
Oncotarget88697www.impactjournals.com/oncotarget

Pharmacometabolomics identifies dodecanamide and 
leukotriene B4 dimethylamide as a predictor of chemosensitivity 
for patients with acute myeloid leukemia treated with cytarabine 
and anthracycline

Guangguo Tan1,*, Bingbing Zhao2,*, Yanqing Li2, Xi Liu2, Zhilan Zou2, Jun Wan2, 
Ye Yao2, Hong Xiong2 and Yanyu Wang2

1School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
2Department of Hematology, The Central Hospital of Xuhui District, Shanghai, 20031, China
*These authors have contributed equally to this work

Correspondence to: Yanyu Wang, email: yywang2017@126.com
Hong Xiong, email: hxiong@scrc.ac.cn

Keywords: pharmacometabolomics, metabolomics, acute myeloid leukemia, chemosensitivity, liquid chromatography-mass 
spectrometry
Received: July 05, 2017    Accepted: August 04, 2017    Published: September 08, 2017
Copyright: Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

ABSTRACT

Clinical responses to standard cytarabine plus anthracycline regimen in acute 
myeloid leukemia (AML) are heterogeneous and there is an unmet need for biological 
predictors of response to this regimen. Here, we applied a pharmacometabolomics 
approach to identify potential biomarkers associated with response to this regimen 
in AML patients. Based on clinical response the enrolled 82 patients were subdivided 
into two groups: complete remission(CR) responders (n=42) and non-responders 
(n=40). Metabolic profiles of pre-treatment serum from patients were analyzed by 
ultra-high performance liquid chromatography coupled with mass spectrometry and 
the metabolic differences between the two groups were investigated by multivariate 
statistical analysis. A metabolite panel containing dodecanamide and leukotriene B4 
dimethylamide (LTB4-DMA) had the power capacity to differentiate the two groups of 
patients, yielding an area under the receiver operating characteristic of 0.945 (85.2% 
sensitivity and 88.9% specificity) in the training set and 0.944(84.6% sensitivity 
and 80.0% specificity) in the test set. The patients with high levels of LTB4-DMA 
and low amounts of dodecanamide had good sensitivity to chemotherapeutic agents. 
The possible reasons were that dodecanamide was produced by leukemic cells as 
a lipolytic factor to fuel their growth with a potential role in drug resistance and 
LTB4-DMA was a potent leukotriene B4 antagonist that could be applicable in the 
treatment of AML. These preliminary results demonstrates the feasibility of relating 
chemotherapy responses with pre-treatment metabolic profiles of AML patients, and 
pharmacometabolomics may be a useful tool to select patients that are more likely 
to benefit from cytarabine plus anthracycline chemotherapy.

INTRODUCTION

Acute myeloid leukemia (AML) is a clinically and 
biologically heterogeneous hematologic malignancy that 

is standardly treated with combinations of cytarabine and 
anthracycline [1]. The scheme regimen can significantly 
benefit most of the patients; however, the heterogeneous 
response to such therapy demonstrated that 30-40% of the 
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patients suffer from adverse effects without any positive 
results [2], thereby losing the chance of trying alternative 
chemotherapy if their physical condition has deteriorated 
too far. Hence, an ability to predict the response to 
chemotherapeutic agents has an important implication in 
developing personalized treatment strategies, improving 
survival rates and reducing unnecessary exposure of 
patients to toxic drugs.

Currently, research focused on finding useful 
molecular or clinical predictors of chemosensitivity in 
AML is relatively sparse. Genome-wide complementary 
DNA microarray analysis has been explored to find gene 
signatures associated with chemosensitivity, in which a 
“Drug Response Scoring” system with sensitivity of 85% 
was developed based on twenty-eight difference genes 
between good and poor responders to chemotherapy [3]. 
However, this technique was somewhat limited by the 
high costs. Proteomics was proposed to predict clinical 
responses to chemotherapy. It has been shown that the 
peak at m/z 6611 from the weak cation exchange pH 9 
fraction, when combined with age, provided strong 
positive prediction of responders with 83% accuracy 
[4]. In addition, several pharmacogenetic studies have 
been explored to find the impact of polymorphisms in 
genes encoding transporters, metabolizers or molecular 
targets of chemotherapy agents such as cytarabine and 
anthracycline [5]. Other molecular markers such as 
FCHSD2 [6], nucleosomal DNA fragments [7] and bone 
marrow MicroRNA-335 [8] have also been identified as 
potential predictors of chemotherapy response. However, 
suboptimal performance is a major issue that limits their 
wide applicability.

Metabolic profiling (metabonomics/metabolomics) 
based on nuclear magnetic resonance (NMR) and mass 
spectrometry (MS), an alternative strategy for biomarker 
discovery, enables identification of small-molecule 
metabolites in biofluids and tissues that are sensitive to 
altered pathology [9], because a minor alteration at the 
level of gene or protein expression usually results in a 
significant change in small molecule metabolite level [10]. 
In the past few years, metabolomics approaches have been 
widely used in cancer detection, progression, and drug 
discovery [11, 12]. Recently, the pretreatment biofluid 
metabolomic profiles (Pharmacometabolomics) have also 
been successfully applied to predict the metabolic fate 
and toxicity of drugs and the response to neoadjuvant 
chemotherapy [13–19]. Compared with other biomarker 
discovery approaches for AML, metabolomics provides 
a strong link between genotype and phenotype [20], and 
may provide some insight into the pathological state of the 
disease, which is believed to be an alternative strategy for 
individualized therapy of cancer.

Until now, several metabolomics studies are 
contributing toward an improved understanding of 
AML, and these advances have been reviewed [21]. 
AML prognostic factors, such as 2-hydroxyglutarate 

and glucose metabolism signature included a group of 
six metabolite biomarkers [22, 23], could be predicted 
by gas chromatography- mass spectrometry (GC-MS) 
based metabolomics on serum samples. In another GC-
MS study, it was demonstrated that fatty acid metabolism 
was deregulated in patients with AML and might represent 
an underlying metabolic pathway associated with disease 
progression [24]. A recent cellular metabolomic study 
with liquid chromatography-mass spectrometry (LC-
MS) showed that resistant leukemia cells exhibit reduced 
glutamine dependence, enhanced glucose dependence, 
and altered fatty acid metabolism [25]. In this study, we 
use pharmacometabonomic approach based on ultrahigh 
performance liquid chromatography (UHPLC) coupled 
with Q-TOF mass spectrometry to predict the response 
to chemotherapy for de novo AML patients treated with 
cytarabine and anthracycline. The response of patients 
with AML to chemotherapy could be differentiated based 
on serum metabolite profiles obtained prior to initiation 
of cytotoxic therapy. We found that patients with lower 
amounts of dodecanamide and higher levels of leukotriene 
B4 dimethylamide (LTB4-DMA) responded more 
successfully to the treatment. A statistical model built on 
the two metabolites predicts response to chemotherapy 
with high sensitivity and specificity. We expected that the 
pharmacometabonomic approach could be conveniently 
applied to other anticancer agents and contribute to 
improving chemotherapy of cancer.

RESULTS

Quality control of the methodologies

The stability of the analytical method is very 
important to obtain valid data that can display the 
biochemical snapshot. Chromatograms obtained from the 
real samples and QCs were aligned together and filtered to 
obtain features with relative standard deviations (RSDs) 
less than 30% in QCs and present in more than 80% of 
QCs. Finally, a dataset with 1439 features was produced, 
covering 87.3% features in UHPLC–QTOF-MS analysis. 
The result indicated that the present method had good 
repeatability. In addition, PCA was used to provide an 
overview of the training set samples and QCs after unit 
variance scaling. As shown in Figure 1, the close clustering 
of QC samples are observed, reflecting the excellent 
stability of analytical system and the reproducibility of the 
sample preparation procedure.

Differentially expressed metabolites between CR 
and NR serum samples

PCA scores plot revealed a trend of separation 
between CR and NR samples of the training set (Figure 
1). To further identify metabolites that can discriminate 
between CR and NR groups, the supervised OPLS-
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DA model was established in that it was more focused 
on the actual class discriminating variation compared 
to the unsupervised PCA model. An OPLS-DA model 
was obtained with one predictive component and three 
orthogonal components (R2Xcum=0.451; R2Ycum=0.919; 
and Q2cum=0.672). A clear separation between CR group 
and NR group was observed in the OPLS-DA scores plot 
by the first two components (Figure 2A). To validate 
the model, a permutation test with 999 iterations were 
performed. In the model, R2 is defined as the fraction of the 
Sum of Squares (SS) in the data explained by the models 
and indicates goodness of fit. Q2 is defined as the fraction 
of the SS in the data predicted by the model and indicates 
predictability, calculated by a cross validation procedure. 
By comparing the R2 and Q2 of the original model with 
the ones of randomly permuted models, we could evaluate 
the fitness and prediction ability of the models [26]. As 
shown in Figure 2B, the validation plot strongly indicates 

that the original model is valid. The criteria for validity 
are: all the permuted R2 and Q2 values to the left are lower 
than the original point to the right and the blue regression 
line of the Q2 (cum) points has a negative intercept [26]. 
To further evaluate the predictive ability of the established 
models, an independent validation set consisting of 
28 samples (collected from 15 CR AML patients and 
13 NR AML patients) was performed. None of those 
samples had been previously included in the supervised 
analysis, which therefore allowed for the estimation of 
true predictive accuracy. As shown in Figure 2C, the T 
predicted score plot of OPLS-DA demonstrated that 3 
out of 28 samples are wrongly assigned in the direction 
of the first principal component, implying that 89.3% 
of the samples are predicted correctly. This external 
validation study confirms the feasibility of UHPLC-MS-
based serum metabolic profiles as a potential predictor for 
chemosensitivity.

Figure 1: Three-dimensional PCA score plots based on the data from UHPLC-Q-TOFMS separation (■CR patients, 
●NR patinets, ΔQC). The QC cluster is highlighted within the black ellipses.
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Variables (metabolites) that significantly contributed 
to the clustering and discrimination were identified 
according to a threshold of variable importance in 
the projection (VIP) values (VIP>1), which could be 
generated from OPLS-DA model. In order to select 
potential biomarkers worthy of preferential study in the 
next step, these differential metabolites were validated 
using Student’s t test and fold change. The critical p-value 
was set to 0.05 for significantly differential variables and 
the fold change was set to 1.4 in this study. Following the 
criterion above, a number of 10 metabolites responsible for 
discriminating between CR and NR groups were identified 
(Table 1). The extracted ion chromatograms (EICs) from 
two representative samples (one from CR serum and one 
from NR serum) were provided in Supplementary Figure 
1, in which the 10 metabolite markers were marked. The 
details of the fragments in each MS/MS spectrum for 
each identified metabolite are presented in Supplementary 
Figure 2.

A metabolite panel for chemosensitivity

The performance of these metabolites for 
chemosensitivity was evaluated individually using 
receiver operating characteristic (ROC) curves and 
sensitivity as well as specificity. Table 1 list the area 
under the ROC (AUC) values, sensitivity and specificity. 
Dodecanamide, LTB4-DMA and cer(d18:0/17:0) showed 
the specificity of greater than 0.80 in classifying NR 
and CR patients. However, none of the 10 metabolites 
distinguished CR from NR patients with both sensitivity 
and specificity of greater than 0.80, which making 
it necessary to apply multiple serum metabolites in 
the discrimination of CR AML patients out of all 
AML patients. AML generally contained systematic 
dysregulation of multiple metabolic pathways, and the 
chemotherapy of AML was also involved in multiple 

pathways. Therefore, a panel of metabolites had more 
prediction power for the chemosensitivity of AML than 
one metabolite.

To identify a metabolite panel associated with 
chemosensitivity of AML, a binary logistic regression 
model with a stepwise optimization algorithm was 
performed, which is used to model relationships between 
a dichotomous dependent variable (CR/NR) and multiple 
independent variables (10 differential metabolites). 
This analysis showed that two metabolites including 
dodecanamide and LTB4-DMA could be attributed to the 
most significant deviations between NR and CR groups, 
indicating that these two metabolites produced the better 
predictive power for future chemosensitivity applications. 
The box-and-whisker plots for the relative concentrations 
of these two metabolites are presented in Figure 3. 
The prediction model is as follows: P =1/[1+exp(−
(1.421+558.482×(dodecanamide)−2141.843×(LTB4-
DMA)))].

The ROC curve was further conducted to evaluate 
the performance of this prediction model. It demonstrated 
that a metabolite panel containing the two metabolites 
yielded an AUC of 0.945 ( 85.2% sensitivity and 88.9 
specificity, Figure 4A). Based on this sensitivity and 
specificity of the ROC curves in the training set, an 
optimal cutoff value of 0.4486 was produced. If the 
probability of prediction calculated from the prediction 
model was more than the cutoff value of 0.4486, the 
subject could be diagnosed as a chemotherapy-sensitive 
patient. Otherwise, the subject could be diagnosed as a 
nonsensitive patient. On the basis of this cutoff value, it 
was observed that 47 out of 54 patients (87.0%) could be 
accurately predicted the chemosensitivity (Figure 4C), 
which demonstrated that the response to chemotherapy 
of patients with AML could be well-stratified by using 
the combination of dodecanamide and LTB4-DMA in the 
training set.

Figure 2: OPLS-DA analysis. (A) OPLS-DA score plot. (B) Validation plot of the model obtained from 999 permutation tests (R2=0.828 
and 0.609: the fraction of the Sum of Squares (SS) in the original and permuted data explained by the models, respectively. Q2=0.533 and 
-0.182: the cumulative cross validated R2 in the original and permuted data, respectively). (C) T-predicted scatter plots of the OPLS-DA 
model(■CR patients, ●NR patinets, □ CR patients prediction set, ○NR patients prediction set).
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Validation of the metabolite panel for 
chemosensitivity

Based on the training set, the metabolite panel was 
identified and preliminarily validated as a good predictor 
for chemosensitivity. In order to validate this metabolite 
panel before proceeding to a larger-scale clinical trial, 
the metabolite panel was used to classify blinded diverse 
samples from an independent test cohort of 15 CR patients 
and 13 NR patients. ROC analysis yielded an AUC of 
0.944 (84.6% sensitivity and 80.0% specificity; Figure 
4B) in discriminating NR patients from CR patients to 
chemotherapy. On the basis of the cutoff value of 0.4486 
from the training set, it was also found that 23 out of 28 
samples (82.1%) in test set could be accurately predicted 
(Figure 4D).

DISCUSSION

In this study, we present a new metabolomics 
approach for predicting chemotherapy response in 
patients with AML. Although the clinical parameters of 
the patients with AML are remarkably heterogeneous, the 
serum metabolic profiles from patients still fall into distinct 

clusters which were related with their different responses 
to chemotherapy with cytarabine and anthracycline. To the 
best of our knowledge, this is the first study to report the 
predictive capacity of metabolomics to allow identification 
of response to chemotherapy using pretreatment serum 
samples from patients with AML. Ten metabolites 
related to chemosensitivity were identified in this study. 
Unfortunately, none of the metabolites exhibited both 
high sensitivity and high specificity. AML generally has 
systematic dysregulation of several metabolic pathways and 
therefore multiple baseline metabolites will show a more 
robust capacity to predict chemosensitivity. By constructing 
a binary logistic regression model, a metabolite panel 
containing dodecanamide and LTB4-DMA was shown to 
be highly correlated with chemosensitivity, yielding an 
AUC of 0.945 (85.2% sensitivity and 88.9% specificity) 
in the training set and 0.944(84.6% sensitivity and 80.0% 
specificity) in the test set.

As shown in Figure 3A, the dodecanamide levels 
in NR group was higher than those of CR group. Among 
the 10 potential biomarkers identified, dodecanamide, 
decanamide, and oleamide were fatty acid amides and 
the significantly higher levels of them were observed in 
NR patients relative to CR patients. Dysregulated lipid 

Table 1: Differential metabolites for discrimination between CR AML patients and NR AML patients

No. m/z rt(min) Formula Metabolitea FCd VIPe p value f q value AUCg sensitivity(%) specificity(%)

1 137.0455 1.04 C5H4N4O Hypoxanthineb 0.67 1.19 6.79×10-3 1.01×10-

2
0.72(0.58-

0.84) 0.70 0.63

2 166.0862 2.14 C9H11NO2 Phenylalanineb 0.69 1.02 3.34×10-2 3.21×10-

2
0.64(0.50-

0.75) 0.67 0.59

3 172.1694 9.11 C10H21NO Decanamideb 1.55 1.47 6.28×10-4 1.90×10-

3
0.78(.065-

0.88) 0.59 0.78

4 300.2894 9.88 C18H37NO2 Sphingosineb 1.49 1.38 1.50×10-3 3.47×10-

3
0.75(0.61-

0.86) 0.63 0.74

5 200.2008 10.58 C12H25NO Dodecanamideb 1.70 2.22 1.89×10-8 <1.0×10-

8
0.90(0.79-

0.97) 0.70 0.81

6 364.2845 12.28 C22H37NO3
Leukotriene B4 
dimethylamideb 0.65 2.37 6.84×10-10 <1.0×10-

8
0.92(0.82-

0.98) 0.78 0.88

7 287.2218 12.89 C16H30O4 Hexadecanedioic acidc 1.41 1.62 1.33×10-4 <1.0×10-

8
0.76(0.62-

0.86) 0.67 0.78

8 674.4632 13.52 C36H68NO8P PC(14:1(9Z)/14:1(9Z))c 0.68 1.36 1.75×10-3 3.47×10-

3
0.76(0.62-

0.86) 0.67 0.63

9 282.2791 13.66 C18H35NO Oleamideb 1.49 1.34 2.18×10-3 3.47×10-

3
0.76(0.62-

0.86) 0.56 0.74

10 554.5509 13.79 C35H71NO3 Cer(d18:0/17:0)c 0.71 1.39 1.42×10-3 1.90×10-

3
0.76(0.63-

0.87) 0.67 0.81

aThe metabolites marked with“c” were putatively annotated, the metabolites marked with “b” were structurally identified by reference standards. d Fold 
change was calculated from the normalized peak area between NR group vs GR group.e Variable importance in the projection (VIP) was obtained from 
the OPLS-DA model.f The p value was calculated from Student’s t test.g Area under the receiver operating characteristic (ROC) curve, with the 95% 
confidence interval (CI) range in parentheses.



Oncotarget88702www.impactjournals.com/oncotarget

Figure 3: Box-and-whisker plots of the normalized peak areas of dodecanamide (A) and leukotriene B4 dimethylamide (B).

Figure 4: Quantification of the diagnostic performance of the metabolite panel containing dodecanamide and 
leukotriene B4 dimethylamide and the prediction plots according to the optimal cutoff value obtained from ROC 
curves. (A) The ROC curves of the training set (A) and test set (B) were obtained from the prediction model. The optimal cutoff value was 
obtained (0.4486) and applied to evaluate the prediction capacity (87.0% for training set (C) and 82.1% for test set (D) of the current model, 
where 0 and 1 on the x axis represent CR AML patients and NR AML patients, respectively, and blue circle represent samples.
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metabolism is a feature of cancer and there is growing 
evidence for the importance of fatty acid amides in 
AML biology [27]. Peroxisome proliferator activated 
receptor (PPAR) could be activated by fatty acid amides 
and was thought to aid in leukemic cell survival against 
cytotoxic stressors such as chemotherapeutic drugs 
[28]. For example, oleoylethanolamide, an endogenous 
PPAR-α agonist, was significantly high level in the 
plasma of chronic lymphocytic leukemia patients such 
that its plasma concentration was directionally related 
to the number of circulating leukemic cells [29]. In that 
study, it was suggested that oleoylethanolamide was 
produced by leukemic cells as a lipolytic factor to fuel 
their growth with a potential role in drug resistance and 
cancer cachexia [29], which could give an clue to the 
physiological functions of dodecanamide, decanamide, 
and oleamide in this study. This was the possible reason 
that the AML patients with a low level of dodecanamide 
have better chemosensitivity than those with a high level 
of dodecanamide.

The performance of LTB4-DMA was particularly 
striking, and showed an AUC of 0.92 for the classification 
of CR from NR patients. LTB4-DMA is a derivative 
of Leukotriene B4 (LTB4). Leukotrienes (LTs) are 
biologically active metabolites of arachidonic acid via 
5-lipoxygenase (5-LO) in the body by myeloid cells and 
B lymphocytes [30]. A recent study was proposed that 
LTB4 plays an important role in AML cell activation and 
proliferation, and it indicated that leukotriene biosynthesis 
inhibitors or antagonists similar to those employed in the 
treatment of asthma could be applicable in the treatment 
of AML [31]. Our data demonstrated that the level of 
LTB4-DMA in the NR AML patients was lower than that 
of CR AML patients, as shown in Figure 3B. Although 
the mechanism that regulated the endogenous formation 
of LTB4-DMA in AML patients was not yet known, a 
accumulating evidence that LTB4-DMA was a potent 
leukotriene B4 antagonist [32]. Thus, it was speculated 
that LTB4-DMA increased the chemosensitivity of AML 

Table 2: Detailed patient characteristics before the start of treatment

Characteristics 
Training set Test set

CR NR p value CR NR p value

Size 27 27  15 13  

Age (years), 
median(range) 45 (17-70) 48 (15-71) 0.75 47(20-67) 46 (21-69) 0.85

Gender (male/female) 17/10 18/9  8/7 9/4  

FAB subtype, n(%)       

M2 6(22.2%) 5(18.5%)  2(13.3%) 2(15.4%)  

M4 13(48.2%) 14(51.9%)  8(53.3%) 7(53.8%)  

M5 8(29.6%) 8(29.6%)  5(33.4%) 4(30.8%)  

Cytogenic risk group, 
n(%)       

Favorable 4(14.8%) 2(7.4%)  2(13.3%) 1(7.7%)  

Intermediate 16(59.3%) 17(63.0%)  9(60%) 8(61.5%)  

Unfavorable 7(25.9%) 8(29.6%)  4(26.7%) 4(30.8%)  

WBC (109/L), 
median(range)

12.5(1.1-
90.0) 17.4(1.4-105.4) 0.67 39.0(1.6-149) 29.8(3.5-101) 0.76

LDH(U/L), 
median(range)

293(1.4-
1279) 371(38-4147) 0.25 344(131-1529) 406(45-714) 0.98

Hemoglobin(g/L), 
median(range) 69(36-118) 64(21-108) 0.38 71(24-109) 68(30-110) 0.87

Platelet (109/L), 
median(range) 36(5-383) 41(4-345) 0.67 50(4.6-423) 68(3.4-540) 0.58

BM Blast (%), 63(13-89) 67(14-90) 0.75 70(21-85) 52(12-90) 0.52

p values were calculated by means of Mann-whitney test. FAB, French-American-British; WBC, white blood cells;LDH, 
lactate dehydrogenase;BM blast: the percentage of blasts in bone marrow.
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in that the endogenous LTB4-DMA may have a therapeutic 
role in AML.

Taken together, this study, although on a relatively 
small cohort of AML cases, represents ‘proof of principle’ 
and demonstrates the feasibility of relating chemotherapy 
responses with the pretreatment serum profiles of AML 
patients during treatment with standard cytarabine 
and anthracycline-based induction chemotherapy. The 
combination of serum dodecanamide and LTB4-DMA 
given an effective predictor for chemosensitivity. ROC 
analysis shows that the biomarker pattern achieves a 
sensitivity and specificity more than 80%. This potential 
specific biomarker pattern may thus be an alternative 
method to the prediction of chemosensitivity for AML 
patients. Further study toward clinical applications is 
under consideration as possible extensions of our work. 
The implementation of the metabolite panel containing 
dodecanamide and LTB4-DMA should undergo a strict 
process of initial quantitation assay establishment, and 
multi-center cross-validation. Therefore, consolidation 
studies on a larger number of AML patients are needed 
and ongoing.

MATERIALS AND METHODS

Chemicals and reagents

HPLC-grade methanol and acetonitrile (ACN) were 
purchased from Merk (Darmstadt, Germany). Formic 
acid was obtained from Fluka (Buchs, Switzerland). 
LTB4-DMA purchased from Abcam (Cambridge, UK). 
Sphingosine, decanamide, and oleamide were purchased 
from Sigma-Aldrich (St. Louis, MO). Hypoxanthine, 
phenylalanine and L-2-chlorophenylalanine (internal 
standard) were obtained from Shanghai Jingchun Reagent 
Co. Ultrapure water was prepared with a Milli-Q water 
purification system (Millipore, Bedford, MA, USA).

Patients and sample collection

The de novo AML patients without severe heart, 
liver, or renal dysfunction were recruited from the Central 
Hospital of Xuhui district of Shanghai between May 2013 
and May 2014. All patients provided informed consent in 
accordance with the University and Institutional Review 
Boards requirements and the Declaration of Helsinki. The 
diagnosis was made according to the French-American-
British (FAB) classification and samples examined in 
this study were classified from M0 to M5 [33]. FAB-M3 
samples were not included in this study because 
most of those patients were treated by more effective 
chemotherapy with all-trans retinoic acid. The cytogenetic 
risk was classified into three categories: favorable, 
intermediate, and unfavorable [34].

All patients received the same induction therapy 
with cytarabine at 100 mg/m2/d by continuous infusion for 

7 days (day 1 to 7) and idarubicin at 8 mg/m2/d from day 1 
to 3. Patients who achieved complete remission received 
two consolidation courses based on high-dose cytarabine 
at 2g/m2 during one 1-hour infusion every 12 hours for 4 
days. With regard to therapy response, it was differentiated 
between patients with complete remission (CR group) 
and those with failure (non-responder group) of therapy. 
According to European LeukemiaNet criteria [34], 
complete remission was defined as less than 5% blasts 
in a normocellular marrow and peripheral blood counts 
showing ≥1×109/L neutrophils and ≥100 ×109/L platelets, 
without evidence of extramedullary leukemia. Patients 
with insufficient decline of the blasts, death earlier than 
7 days after the end of the first induction cycle or death 
because of the treatment-induced bone marrow hypoplasia 
after chemotherapy were categorized as therapeutic failure. 
The patients were divided into a training set and a test set. 
The training set, composed of 27 CR responders and 27 
non-responders (NRs), was used to find serum metabolites 
associated with chemosensitivity; the remaining subjects 
including 15 CR responders and 13 non-responders were 
used to construct the test set to independently verify the 
prediction biomarkers. Demographic and clinical data are 
listed in Table 2. Blood samples from 82 AML patients 
were collected prior to initiation of cytotoxic therapy. The 
collected blood was allowed to clot for 45 min at room 
temperature and centrifuged for 10 min at 3000 rpm at 
room temperature; the upper serum phase was then 
isolated, aliquoted and frozen at -80°C until further use.

UHPLC-Q-TOFMS analysis

Frozen serum samples (100 μL) were thawed and 
vortexed for 5 s at room temperature, and protein was 
precipitated by adding 400 μL methanol containing 12.5 
μg/ml L-2-chlorophenylalanine as the internal standard 
to monitor extraction efficiency. The solutions were 
centrifuged at 14,000×g for 15 min at 4°C, the resulting 
supernatants were transferred into an auto-sampler vial. 
The concept of quality control samples (QCs) reported by 
Gika et al. was adopted here to monitor and evaluate the 
stability of the analysis [35]. A pooled sample, which was 
a mixture of small random volumes from all 82 samples, 
was extracted using the same procedure as above. This 
sample was used as a quality control (QC) and was 
analyzed after every 8 serum samples. UHPLC-Q-TOFMS 
analysis was performed using an Agilent 1290 Infinity 
LC system (Agilent, Germany) coupled with an Agilent 
6530 Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) 
mass spectrometer (Agilent, USA). Chromatographic 
separation was carried out at 40 °C on an ACQUITY 
UPLC HSS T3 C18 column (2.1mm ×100mm, 1.7 μm, 
Waters, Milford, MA). The column oven was set at 40 °C. 
The mobile phase consisted of 0.1% formic acid in water 
(A) and ACN modified with 0.1% formic acid (B), using 
a gradient elution of 5%B at 0–2 min, 5%–95% B at 
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2–13 min, 95% B at 13–15 min. The total run time was 
20 min including equilibration. The flow rate was 350 
μL/min and the injection volume was 4 μL. The Q-TOF 
mass spectrometer was operated in electrospray ionization 
source (ESI) positive ion mode with a capillary voltage of 
3.5 kV, drying gas flow of 11 L/min, and a gas temperature 
of 350 °C. The nebulizer pressure was set at 45 psig. The 
fragmentor voltage was set at 120 V and skimmer voltage 
was set at 60 V. Data were collected in centroid mode and 
the mass range was set at m/z 50–1000 using extended 
dynamic range. Potential biomarkers were analyzed by 
MS/MS. MS spectra were collected at 2 spectra/s, and MS/
MS spectra were collected at 0.5 spectra/s, with a medium 
isolation window (~4 m/z) and a fixed collision energy of 
10 V.

Data handing and statistical analysis

The acquired UHPLC-Q-TOFMS data were 
exported in mzData format and then processed by XCMS 
package (http://metlin.scripps.edu/download/) as described 
in a previous publication [36]. Sample information, peak 
retention time, peak m/z, and peak area (quant mass) 
were included in the final dataset. The resulting data 
were normalized to the internal standard before statistical 
analysis. After mean-centering and unit variance (UV)-
scaled for equal peak weighting, the normalized data was 
analyzed by principal component analysis (PCA) and 
orthogonal projection to latent structures-discriminant 
analysis (OPLS-DA), a regression extension of PCA, 
using SIMCA-P software (version 11.0; Umetrics). The 
default 7-fold cross-validation was applied, to guard 
against overfitting. The variable importance in the 
projection (VIP) values (VIP > 1.0) are considered to be 
differentiating variables. The Student t test was used for 
further differentiating variables selection and validation 
(P < 0.05). To account for multiple comparisons, false 
discovery rate was estimated as the maximum q value [37] 
in the set of significant differences for the metabolomic 
data set. False discovery rates were computed using the R 
package q value (http://www.r-project.org/). The software 
MedCalc (version 11.4.2.0) was used to perform variable 
selection of potential biomarkers and receiver operating 
characteristic (ROC) analysis based on binary logistic 
regression model. In addition, the patient characteristics 
were compared using the Mann–Whitney U test for 
continuous variables.

Metabolite identification

Metabolite identification was carried out according 
to the authors’ previous work with slight modification 
[38]. Briefly, ions of interest were scanned in both 
positive and negative modes to facilitate the judgment 
of quasi-molecular ions. Potential molecular formulae 
were calculated by MassHunter Workstation Software-

Qualitative Analysis (Agilent Technologies, California, 
United States). Structure information was obtained by 
searching freely accessible databases of HMDB (www.
hmdb.ca), METLIN (http://metlin.scripps.edu) and 
KEGG (http://www.kegg.jp) utilizing detected molecular 
weights (under the above mentioned conditions, the mass 
difference was less than 10 ppm). At the same time, 
fragment ions were subjected to analysis through MS/MS 
to narrow the scope of target compounds. Finally, these 
metabolites were structurally confirmed by comparing 
the retention times and MS/MS spectra to the commercial 
standards.
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