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ABSTRACT
A BI-RADS category of 4 from a mammogram indicates suspicious breast lesions, 

which require core biopsies for diagnosis and have an approximately one third 
chance of being malignant. Human plasma contains many circulating microRNAs, and 
variations in their circulating levels have been associated with pathologies, including 
cancer. Here, we present a novel methodology to identify malignant breast lesions in 
women with BI-RADS 4 mammography. First, we used the miRNome array and qRT-
PCR to define circulating microRNAs that were differentially represented in blood 
samples from women with breast tumor (BI-RADS 5 or 6) in comparison to controls 
(BI-RADS 1 or 2). Next, we used qRT-PCR to quantify the level of this circulating 
microRNAs in patients with mammograms presenting with BI-RADS category 4. 
Finally, we developed a machine learning method (Artificial Neural Network - ANN) 
that receives circulating microRNA levels and automatically classifies BI-RADS 4 
breast lesions as malignant or benign. We identified a minimum set of three circulating 
miRNAs (miR-15a, miR-101 and miR-144) with altered levels in patients with breast 
cancer. These three miRNAs were quantified in plasma from 60 patients presenting 
biopsy-proven BI-RADS 4 lesions. Finally, we constructed a very efficient ANN that 
could correctly classify BI-RADS 4 lesions as malignant or benign with approximately 
92.5% accuracy, 95% specificity and 88% sensibility. We believe that our strategy 
of using circulating microRNA and a machine learning method to classify BI-RADS 4 
breast lesions is a non-invasive, non-stressful and valuable complementary approach 
to core biopsy in women with BI-RADS 4 lesions.

INTRODUCTION

Breast cancer (BC) is the second most common 
malignancy in women [1]. As BC patients’ life quality and 
survival decrease significantly with late BC diagnosis, 

early tumor detection is critical to improve the disease 
outcome [1]. Currently, mammography is the preferred 
and most used method for early BC detection. Despite its 
modest sensitivity (approximately 80%) and specificity 
(approximately 85%), it is still a valuable method because 
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its assessment has been associated with a reduction in BC 
morbidity and mortality worldwide. 

The Breast Imaging and Reporting Data System (BI-
RADS®) is a classification system used by radiologists to 
sort mammography results into categories numbered from 
0 through 6 [2]. The classification depends on radiological 
features such as breast mass, calcification, architectural 
distortion, asymmetries and intramammary lymph nodes, 
which demonstrate good correlation with the likelihood 
of the absence or presence of BC. Category 0 is for 
incomplete results, and further radiological evaluation is 
needed. Categories 1 and 2 correspond to non-malignant 
breast lesions. Category 3 is probably benign lesions. 
BI-RADS category 5 corresponds to highly suggestive 
malignancy, with an over 95% of likelihood, and category 
6 is for proven malignancy [2]. However, the most 
uncertain lesions are those of BI-RADS category 4, which 
are divided into three sub categories according to the 
probability of malignancy: 4a, probability of malignancy 
2–10%; 4b, probability of malignancy 10–50%; and 4c, 
probability of malignancy 50–95%. Currently, all BI-
RADS category 4 warrant further evaluation [3].

Although BI-RADS category 4 can be subdivided 
according to its likelihood of cancer, 90% of women 
with BI-RADS 4 lesions are submitted to core biopsies 
to confirm their breast lesion classification [3]. Based on 
our experience and on the data from the literature, only 
30% of BI-RADS 4 lesions are confirmed as malignant. 
Therefore, most women with BI-RADS category 4 lesions 
are submitted to an unnecessary invasive and stressful 
approach. In this scenario, the identification of non-
invasive biomarkers capable of discriminating malignant 
from benign BI-RADS category 4 lesions would have a 
positive impact on patient life quality and BC diagnosis. 

MicroRNAs (miRNAs) are small non-coding RNAs 
with heavy involvement in gene expression regulation in 
plant and animals [4]. Alterations in miRNA levels have 
been associated with different pathologies, including 
cancer [5, 6]. It is known that miRNAs can be released and 
detected in the blood and that variations in their circulating 
levels have been associated with different pathological and 
physiological conditions over the past decade [7].

Circulating biomarkers present great promise as 
non-invasive markers to improve cancer diagnosis and 
to monitor therapy response and disease progression 
[8]. Among all circulating molecules, mature miRNAs 
are ‘gold standard’ biomarkers because they are highly 
stable, without major post transcriptional variations, 
short in length and can be measured using relatively 
simple and cost-effective methodologies. The potential 
use of circulating miRNAs as biomarkers has been 
described for many cancer types, including BC [9]. 
For example, alterations in miRNA circulating levels 
have been used as a screening tool for BC diagnosis 
[10,  11], for molecular subtype classification [12] and 
for metastasis detection [13].

Here, we have made a hypothesis-generating 
study, in which we developed a non-invasive method 
to accurately classify BI-RADS 4 breast lesions as 
malignant or benign. Our method combines two cutting 
edge strategies, the quantification of circulating miRNA 
levels in the patient blood and a machine learning method 
(Artificial Neural Network - ANN) to classify BI-RADS 
category 4 breast lesions as malignant or benign. For our 
set of approximately 60 BI-RADS category 4 lesions, our 
method presented an accuracy, sensitivity and specificity 
of approximately 90% to classify BI-RADS category 4 
lesions as malignant or benign. Thus, we here present a 
novel noninvasive, low stress and potentially cost effective 
strategy to classify BI-RADS category 4 lesions.

RESULTS 

Identifying circulating miRNAs differentially 
represented in breast cancer

Using a large-scale platform (miRNome PCR 
array), we compared the levels of 1,805 miRNAs in the 
plasma of 46 breast cancer patients (breast lesion with BI-
RADS categories 5 or 6 from mammography) versus 72 
control patients (breast lesions with BI-RADS categories 
1 or 2 from mammography). The global Ct mean of 
all circulating miRNAs in all samples was used as the 
circulating level calibrator, Figure 1.

First, we detected a mean of ~20% of all known 
miRNAs per sample, and no difference was found in 
terms of the number of circulating miRNAs in controls 
and BCs (Figure 2A). Next, we searched for differentially 
represented circulating miRNAs between BI-RADS 
category 1 and 2 (controls) versus BI-RADS category 
5 and 6 (breast cancer) lesions. We found a total of 57 
circulating miRNAs differentially represented (adjusted 
p-value < 0.05; Figure 2B), 46 of which were over and 
9 of which were under represented in the plasma of 
patients with breast cancer (Figure 2B). A full list of those 
differentially represented miRNAs are in Supplementary 
Table 1. 

Identifying a minimum set of circulating 
miRNAs over represented in breast cancer

To be clinically feasible, a short list of biomarkers 
is the aim to reduce the handling time, amount of material 
and costs. Therefore, we aimed to reduce our list of 57 
candidates to a minimum set of circulating miRNAs 
differentially represented in BC versus control. Then, 
based on the expression ratio (high), p-value (low) and 
literature support (related to BC), we selected 12 miRNAs 
to be further tested in an independent set of 58 plasma 
samples, 29 controls (breast lesion classified as BI-RADS 
1–2) and 29 BC (BI-RADS 5–6) ( Supplementary Table 2).
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Among all 12 circulating miRNAs tested in the 
second cohort, three miRNAs (miR-15a, miR-144 and 
miR-101) emerged as differentially represented in BC, 
with a fold change over 1.5x and a p-value < 0.05 (Mann-
Whitney test) (Figure 3). All other circulating miRNAs 
were not detected or did not present differential levels 
in this independent set of BCs versus controls lesions 
(Supplementary Figure 1 and Supplementary Table 2). For 
normalization purposes, we included miR-16, RNU6-b, 
cel-miR-39 and the two most stable miRNAs (miR-3173 
and miR-1280) as calibrator miRNAs (Supplementary 
Table 3). Using this additional step, we were therefore 
able to reduce the list of circulating miRNAs differentially 
represented in the plasma of controls (women with BI-
RADS category 1–2 lesions) versus BC (women with BI-
RADS category 5–6 lesions) to a minimum set of three 
miRNAs: miR-15a, miR-144 and miR-101.

miRNA levels in BI-RADS category 4 breast 
lesions and ANN lesion classification

As BI-RADS category 4 requires core biopsies 
for diagnosis confirmation, we obtained the plasma of 
62 women with biopsy-proven breast lesions already 
classified as malignant (67% of our samples) or benign 
(33% of our samples). Then, we quantified the level of 
the three circulating miRNAs (miR-15a, miR-144 and 

miR-101) in the plasma of these women. Fortunately, the 
three tested miRNAs presented a usable 2-ΔCT level (see 
Methods) for 97% of samples (Supplementary Figure 1). 

We next developed an ANN, a machine learning 
method, to receive the miRNA levels, process them 
and classify each breast lesion as benign or malignant. 
Defining the network topology is an important step to find 
the best ANN for each approach. In our case, we tested 
several topologies, but a network with 4 neurons in the 
first hidden layer, 5 neurons in the second hidden layer 
and 1 neuron in the output layer, with all layers having 
Sigmoid Symmetric transfer functions, was our best 
ANN topology to classify our set of BI-RADS category 
4 lesions. The training function selected was RPROP 
(resilient backpropagation algorithm; check Methods, 
Supplementary Figure 2 and Supplementary Tables 5–6 
for details) (Figure 4A).

To find the best ANN for our sample set 
classification, we randomly split (10,000×) the circulating 
miRNA levels into training (60%), validation (20%) and 
test (20%) groups. To avoid any model overfitting, we 
implemented an early stopping regularization during the 
training step, and we also used a multilayer feedforward 
ANN training with the backpropagation algorithm 
(Supplementary Figure 3). 

In the end, we obtained a very efficient ANN for 
classifying our BI-RADS category 4 lesions. Using the 

Figure 1: Experimental strategy. The screening cohort (n = 118) contains 72 controls (BI-RADS 1 or 2) and 46 cancer samples (BI-
RADS 5 or 6). The validation cohort (n = 120) contain 29 cancer samples, 29 control samples and 62 test samples (BI-RADS 4).
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biopsy proven lesions as positive controls, our ANN 
correctly classified 92.46% (accuracy) of all lesions 
(Figure 4B), with a sensitivity of 100% and specificity 
of 90.00% for the test set and sensitivity of 87.50% and 
specificity of 94.59% for all breast lesions (Figure 4C). 
Therefore, the positive and negative likelihood ratios were 
16.2 and 0.13, respectively.

DISCUSSION

Mammography screening has drastically improved 
early BC diagnosis and the BC survival rate. However, 
despite this accessibility, it is an unpleasant procedure and 
has limitations due to ionizing radiation, breast density, 
technician inexperience and inaccuracy that lead to false 
results in over 10% of cases. Moreover, patients with 
suspicious lesions (BI-RADS category 4) usually need 
an additional and invasive procedure (a core biopsy) to 
confirm the diagnosis of BC. Here, we present a novel 
non-invasive methodology to identify malignant breast 
lesions in women with BI-RADS 4 mammography. 

Circulating miRNAs are stable and are free or 
associate with proteins [14], and therefore the possibility 
of using circulating miRNAs as biomarkers has already 
been proposed for several pathologies [10, 11, 15]. It is 

well known that each cell type liberates miRNAs to its 
surroundings and that those cell-free molecules can be 
detected in several biological fluids, including serum and 
plasma. Circulating miRNAs can be more effective than 
other biomarkers once their expression has not shown 
correlation with clinic-pathological features such as 
hormone receptors, HER expression, Ki67, lymph node 
status, tumor size or age [10] and they are stable molecules 
with low post transcriptional variations that are potentially 
individually related. Circulating miRNAs have been 
largely explore in breast cancer, and a role on prognosis, 
diagnosis and as therapy response monitors have been 
proposed [16], however the relation with BI-RADS has 
not been explored yet.

An important limitation to studying circulating 
miRNAs is to choose the right normalization method 
[17, 18]. We systematically tested for combinations 
of two circulating miRNAs, the most stable miRNAs 
during the screening phase (miR-3173) and the spike 
in cel-miR-39. Therefore, we believed that our strategy 
of quantifying the level of circulating miRNAs in the 
plasma of patients presenting benign or malignant breast 
lesions are reduced in terms of the side and noise effects 
caused by experimental handling and/or individual patient 
backgrounds. 

Figure 2: miRNAs detected and differentially represented. (A) Box plot showing the number of circulating miRNAs detected 
in controls (BI-RADS category 1 and 2) and breast cancer samples (BI-RADS category 5 and 6). (B) Volcano plot comparing circulating 
miRNA levels between control and BC. In blue and red are all 57 miRNAs differentially represented (p-value < 0.05) in BC samples. Red 
miRNAs also have a log2 fold change > 1.5.
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Machine learning algorithms, powered by 
advances in computation, data quality and large-scale 
data generation, have recently been shown to exceed 
human performance in several areas, including pattern 
recognition and visual tasks. A fruitful area for the 
application of machine learning methods is medicine. 
The analyses of several aspects of patient information 

and the accurate identification of a disease is one of the 
most challenging tasks for physicians. On the other hand, 
machine learning methods, whether well-constructed 
and trained, are powerful strategies for the analyses of 
complex datasets and effectively identify a pattern, such 
as a suspicion of cancer. The ANN, a Machine Learning 
Method developed here, accurately classifies BI-RADS 

Figure 3: MiRNAs differentially represented in BC versus controls.

Figure 4: ANN topology and classification. (A) Structure of the best ANN topology. (B) Confusion matrix summarizing all data used 
in ANN. In the blue cell: red font, percentage of misclassification, green font, percentage of correct classifications. (C) ROC Curve for all 
data with the respective Area Under the Curve (AUC).
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category 4 breast lesions. Moreover, once created, ANN 
are not computationally intense and could be executed 
on a standard PC or even in a web tool, where the user 
could input the level of the circulating miRNAs and easily 
obtain the breast lesion classification between malignant 
and benign. However, further prospective analyses are 
necessary to evaluate the performance of our ANN in a 
clinic routine to confirm its very high accuracy, sensitivity 
and specificity. We are expanding its application to some 
of our patients presenting BI-RADS category 4.

Despite facilities performing percutaneous imaging-
guided biopsies in patients with breast lesions classified as 
BI-RADS category 4, it is still an invasive procedure that 
requires a medical doctor and appropriate facilities, with 
some potential side effects and a relatively high cost. On the 
other hand, measuring alterations in circulating miRNAs 
levels is a non-invasive method that requires only blood 
sampling, a technician to perform qRT-PCR–similarly to 
other blood tests routinely applied today–and a professional 
to fill a table with three values of the circulating miRNAs 
level for each sample. The ANN will automatically classify 
the breast lesion in malignant or benign and return the result.

The three miRNAs (miR-15a, miR-144 and miR-
101) emerged here have already been described in BC, 
but neither of them have been related to BI-RADS nor 
their circulating level used together to distinguish benign 
from malignant breast lesions. For example, differential 
expression of miR-15a was observed in BC and it was 
potentially correlated to a bad prognosis factor [19]. MiR-
144 has been proposed as a BC marker, once that it is, 
in potential, an important regulator of tumorigenesis and 
tumor progression with a putative role on cell migration 
and invasion [20]. MiR-101 was also described as a good 
therapeutic target for BC and changing on its expression 
level seems to be related to proliferation, invasion and 
autophagy, and apoptosis in BC cells [21]. 

In summary, here we propose a non-invasive 
methodology to distinguish benign from malignant breast 
lesions previously classified as BI-RADS category 4 in 
mammography. Our strategy combines two cutting edge 
methodologies, the quantification of a minimum set of 
circulating miRNAs and a learning machine technique 
(ANN) to accurately classify BI-RADS category 4 breast 
lesions between benign and malignant. After prospective 
validation, our methodology should be a valuable 
approach to support or even replace (in the future) biopsy 
in women with BI-RADS category 4 lesions, as well as 
be used (in potential) as an additional approach to reduce 
false-negative biopsy results in BC.

MATERIALS AND METHODS

Patient cohort 

A total of 238 blood samples were collected from 
women undergoing mammography at Hospital Sírio 

Libanês in the period between 2013 and 2015. Blood 
samples were collected (patient blood withdrawn) before 
mammography and core biopsy. All women provided 
written informed consent for collection and molecular 
analysis of blood specimens. This study was approved 
by the Hospital Sírio Libanês Ethics Committee (Study 
#2013–03). The sample characteristics are summarized 
in Table 1 (for more details see Supplementary Table 4). 
Control patients have at least one previous mammogram 
with normal results and no history of cancer, while 
cancer patients did not have previous cancer nor received 
treatment before sample collection. 

Sample processing

We used plasma to avoid coagulation, a process 
that can trigger an activation cascade that will release 
cell molecules causing variation in circulating miRNAs 
levels [22]. Blood was collected in EDTA tubes and 
processed within the first 2 hours after collection to 
guarantee plasma quality. Briefly, to separate plasma, 
blood samples were centrifuged at 1,900 g for 10 minutes 
at 4°C. Next, to remove debris, plasma was centrifuged at 
16,000 g for 10 minutes at 4°C. The pellet was discarded, 
and plasma was aliquoted and stored at −80°C (protocol 
modified from [11]). To evaluate blood cell hemolysis, 
we measured the plasma absorbance at 414 nm (ABS414). 
ABS414 was quantified using the NanoVue (GE Healthcare 
Life Sciences®). Samples with absorbance values lower 
than 0.2 were considered non-hemolytic as described by 
Kirschner et al. [23]. All samples analyzed in this study 
were below the cutoff of 0.2. 

Isolation of miRNA from plasma

RNA was isolated following a phenol-free protocol. 
Briefly, proteins were first precipitated using a metal 
cation, and then, RNA present in the supernatant was 
bound to an RNeasy column and washed with diluted 
buffers RWT and RPE and subsequently with ethanol prior 
to drying and elution with RNAse-free water. cDNA was 
pre-amplified for 12 cycles to guaranty the detection of 
circulating miRNAs by using the miScript PreAMP PCR 
Kit (Qiagen®). 

Sample quality 

Several controls were used to determine the RNA 
sample quality. To monitor variation during sample 
preparation, C. elegans miR-39 mimic was spiked into 
each sample. MiScript PCR Controls were included to 
quantify a panel of 5 snoRNAs (SNORD61, SNORD68, 
SNORD72, SNORD95 and SNORD96A) and the snRNA 
RNU6B (RNU6–2), all of which have stable levels in 
plasma. Additionally, miRNA reverse transcription control 
RNA (miRTC) and positive PCR controls (PPC) were used 
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to monitor variables that may inhibit reverse transcription 
or amplification. To evaluate sample quality, we calculated 
the difference as (Average Ct value of RTC) – (Average 
Ct value of PPC), with values lower than 7 indicating no 
inhibition. Additionally, PPC Ct values of 19 ± 2 indicate 
no contaminants or inhibition.

MiRNome array

Circulating miRNA profiling was carried out using 
the miRNome array v18.0 from Qiagen® in the 384-well 
format (MIHS-3218Z v18.0). These arrays measure the 
expression of 1,805 miRNAs plus controls. This array 
contains a panel of 384 primer sets: 370 relevant miRNA 
genes plus five housekeeping genes and three RNA and 
PCR quality controls. The detection was performed using 
SYBR® Green real-time RT-PCR.

Validation of selected marker candidates

To validate the differences in miRNA circulating 
levels, total RNA was extracted from 200 µl of plasma 
using the miRNeasy serum/plasma kit (Qiagen®). 
Denaturation and phase separation was carried out 
using Qiazol Lysis Reagent® according to the fabricant’s 
protocol. Before phase separation, 3.5 µl of C. elegans 
miR-39 was added at a concentration of 1.6 × 108 copies/
µl. Next, the aqueous phase was transferred into another 
tube, ethanol was added and processing was performed 
using the QIAcube from Qiagen®. MiRNAs were eluted 
in 16 µl of RNAse-free water and quantified using the 
NanoDrop 2000 (Thermo Scientific®). Then, miRNAs 

were retro-transcribed into cDNA using the miScript® 
II RT kit from Qiagen® according to the manufacturer’s 
instruction. The 5x miScript HiSpect buffer was used to 
obtain mature miRNAs. cDNA was pre-amplified for 12 
cycles using the miScript® PreAMP PCR kit, and real time 
PCR was carried out using miScript SYBR® Green PCR 
kit with the miScript HiSpec buffer using Qiagen® kits. 
MiRNA-specific primers for all candidates were purchased 
from Qiagen®, and qRT-PCR was performed using the 
Applied Biosystems 7900HT thermocycler. Analyses were 
carried out using the 2-ΔCT formula for each sample using 
the mean of cel-miR-39 and miR-3173 for normalization.

Artificial neural network

ANN is a machine learning method that is widely 
used for pattern recognition and data classification. 
This method receives an input, splits it into three sets 
(training, validation and test), self learns from the data and 
releases an ANN that is able, for example, to classify an 
independent set of elements. Working with ANN requires 
properly pre-processed data to be fed into the algorithm, 
which consists of, for example, standardization and 
removing outlier values. This step should be performed 
to avoid range scaling problems, thereby improving 
the probability of a good ANN performance. Here, the 
circulating microRNA level (2-ΔCT) obtained by qRT-PCR 
underwent an outlier filter, in which some measurements 
were removed following the Tukey rules on interquartile 
range (IQR). All circulating miRNA levels between Q1 
- 1.5 * IQR and Q3 + 1.5 * IQR were kept to carry out 
our ANN modeling. The selected data were standardized 

Table 1: Patient characteristics for the screening (n = 118) and validation and testing (n = 120) 
phases of the study

Characteristics
Control patients 

(BI-RADS 1 or 2) - 
screening (n = 72)

Breast cancer patients 
(BI-RADS 5 or 6) - 
screening (n = 46)

Control patients 
(BI-RADS 1 or 2) - 
validation (n = 29)

Breast cancer 
patients (BI-RADS 
5 or 6) - validation 

(n = 29)

Test patients (BI-
RADS 4) - testing 

(n = 62)

Median age 51.6 ± 11.3 58.1 ± 11.5 54.28 ± 9.99 56.73 ± 13.45 51.29 ± 11.96

IMC 26.25 ± 4.5 27.73 ± 5.86 26.81 ± 4.2 25.67 ± 4.54 27.05 ± 4.72

Immunohistochemistry (%)

Without hormonal receptors - 6.52 - 6.9 -

With hormone receptors - 8.7 - 3.45 -

Luminal A - 17.39 - 13.79 -

Luminal B - 50 - 68.97 -

Triple negative - 4.35 - - -

Not specify - 13.04 - 3.45 -

HER-2 - - - 3.45 -

Metastasis (%)

Negative Lymph node - 67.39 - 44.83 -

Positive lymph node - 21.74 - 37.93 -

Not specified - 10.87 - 17.24 -
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for each microRNA to have a centralized set, with zero 
(central point), +1 (maximum possible value) and -1 
(minimum possible value). Next, we applied in-house 
software written in the ANSI-C programming language 
and using the Fast Artificial Neural Network library 
(FANN [24], version 2.2.0) to find the ANN optimal 
topology capable to classify BI-RADS category 4 breast 
lesions as malignant or benign. Briefly, the algorithm 
consists of testing various ANN combinations to find the 
best network topology. Each ANN combination was thus 
performed in a stochastic way, with random selection of 
parameters (such as the number of neurons per layer) 
and random splits of the whole data in three sets: one for 
training, one for validation and one for testing. When the 
combination was defined, the parameters were used to 
create a multilayer feedforward ANN, training it with the 
backpropagation algorithm; to avoid model overfitting, we 
implemented early stopping regularization during training. 
The stopping step was defined by comparing the errors, 
where if the obtained error is lower than the lowest error so 
far, then the previous best ANN is replaced by the current 
one (Supplementary Figure 3). For quantify the ANN 
classification efficiency, we defined their accuracy (true 
results / total number of cases), sensitivity (true positive / 
positive) and specificity (true negative / negative).

Statistical analysis

Statistical analyses for selecting the set of miRNAs 
with significant differences in their circulating levels 
between controls and breast cancer samples were 
performed by the Qiagen Data Analysis center. The data 
were normalized to the global mean of the circulating 
miRNA levels. The Normfinder® software was used to 
determine calibrators’ genes on the validation phase to 
choose the best combination from candidate housekeeping 
genes for the validation phase. The Mann-Whitney 
statistic was calculated using GraphPad software version 
6.0 to analyze circulating levels. The correlation between 
miRNA circulating levels and age, IMC and breast feeding 
was analyzed using the Pearson formula in GraphPad. All 
tests were carried out for an α value of 0.05. 
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