases, it is quite time-consuming to test all possible 
feature subsets because there are too many possible 
feature subsets. In this case, only a part of possible feature 
subsets were tested. The obtained feature subset in this 
case is still called the optimal feature subset and the 
constructed classification model is still termed the optimal 
classification model for convenience.

Classification algorithm

In the aforementioned IFS method, a classification 
algorithm is necessary. Here, we selected the classic 
machine learning algorithm, support vector machine (SVM) 
algorithm [30, 31]. This algorithm maps all samples into a 
higher dimensional space, in which these samples can be 
perfectly classified by a hyper-plane. Until now, several 
types of SVM algorithms have been proposed to tackle 
different types of classification problems. In this study, we 
chose to use the SVM algorithm trained by the sequential 
minimal optimization (SMO) algorithm [129] proposed by 
Platt. To train the SVM, a large quadratic program (QP) 
must be solved. The SMO algorithm breaks the large QP 
problem into several smallest QP problems and solves these 
QP sub-problems analytically. This procedure can avoid the 
storage of matrix and using the time-consuming numerical 
QP optimization as an inner loop. To quickly implement this 
type of SVM, we directly employed the classifier, SMO, in 
Weka [130] using its default parameters.

Measurements

As mentioned in Section “Classification algorithm”, 
the SVM was adopted as the prediction engine. Ten-fold 
cross-validation [122] was employed to evaluate the 
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performance of the SVM on different feature subsets. 
In this cross-validation method, the original dataset is 
randomly and equally divided into ten parts. Samples 
in each part are singled out as testing samples, and the 
remaining samples are used to train the classification 
model. Thus, each sample is tested exactly once. 
Compared with another cross-validation method, jackknife 
test [124, 131], ten-fold cross-validation needs much less 
time and yields similar results in most cases. Because our 
computational power was limited, we selected ten-fold 
cross-validation rather than jackknife test to evaluate the 
performance of the SVM in this study.

As listed in Table 1, all samples were classified into 
seven classes. To assess the predicted results yielded by a 
classification model, the prediction accuracy for the j-th 
class, denoted as ACCj, can be calculated as

 =ACC
x
Xj
j

j

  (3)

where xj represents the number of samples that are 
predicted correctly in the j-th class and Xj represents the 
total number of samples in the j-th class. In addition, we 
can calculate the overall accuracy, denoted as TACC, to 
assess the performance of the classification model on the 
whole, which can be computed by

  
∑
∑

=TACC
x

X
jj

jj

 (4)

Clearly, the overall accuracy can be appropriately 
used as the major measurement to evaluate the 
performance of each classification model. The prediction 
accuracy of each class was also provided in this study as 
references.

Besides, to further analyze the predicted results 
yielded by each classification model, we calculated the 
sensitivity (SN) and specificity (SP) for the j-th class, 
which were defined as follows:

 
=

+

=
+













SN
TP
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SP
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j
j

j j
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  (5)

where TPj represented the number of correctly 
predicted samples in the j-th class, FNj represented 
the number of incorrectly predicted samples in the j-th 
class, FPj represented the number of samples in other 
classes that were predicted to be in the j-th class, and TNj 
represented the number of samples in other classes that 
were not predicted to be in the j-th class. It is easy to see 
that the sensitivity of one class is same as the prediction 
accuracy of that class.

Author contributions

LDH, YDC and XYK conceived and supervised 
this project. TH and LC do the experiment. LC and 
YHZ analyzed the data. LC, YCX and YHZ drafted the 
manuscript. YCX and YH modified and polished the 
manuscript.

ACKNOWLEDGMENTS

The computational data analysis in this study was 
supported by Shanghai University.

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

FUNDING

This work was supported by grants from the 
innovation team project of contractual employed principle 
investigators of Shanghai Jiao Tong University Affiliated 
Sixth People’s Hospital and Institute of Health Sciences, 
Shanghai Institutes for Biological Sciences, Chinese 
Academy of Sciences, the Frontier Science Research Plan 
(QYZDJ-SSW-SMC01) and Strategic Priority Research 
Program (A) (XDA12010203) of China Academic of 
Sciences, the National Natural Science Foundation of 
China (31371335), the Natural Science Foundation of 
Shanghai (17ZR1412500), the Shanghai Sailing Program 
and the Youth Innovation Promotion Association of the 
Chinese Academy of Sciences (CAS) (2016245).

REFERENCES

1. Krishnan A, Nair SA, Pillai MR. Biology of PPAR gamma 
in cancer: A critical review on existing lacunae. Current 
molecular medicine. 2007; 7:532-540.

2. Carney DN. The Biology Of Lung-Cancer - a Review. Acta 
Oncol. 1989; 28:1-5.

3. Shaw P, Costa J. Molecular-Biology Of Colon Cancer - 
(Review). Anticancer Research. 1989; 9:21-27.

4. Parsons HM, Harlan LC, Schmidt S, Keegan TH, Lynch 
CF, Kent EE, Wu XC, Schwartz SM, Chu RL, Keel G, 
Smith AW, AYA HOPE Collaborative Group. Who Treats 
Adolescents and Young Adults with Cancer? A Report 
from the AYA HOPE Study. J Adolesc Young Adul. 2015; 
4:141-150.

5. McGuire S. World Cancer Report 2014. Geneva, 
Switzerland: World Health Organization, International 
Agency for Research on Cancer, WHO Press, 2015. Adv 
Nutr. 2016; 7:418-419.

6. Schmitz-Drager BJ, Droller M, Lokeshwar VB, Lotan 
Y, Hudson MA, van Rhijn BW, Marberger MJ, Fradet Y, 



Oncotarget87506www.impactjournals.com/oncotarget

Hemstreet GP, Malmstrom PU, Ogawa O, Karakiewicz 
PI, Shariat SF. Molecular Markers for Bladder Cancer 
Screening, Early Diagnosis, and Surveillance: The WHO/
ICUD Consensus. Urol Int. 2015; 94:1-24.

7. Thriumani R, Zakaria A, Omar MI, Adom AH, Sharaff AY, 
Kamaruddin LM, Yusuf N, Helmy KM. Review on Exhaled 
Volatile Organic Compounds from Lung Cancer and 
Advances of E-Nose as Non-Invasive Detection Method. 
2014 Ieee 5th Control And System Graduate Research 
Colloquium (Icsgrc). 2014; 213-218.

8. Davies DF. A Review Of Detection Methods for Early 
Diagnosis Of Lung Cancer. J Chron Dis. 1966; 19:819-845.

9. Patel NM, Weiss J. Advanced Lab Testing in Lung Cancer. 
Oncology-Ny. 2016; 30:348-352.

10. Smyth C, Bhan JM, Dhaliwal AS, Sorokina T, Alarcon 
M, Levitz JS. CA 19-9 and ALP as potential biomarkers 
for pancreatic cancer risk: Analysis from a large lab test 
database. Journal Of Clinical Oncology. 2015; 33:abstr 
e15211.

11. Bohn OL, Navarro L, Ayaquica C, Saldivar J, Sanchez-Sosa 
S. HER2 2+Breast Cancer in Mexico, Central America 
and the Caribbean: Re-Testing Results by a Central Lab. 
Modern Pathol. 2009; 22:31a.

12. Sun Z, Yi YL, Liu Y, Xiong JP, He CZ. Comparison of 
whole-body PET/PET-CT and conventional imaging 
procedures for distant metastasis staging in patients 
with breast cancer: a meta-analysis. European journal of 
gynaecological oncology. 2015; 36:672-676.

13. Scapaticci R, Bellizzi G, Catapano I, Crocco L, Bucci 
OM. An Effective Procedure for MNP-Enhanced Breast 
Cancer Microwave Imaging. Ieee T Bio-Med Eng. 2014; 
61:1071-1079.

14. Seitz M, Scher B, Scherr M, Tilki D, Schlenker B, Gratzke 
C, Schipf A, Stanislaus R, Muller-Lisse U, Reich O, Stief C. 
Imaging procedures to diagnose prostate cancer. Urologe. 
2007; 46:1435-1446.

15. Panarelli NC, Somarathna T, Samowitz WS, Kornacki 
S, Sanders SA, Novelli MR, Shepherd NA, Yantiss RK. 
Diagnostic Challenges Caused by Endoscopic Biopsy 
of Colonic Polyps A Systematic Evaluation of Epithelial 
Misplacement With Review of Problematic Polyps 
From the Bowel Cancer Screening Program, United 
Kingdom. American Journal Of Surgical Pathology. 2016; 
40:1075-1083.

16. Li T, Zheng YT, Sun H, Zhuang RY, Liu J, Liu TS, Cai WM. 
K-Ras mutation detection in liquid biopsy and tumor tissue 
as prognostic biomarker in patients with pancreatic cancer: 
a systematic review with meta-analysis. Medical oncology. 
2016; 33:61.

17. van Rossum PS, Goense L, Meziani J, Reitsma JB, 
Siersema PD, Vleggaar FP, van Vulpen M, Meijer GJ, 
Ruurda JP, van Hillegersberg R. Endoscopic biopsy and 
EUS for the detection of pathologic complete response 

after neoadjuvant chemoradiotherapy in esophageal cancer: 
a systematic review and meta-analysis. Gastrointest Endosc. 
2016; 83:866-879.

18. Kropshofer G, Kneer A, Edlinger M, Meister B, Salvador 
C, Lass-Florl C, Freund M, Crazzolara R. Computed 
Tomography Guided Percutaneous Lung Biopsies and 
Suspected Fungal Infections in Pediatric Cancer Patients. 
Pediatric Blood & Cancer. 2014; 61:1620-1624.

19. McCormack M, Duclos A, Latour M, McCormack MH, 
Liberman D, Djahangirian O, Bergeron J, Valiquette L, 
Zorn K. Effect of needle size on cancer detection, pain, 
bleeding and infection in TRUS-guided prostate biopsies: 
a prospective trial. Cuaj-Can Urol Assoc. 2012; 6:97-101.

20. Paajanen H, Hermunen H. Does Preoperative Core Needle 
Biopsy Increase Surgical Site Infections in Breast Cancer 
Surgery? Randomized Study of Antibiotic Prophylaxis. 
Surg Infect. 2009; 10:317-321.

21. Hakozaki M, Hojo H, Tajino T, Yamada H, Kikuta A, Ito 
M, Sano H, Mochizuki K, Akaihata M, Kikuchi S, Abe M. 
Periosteal Ewing sarcoma family of tumors of the femur 
confirmed by molecular detection of EWS-FLI1 fusion 
gene transcripts - A case report and review of the literature. 
J Pediat Hematol Onc. 2007; 29:561-565.

22. Labgaa I, Villacorta-Martin C, D’Avola D, Craig AJ, Stueck 
A, Ward S, Fiel MI, Mahajan M, Thung SN, Friedman SL, 
Llovet JM, Ang C, Schwartz ME, Villanueva A. Ultra-deep 
sequencing of circulating tumor DNA identifies druggable 
mutations: exploring applications of a liquid biopsy in 
HCC. Hepatology. 2016; 63:627a-628a.

23. Poh A. Liquid Biopsy Holds Its Own in Tumor Profiling. 
Cancer discovery. 2016; 6:686-686.

24. Schlange T, Pantel K. Potential of circulating tumor 
cells as blood-based biomarkers in cancer liquid biopsy. 
Pharmacogenomics. 2016; 17:183-186.

25. Pantel K, Alix-Panabieres C. The Potential of Circulating 
Tumor Cells as a Liquid Biopsy to Guide Therapy in 
Prostate Cancer. Cancer discovery. 2012; 2:974-975.

26. Zhang PW, Chen L, Huang T, Zhang N, Kong XY, Cai YD. 
Classifying ten types of major cancers based on reverse 
phase protein array profiles. PLoS One. 2015; 10:e0123147.

27. Zhang N, Wang M, Zhang P, Huang T. Classification 
of cancers based on copy number variation landscapes. 
Biochim Biophys Acta. 2016; 1860:2750-2755.

28. Best MG, Sol N, Kooi I, Tannous J, Westerman BA, 
Rustenburg F, Schellen P, Verschueren H, Post E, Koster 
J, Ylstra B, Ameziane N, Dorsman J, et al. RNA-Seq of 
Tumor-Educated Platelets Enables Blood-Based Pan-
Cancer, Multiclass, and Molecular Pathway Cancer 
Diagnostics. Cancer Cell. 2015; 28:666-676.

29. Peng H, Long F, Ding C. Feature selection based on mutual 
information: criteria of max-dependency, max-relevance, 
and min-redundancy. IEEE Transactions on Pattern Analysis 
and Machine Intelligence. 2005; 27:1226-1238.



Oncotarget87507www.impactjournals.com/oncotarget

30. Meyer D, Leisch F, Hornik K. The support vector machine 
under test. Neurocomputing. 2003; 55:169-186.

31. Corinna Cortes VV. Support-vector networks. Machine 
Learning. 1995; 20:273-297.

32. Jiang X, Shapiro DJ. The immune system and inflammation 
in breast cancer. Mol Cell Endocrinol. 2014; 382:673-682.

33. Kanterman J, Sade-Feldman M, Biton M, Ish-Shalom E, 
Lasry A, Goldshtein A, Hubert A, Baniyash M. Adverse 
immunoregulatory effects of 5FU and CPT11 chemotherapy 
on myeloid-derived suppressor cells and colorectal cancer 
outcomes. Cancer Res. 2014; 74:6022-6035.

34. Yan J, Kong LY, Hu JM, Gabrusiewicz K, Dibra D, Xia XQ, 
Heimberger AB, Li SL. FGL2 as a Multimodality Regulator 
of Tumor-Mediated Immune Suppression and Therapeutic 
Target in Gliomas. J Natl Cancer Inst. 2015; 107:djv137.

35. Pan WY, Gu W, Nagpal S, Gephart MH, Quake SR. Brain 
Tumor Mutations Detected in Cerebral Spinal Fluid. 
Clinical chemistry. 2015; 61:514-522.

36. Harford-Wright E, Lewis KM, Ghabriel MN, Vink R. 
Treatment with the NK1 Antagonist Emend Reduces Blood 
Brain Barrier Dysfunction and Edema Formation in an 
Experimental Model of Brain Tumors. PLoS One. 2014; 
9:e97002.

37. Velichkova M, Keller TCS. Platelet titin: Localization and 
modification after platelet activation. Molecular biology of 
the cell. 1998; 9:22a.

38. Kotter S, Kazmierowska M, Andresen C, Bottermann K, 
Grandoch M, Gorressen S, Heinen A, Moll JM, Scheller J, 
Godecke A, Fischer JW, Schmitt JP, Kruger M. Titin-Based 
Cardiac Myocyte Stiffening Contributes to Early Adaptive 
Ventricular Remodeling After Myocardial Infarction. 
Circulation Research. 2016; 119:1017-1029.

39. Xia H, Hua L, Zheng WY, Zhou P. Exploration of the 
cancers association based on somatic data in TCGA. Acsr 
Adv Comput. 2015; 10:465-473.

40. Schultze E, Ourique A, Yurgel VC, Begnini KR, Thurow 
H, de Leon PM, Campos VF, Dellagostin OA, Guterres 
SR, Pohlmann AR, Seixas FK, Beck RC, Collares T. 
Encapsulation in lipid-core nanocapsules overcomes lung 
cancer cell resistance to tretinoin. European Journal Of 
Pharmaceutics And Biopharmaceutics. 2014; 87:55-63.

41. Marouf C, Gohler S, Da Silva MI, Hajji O, Hemminki K, 
Nadifi S, Forsti A. Analysis of functional germline variants 
in APOBEC3 and driver genes on breast cancer risk in 
Moroccan study population. Bmc Cancer. 2016; 16:165.

42. Bogomolovas J, Gasch A, Bajoras V, Karciauskaite D, 
Serpytis P, Grabauskiene V, Labeit D, Labeit S. Cardiac 
specific titin N2B exon is a novel sensitive serological 
marker for cardiac injury. International journal of 
cardiology. 2016; 212:232-234.

43. Troeger A, Chae HD, Senturk M, Wood J, Williams 
DA. A Unique Carboxyl-terminal Insert Domain in the 
Hematopoietic-specific, GTPase-deficient Rho GTPase 

RhoH Regulates Post-translational Processing. Journal Of 
Biological Chemistry. 2013; 288:36451-36462.

44. Troeger A, Williams DA. Hematopoietic-specific Rho 
GTPases Rac2 and RhoH and human blood disorders. 
Experimental Cell Research. 2013; 319:2375-2383.

45. Cassimere EK, Mauvais C, Denicourt C. p27(Kip1) Is 
Required to Mediate a G1 Cell Cycle Arrest Downstream 
of ATM following Genotoxic Stress. PLoS One. 2016; 
11:e0162806.

46. Garcia V, Lara-Chica M, Cantarero I, Sterner O, Calzado 
MA, Muñoz E. Galiellalactone induces cell cycle arrest 
and apoptosis through the ATM/ATR pathway in prostate 
cancer cells. Oncotarget. 2016; 7:4490-4506. https://doi.
org/10.18632/oncotarget.6606.

47. Liao MJ, Yin CY, Barlow C, Wynshaw-Boris A, Van 
Dyke T. Atm is dispensable for p53 apoptosis and tumor 
suppression triggered by cell cycle dysfunction. Molecular 
And Cellular Biology. 1999; 19:3095-3102.

48. Uhrhammer N, Uckun F, Wood C, Meyn MS. ATM, cell 
cycle control, and radiosensitivity in lymphoid and solid 
tumors. American journal of human genetics. 1997; 61:A85.

49. van Balkom BW, de Jong OG, Smits M, Brummelman J, 
den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel 
DM, Stoorvogel W, Wurdinger T, Verhaar MC. Endothelial 
cells require miR-214 to secrete exosomes that suppress 
senescence and induce angiogenesis in human and mouse 
endothelial cells. Blood. 2013; 121:3997-4006.

50. Mavuluri J, Beesetti S, Surabhi R, Kremerskothen J, 
Venkatraman G, Rayala SK. Phosphorylation-Dependent 
Regulation of the DNA Damage Response of Adaptor 
Protein KIBRA in Cancer Cells. Molecular And Cellular 
Biology. 2016; 36:1354-1365.

51. Beke L, Kig C, Linders JT, Boens S, Boeckx A, van Heerde 
E, Parade M, De Bondt A, Van den Wyngaert I, Bashir 
T, Ogata S, Meerpoel L, Van Eynde A, et al. MELK-T1, 
a small-molecule inhibitor of protein kinase MELK, 
decreases DNA-damage tolerance in proliferating cancer 
cells. Bioscience Reports. 2015; 35:e00267.

52. Janku F, Kaseb AO, Tsimberidou AM, Wolff RA, Kurzrock 
R. Identification of novel therapeutic targets in the PI3K/
AKT/mTOR pathway in hepatocellular carcinoma using 
targeted next generation sequencing. Oncotarget. 2014; 
5:3012-3022. https://doi.org/10.18632/oncotarget.1687.

53. Davidson D, Abu-Sanad A, Wang YZ, Hasheminasab F, 
Panasci J, Aloyz R, Panasci L. Simultaneous inhibition of 
ATR and PARP greatly sensitizes colon cancer cell lines to 
irinotecan. Cancer Research. 2015; 75.

54. Chen XY, Wang Z, Li B, Zhang YJ, Li YY. Pim-3 
contributes to radioresistance through regulation of the cell 
cycle and DNA damage repair in pancreatic cancer cells. 
Biochemical And Biophysical Research Communications. 
2016; 473:296-302.

55. Hong CS, Ho W, Zhang C, Yang CZ, Elder JB, Zhuang ZP. 
LB100, a small molecule inhibitor of PP2A with potent 



Oncotarget87508www.impactjournals.com/oncotarget

chemo- and radio-sensitizing potential. Cancer Biology & 
Therapy. 2015; 16:821-833.

56. van Sluis M, McStay B. Ribosome biogenesis: Achilles 
heel of cancer? Genes Cancer. 2014; 5:152-153. https://doi.
org/10.18632/genesandcancer.14.

57. Brighenti E, Treré D, Derenzini M. Targeted cancer therapy 
with ribosome biogenesis inhibitors: a real possibility? 
Oncotarget. 2015; 6:38617-38627. https://doi.org/10.18632/
oncotarget.5775.

58. Daftuar L, Zhu Y, Jacq X, Prives C. Ribosomal Proteins 
RPL37, RPS15 and RPS20 Regulate the Mdm2-p53-MdmX 
Network. PLoS One. 2013; 8:e68667.

59. De Bortoli M, Castellino RC, Lu XY, Deyo J, Sturla LM, 
Adesina AM, Perlaky L, Pomeroy SL, Lau CC, Man TK, 
Rao PH, Kim JYH. Medulloblastoma outcome is adversely 
associated with overexpression of EEF1D, RPL30, and 
RPS20 on the long arm of chromosome 8. Bmc Cancer. 
2006; 6:223.

60. Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, 
Menjivar JC, Wei BW, Lucey GM, Mareninov S, Chen 
ZG, Liau LM, Lai A, Nelson SF, et al. Ribosomal Proteins 
RPS11 and RPS20, Two Stress-Response Markers of 
Glioblastoma Stem Cells, Are Novel Predictors of Poor 
Prognosis in Glioblastoma Patients. PLoS One. 2015; 
10:e0141334.

61. Lowe AW, Moseley RH. Mutation of Ribosomal Protein 
RPS20 Predisposes to Colorectal Cancer. Gastroenterology. 
2014; 147:547-549.

62. Nieminen TT, O’Donohue MF, Wu YP, Lohi H, Scherer 
SW, Paterson AD, Ellonen P, Abdel-Rahman WM, Valo S, 
Mecklin JP, Jarvinen HJ, Gleizes PE, Peltomaki P. Germline 
Mutation of RPS20, Encoding a Ribosomal Protein, Causes 
Predisposition to Hereditary Nonpolyposis Colorectal 
Carcinoma Without DNA Mismatch Repair Deficiency. 
Gastroenterology. 2014; 147:595-598.e595.

63. Zhang SC, Jin W, Liu H, Jin MJ, Chen ZX, Ding ZY, 
Zheng SS, Wang LJ, Yu YX, Chen K. RPSA Gene Mutants 
Associated with Risk of Colorectal Cancer among the 
Chinese Population. Asian Pacific Journal Of Cancer 
Prevention. 2013; 14:7127-7131.

64. Wu MS, Tu T, Huang YC, Cao Y. Suppression subtractive 
hybridization identified differentially expressed genes in 
lung adenocarcinoma: ERGIC3 as a novel lung cancer-
related gene. Bmc Cancer. 2013; 13:44.

65. Zhan C, Zhang YX, Ma J, Wang L, Jiang W, Shi Y, Wang 
Q. Identification of reference genes for qRT-PCR in 
human lung squamous-cell carcinoma by RNA-Seq. Acta 
Biochimica Et Biophysica Sinica. 2014; 46:330-337.

66. Yajima S, Ishii M, Matsushita H, Aoyagi K, Yoshimatsu 
K, Kaneko H, Yamamoto N, Teramoto T, Yoshida T, 
Matsumura Y, Sasaki H. Expression profiling of fecal 
colonocytes for RNA-based screening of colorectal 
cancer. International journal of oncology. 2007; 
31:1029-1037.

67. Idol RA, Robledo S, Du HY, Crimmins DL, Wilson DB, 
Ladenson JH, Bessler M, Mason PJ. Cells depleted for 
RPS19, a protein associated with Diamond Blackfan 
Anemia, show defects in 18S ribosomal RNA synthesis and 
small riblosomal subunit production. Blood Cell Mol Dis. 
2007; 39:35-43.

68. Nakata T, Seki N, Miwa S, Kobayashi A, Soeda J, Nimura Y, 
Kawasaki S, Miyagawa S. Identification of genes associated 
with multiple nodules in hepatocellular carcinoma using 
cDNA microarray: Multicentric occurrence or intrahepatic 
metastasis? Hepato-Gastroenterol. 2008; 55:865-872.

69. Heim S, Lage H. Transcriptome analysis of different 
multidrug-resistant gastric carcinoma cells. In Vivo. 2005; 
19:583-590.

70. Thoms M, Thomson E, Bassler J, Gnadig M, Griesel S, Hurt 
E. The Exosome Is Recruited to RNA Substrates through 
Specific Adaptor Proteins. Cell. 2015; 162:1029-1038.

71. Willms E, Johansson HJ, Mager I, Lee Y, Blomberg KE, 
Sadik M, Alaarg A, Smith CI, Lehtio J, El Andaloussi 
S, Wood MJ, Vader P. Cells release subpopulations of 
exosomes with distinct molecular and biological properties. 
Sci Rep. 2016; 6:22519.

72. Castellvi J, Artero-Castro A, Garcia A, Hernandez-Losa 
J, Lleonart ME, Cajal SRY. Expression of the Ribosomal 
Proteins Rplp0, Rplp1, and Rplp2 in Gynecologic Tumors. 
Modern Pathol. 2011; 24:240a.

73. Tian XQ, Sun DF, Zhao SL, Xiong H, Fang JY. Screening of 
potential diagnostic markers and therapeutic targets against 
colorectal cancer. Oncotargets Ther. 2015; 8:1691-1699.

74. Leong S, McKay MJ, Christopherson RI, Baxter RC. 
Biomarkers of Breast Cancer Apoptosis Induced by 
Chemotherapy and TRAIL. J Proteome Res. 2012; 
11:1240-1250.

75. Kim BR, Jeon YK, Nam MJ. A mechanism of apigenin-
induced apoptosis is potentially related to anti-angiogenesis 
and anti-migration in human hepatocellular carcinoma cells. 
Food And Chemical Toxicology. 2011; 49:1626-1632.

76. Havel JJ, Li Z, Cheng D, Peng J, Fu H. Nuclear PRAS40 
couples the Akt/mTORC1 signaling axis to the RPL11-
HDM2-p53 nucleolar stress response pathway. Oncogene. 
2015; 34:1487-1498.

77. Balaj L, Atai NA, Chen W, Mu D, Tannous BA, Breakefield 
XO, Skog J, Maguire CA. Heparin affinity purification of 
extracellular vesicles. Sci Rep. 2015; 5:10266.

78. Peisker K, Braun D, Wolfle T, Hentschel J, Funfschilling 
U, Fischer G, Sickmann A, Rospert S. Ribosome-associated 
Complex Binds to Ribosomes in Close Proximity of Rpl31 
at the Exit of the Polypeptide Tunnel in Yeast. Molecular 
biology of the cell. 2008; 19:5279-5288.

79. Maguire S, Leonidou A, Wai P, Marchio C, Ng C, Sapino A, 
Vincent-Salomon A, Reis J, Weigelt B, Natrajan R. SF3B1 
mutations constitute a novel therapeutic target in breast 
cancer. Cancer Research. 2015; 75.



Oncotarget87509www.impactjournals.com/oncotarget

80. Maruyama Y, Miyazaki T, Ikeda K, Okumura T, Sato W, 
Horie-Inoue K, Okamoto K, Takeda S, Inoue S. Short 
Hairpin RNA Library-Based Functional Screening 
Identified Ribosomal Protein L31 That Modulates Prostate 
Cancer Cell Growth via p53 Pathway. PLoS One. 2014; 
9:e108743.

81. Teterina NL, Kopylov AM, Bogdanov AA. Topography Of 
Ribosomal-Rna In Ribosomes Effect Of Pancreatic Rnase 
on Small Ribosomal Subparticles. Biochemistry-Moscow+. 
1978; 43:183-188.

82. Beeley JA. Dissociation Of Pancreatic Ribosomes by 
Para Hydroxymercuric (C-14) Beenzoate. Biochimica Et 
Biophysica Acta. 1972; 259:112-116.

83. Keller PJ, Cohen E. Purification Of Bovine Pancreatic 
Ribosomes. Fed Proc. 1963; 22:301.

84. Rossman TG, Visalli MA, Komissarova EV. fau and its 
ubiquitin-like domain (FUBI) transforms human osteogenic 
sarcoma (HOS) cells to anchorage-independence. 
Oncogene. 2003; 22:1817-1821.

85. Casteels D, Michiels L, Merregaert J. On the Formation 
Of the Finkel-Biskis-Reilly Murine Sarcoma Virus - 
Involvement Of Radiation-Induced Retropseudogenes Of 
the Mouse Fau Gene. Proceedings Of the Xvi International 
Cancer Congress - Free Papers And Posters, Tomes 1-4. 
1994; 67-72.

86. Pickard MR, Green AR, Ellis IO, Caldas C, Hedge VL, 
Mourtada-Maarabouni M, Williams GT. Dysregulated 
expression of Fau and MELK is associated with poor prognosis 
in breast cancer. Breast Cancer Research. 2009; 11:R60.

87. Cozzolino AM, Noce V, Battistelli C, Marchetti A, Grassi 
G, Cicchini C, Tripodi M, Amicone L. Modulating the 
Substrate Stiffness to Manipulate Differentiation of Resident 
Liver Stem Cells and to Improve the Differentiation State of 
Hepatocytes. Stem cells international. 2016; 2016:5481493.

88. Yang SX, Cui J, Yang YS, Liu ZP, Yan HY, Tang CH, Wang 
H, Qin HF, Li XY, Li JJ, Wang WX, Huang YQ, Gao HJ. 
Over-expressed RPL34 promotes malignant proliferation of 
non-small cell lung cancer cells. Gene. 2016; 576:421-428.

89. Liu H, Liang SH, Yang X, Ji ZN, Zhao WY, Ye XB, Rui J. 
RNAi-mediated RPL34 knockdown suppresses the growth 
of human gastric cancer cells. Oncology reports. 2015; 
34:2267-2272.

90. Hammoudi A, Song F, Reed KR, Jenkins RE, Meniel VS, 
Watson AJ, Pritchard DM, Clarke AR, Jenkins JR. Proteomic 
profiling of a mouse model of acute intestinal Apc deletion 
leads to identification of potential novel biomarkers of human 
colorectal cancer (CRC). Biochemical And Biophysical 
Research Communications. 2013; 440:364-370.

91. Du JP, Shi YQ, Pan YL, Jin XH, Liu CJ, Liu N, Han QL, Lu 
YY, Qiao TD, Fan DM. Regulation of multidrug resistance 
by ribosornal protein L6 in gastric cancer cells. Cancer 
Biology & Therapy. 2005; 4:242-247.

92. Jacob AN, Kandpal G, Kandpal RP. Isolation of expressed 
sequences that include a gene for familial breast cancer 

(BRCA2) and other novel transcripts from a five 
megabase region on chromosome 13q12. Oncogene. 1996; 
13:213-221.

93. Wang R, Yoshida K, Toki T, Sawada T, Uechi T, Okuno 
Y, Sato-Otsubo A, Kudo K, Kamimaki I, Kanezaki R, 
Shiraishi Y, Chiba K, Tanaka H, et al. Loss of function 
mutations in RPL27 and RPS27 identified by whole-exome 
sequencing in Diamond-Blackfan anaemia. British Journal 
Of Haematology. 2015; 168:854-864.

94. Ito E, Yoshida K, Okuno Y, Sato-Otsubo A, Toki T, Miyano 
S, Shiraishi Y, Chiba K, Terui K, Wang RN, Sato T, Iribe 
Y, Ohga S, et al. Identification of Two New DBA Genes, 
RPS27 and RPL27, by Whole-Exome Sequencing in 
Diamond-Blackfan Anemia Patients. Blood. 2012; 120:984.

95. Varis A, Wolf M, Monni O, Vakkari ML, Kokkola 
A, Moskaluk C, Frierson H, Powell SM, Knuutila S, 
Kallioniemi A, El-Rifai W. Targets of gene amplification 
and overexpression at 17q in gastric cancer. Cancer 
Research. 2002; 62:2625-2629.

96. Lallemant B, Evrard A, Combescure C, Chapuis H, 
Chambon G, Raynal C, Reynaud C, Sabra O, Joubert D, 
Hollande F, Lallemant JG, Lumbroso S, Brouillet JP. 
Reference gene selection for head and neck squamous cell 
carcinoma gene expression studies. Bmc Mol Biol. 2009; 
10:78.

97. Rentoft M, Hultin S, Coates PJ, Laurell G, Nylander K. 
Tubulin alpha-6 chain is a stably expressed reference gene 
in archival samples of normal oral tissue and oral squamous 
cell carcinoma. Experimental and therapeutic medicine. 
2010; 1:419-423.

98. Zhang PJ, Wei R, Wen XY, Ping L, Wang CB, Dong 
ZN, Deng XX, Bo W, Bin C, Tian YP. Genes expression 
profiling of peripheral blood cells of patients with 
hepatocellular carcinoma. Cell biology international. 2012; 
36:803-809.

99. Zubor P, Hatok J, Moricova P, Kapustova I, Kajo K, 
Mendelova A, Sivonova MK, Danko J. Gene expression 
profiling of histologically normal breast tissue in females 
with human epidermal growth factor receptor 2-positive 
breast cancer. Molecular medicine reports. 2015; 
11:1421-1427.

100. Li L, Dong M, Wang XG. The Implication and Significance 
of Beta 2 Microglobulin: A Conservative Multifunctional 
Regulator. Chinese Medical Journal. 2016; 129:448-455.

101. Dunlop-Briere AF, Baird MC, Budzelaar PHM. 
Mechanisms of alpha-, beta-, and gamma-H(D) Exchange 
Processes in the alpha-Agostic Alkyltitanocene (IV) 
Complexes [Cp2TiCH2CH (CH3)(CMe3)](+) and 
[Cp2TiCH2CH(CD3)(CMe3)](+): Stark Contrasts with 
Their gamma-SiMe3 Analogues. Organometallics. 2015; 
34:2356-2368.

102. Munoz-Ruiz M, Perez-Flores V, Garcillan B, Guardo 
AC, Mazariegos MS, Takada H, Allende LM, Kilic SS, 
Sanal O, Roifman CM, Lopez-Granados E, Recio MJ, 
Martinez-Naves E, et al. Human CD3 gamma, but not CD3 



Oncotarget87510www.impactjournals.com/oncotarget

delta, haploinsufficiency differentially impairs gamma 
delta versus alpha beta surface TCR expression. Bmc 
Immunology. 2013; 14:3.

103. Alashti FA, Minuchehr Z. MiRNAs Which Target CD3 
Subunits Could Be Potential Biomarkers for Cancers. PLoS 
One. 2013; 8:e78790.

104. Duggan MC, Jochems C, Donahue RN, Richards J, Karpa 
V, Foust E, Paul B, Brooks T, Tridandapani S, Olencki T, 
Pan XL, Lesinski GB, Schlom J, Carson WE. A phase I 
study of recombinant (r) vaccinia-CEA(6D)-TRICOM and 
rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and 
IFN-alpha-2b in patients with CEA-expressing carcinomas. 
Cancer Immunol Immun. 2016; 65:1353-1364.

105. Inokuma M, dela Rosa C, Schmitt C, Haaland P, Siebert J, 
Petry D, Tang MX, Suni MA, Ghanekar SA, Gladding D, 
Dunne JF, Maino VC, Disis ML, Maecker HT. Functional 
T cell responses to tumor antigens in breast cancer patients 
have a distinct phenotype and cytokine signature. Journal of 
immunology. 2007; 179:2627-2633.

106. Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, 
Michalek S, Grizzle W, Zhang HG. Contribution of 
MyD88 to the tumor exosome-mediated induction of 
myeloid derived suppressor cells. Am J Pathol. 2010; 
176:2490-2499.

107. Baik IH, Jo GH, Seo D, Ko MJ, Cho CH, Lee MG, Lee 
YH. Knockdown of RPL9 expression inhibits colorectal 
carcinoma growth via the inactivation of Id-1/NF-kappa 
B signaling axis. International journal of oncology. 2016; 
49:1953-1962.

108. Huang T, Chen L, Cai Y, Chou C. Classification and 
Analysis of Regulatory Pathways Using Graph Property, 
Biochemical and Physicochemical Property, and Functional 
Property. PLoS One. 2011; 6:e25297.

109. Zhang Y, Ding C, Li T. Gene selection algorithm by 
combining reliefF and mRMR. BMC genomics. 2008; 
9:S27.

110. Liu L, Chen L, Zhang YH, Wei L, Cheng S, Kong XY, 
Zheng M, Huang T, Cai YD. Analysis and prediction of 
drug-drug interaction by minimum redundancy maximum 
relevance and incremental feature selection. Journal of 
Biomolecular Structure and Dynamics. 2017; 35:312-329.

111. Ni Q, Chen L. A feature and algorithm selection method 
for improving the prediction of protein structural classes. 
Combinatorial Chemistry & High Throughput Screening. 2017.

112. Chen L, Zhang YH, Lu G, Huang T, Cai YD. Analysis of 
cancer-related lncRNAs using gene ontology and KEGG 
pathways. Artificial Intelligence in Medicine. 2017; 
76:27-36.

113. Chen L, Chu C, Feng K. Predicting the types of metabolic 
pathway of compounds using molecular fragments and 
sequential minimal optimizatio. Combinatorial Chemistry 
& High Throughput Screening. 2016; 19:136-143.

114. Chen L, Zhang YH, Huang T, Cai YD. Gene expression 
profiling gut microbiota in different races of humans. 
Scientific Reports. 2016; 6:23075.

115. Radovic M, Ghalwash M, Filipovic N, Obradovic Z. 
Minimum redundancy maximum relevance feature 
selection approach for temporal gene expression data. BMC 
Bioinformatics. 2017; 18:9.

116. Korkmaz SA, Korkmaz MF, Poyraz M. Diagnosis of breast 
cancer in light microscopic and mammographic images 
textures using relative entropy via kernel estimation. 
Medical & Biological Engineering & Computing. 2016; 
54:561-573.

117. Ma X, Guo J, Sun X. Sequence-Based Prediction of RNA-
Binding Proteins Using Random Forest with Minimum 
Redundancy Maximum Relevance Feature Selection. 
BioMed Research International. 2015; 2015:425810.

118. Wang S, Zhang YH, Lu J, Cui W, Hu J, Cai YD. Analysis 
and Identification of Aptamer-Compound Interactions 
with a Maximum Relevance Minimum Redundancy and 
Nearest Neighbor Algorithm. Biomed Res Int. 2016; 
2016:8351204.

119. Zhang Q, Sun X, Feng K, Wang S, Zhang YH, Wang S, 
Lu L, Cai YD. Predicting citrullination sites in protein 
sequences using mRMR method and random forest 
algorithm. Comb Chem High Throughput Screen. 2017.

120. Wang S, Zhang YH, Huang G, Chen L, Cai YD. Analysis 
and Prediction of Myristoylation Sites Using the mRMR 
Method, the IFS Method and an Extreme Learning Machine 
Algorithm. Combinatorial Chemistry & High Throughput 
Screening. 2017; 20:96-106.

121. Chen L, Zhang YH, Zheng M, Huang T, Cai YD. 
Identification of compound-protein interactions through 
the analysis of gene ontology, KEGG enrichment for 
proteins and molecular fragments of compounds. Molecular 
Genetics and Genomics. 2016; 291:2065-2079.

122. Kohavi R. A Study of Cross-Validation and Bootstrap for 
Accuracy Estimation and Model Selection. International Joint 
Conference on Artificial Intelligence. 2010; 1137-1143.

123. Chen L, Chu C, Zhang YH, Zheng MY, Zhu L, Kong X, 
Huang T. Identification of Drug-Drug Interactions Using 
Chemical Interactions. Current Bioinformatics. 2017.

124. Chen L, Zeng WM, Cai YD, Feng KY, Chou KC. Predicting 
Anatomical Therapeutic Chemical (ATC) Classification of 
Drugs by Integrating Chemical-Chemical Interactions and 
Similarities. PLoS One. 2012; 7:e35254.

125. Wang S, Zhang Q, Lu J, Cai YD. Analysis and Prediction 
of Nitrated Tyrosine Sites with the mRMR Method and 
Support Vector Machine Algorithm. Current Bioinformatics. 
2017.

126. Li BQ, Zhang YH, Jin Ml, Huang T, Cai YD. Prediction 
of Protein-Peptide Interactions with a Nearest Neighbor 
Algorithm. Current Bioinformatics. 2017.



Oncotarget87511www.impactjournals.com/oncotarget

127. Zhang YH, Xing ZH, Liu CL, Wang SP, Huang T, Cai YD, 
Kong XY. Identification of the core regulators of the HLA 
I-peptide binding process. Scientific Reports. 2017; 7:42768.

128. Chen L, Yang J, Xing Z, Yuan F, Shu Y, Zhang Y, Kong 
X, Huang T, Li H, Cai YD. An integrated method for the 
identification of novel genes related to oral cancer. PLoS 
One. 2017; 12:e0175185.

129. Platt J. Sequential Minimal Optimizaton: A Fast Algorithm 
for Training Support Vector Machines. Technical Report 
MSR-TR-98-14. 1998.

130. Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data 
mining in bioinformatics using Weka. Bioinformatics. 2004; 
20:2479-2481.

131. Chen L, Lu J, Zhang N, Huang T, Cai YD. A hybrid method 
for prediction and repositioning of drug Anatomical 
Therapeutic Chemical classes. Molecular BioSystems. 
2014; 10:868-877.


