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ABSTRACT

Ovarian cancer is the leading cause of gynecologic cancer mortality, due to the 
difficulty of early detection. Current screening methods lack sufficient accuracy, 
and it is still challenging to propose a new early detection method that improves 
patient outcomes with less-invasiveness. Although many studies have suggested the 
utility of circulating microRNAs in cancer detection, their potential for early detection 
remains elusive. Here, we develop novel predictive models using a combination of 8 
circulating serum miRNAs. This method was able to successfully distinguish ovarian 
cancer patients from healthy controls (area under the curve, 0.97; sensitivity, 0.92; 
and specificity, 0.91) and early-stage ovarian cancer from patients with benign tumors 
(0.91, 0.86 and 0.83, respectively). This method also enables subtype classification 
in 4 types of epithelial ovarian cancer. Furthermore, it is found that most of the 8 
miRNAs were packaged in extracellular vesicles, including exosomes, derived from 
ovarian cancer cells, and they were circulating in murine blood stream. The circulating 
miRNAs described in this study may serve as biomarkers for ovarian cancer patients. 
Early detection and subtype determination prior to surgery are crucial for clinicians 
to design an effective treatment strategy for each patient, as is the goal of precision 
medicine.

INTRODUCTION

Every year, 240,000 women are diagnosed with 
ovarian cancer (OvCa) worldwide, and OvCa is the 
leading cause of gynecologic cancer mortality [1]. The 
dismal outcomes of OvCa are mainly due to late-stage 
diagnosis. Over 70% of patients are diagnosed at an 
advanced stage, and the overall 5-year survival for FIGO 
Stage III and IV OvCa is only 23% [2, 3]. However, 
the few patients who are fortunately diagnosed at FIGO 
stage l have a 5-year survival of over 90% [4]. To date, 

no gold standard screening method has been established 
for OvCa, and patients are typically detected through 
multimodal screening approaches incorporating CA-125 
and ultrasound [5]. Serum biomarkers are attractive targets 
for disease screening because they can provide useful 
information without invasive procedures. Most recently, 
the results of a large-scale randomized controlled trial 
assessing the current optimal screening method, which 
includes CA-125 measurement and ultrasonography, found 
that the mortality reduction was not significant [6]. Thus, 
there is an urgent need to develop new strategies that can 
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detect OvCa at an early stage as well as in asymptomatic 
women to improve patients’ outcomes.

MicroRNAs (miRNAs) are small noncoding 
RNAs that play various roles in physiology and disease 
development [7, 8]. Some miRNAs are secreted from 
cells and circulate stably in body fluids [9]. Recently, 
extracellular RNA (exRNA) has received a lot of attention 
as a new area of research, and the various forms of exRNA 
in body fluids, including miRNAs, represent potential 
next-generation biomarkers that are being investigated for 
clinical use [10].

The existence of OvCa-associated circulating 
miRNAs was reported within the past decade. Several 
studies identified serum miRNAs that were correlated 
with patient clinical status, and could predict prognosis 
and chemosensitivity [11–13]. Despite these interesting 
reports, progress in the development of reliable serum 
biomarkers for early detection remain very limited due to 
the small size of available research cohorts. In the present 
study, we performed miRNA sequencing to identify 
candidate miRNAs that could be useful in early detection 
of OvCa and subtype classification. We identified 8 
miRNAs, which we validated by qRT-PCR, and we 
applied statistical cross-validation methods to a large 
research cohort to determine the optimal combination of 
miRNAs to incorporate in prediction models.

RESULTS

Identification of serum circulating miRNAs as 
potential ovarian cancer biomarkers

An overview of the process for the identification 
of miRNAs highly predictive of OvCa is illustrated in 
Figure 1A. To identify candidate miRNAs, we performed 
global miRNA expression profiling (miRNA-seq) using 
total RNA extracted from 600 μL of serum from healthy 
controls (n = 6), patients with early-stage OvCa (stages 
I and II; n = 6) and patients with advanced-stage OvCa 
(stages III and IV; n = 8). The detailed summary of 
clinical information in the discovery cohort are presented 
in Supplementary Table 1. The quality control procedures 
for sequence data are described in Supplementary 
Table 2, and all the read count data are provided in 
Supplementary Tables 3-4. As shown in the heat map, 
a total of 721 miRNAs were successfully identified 
(Supplementary Figure 1). To establish a diagnostic model 
for the detection of OvCa, particularly early detection of 
stage I and II OvCa, we used two different criteria. The 
first set of criteria (method 1) identified miRNAs that 
exhibited statistically significant differences in expression 
between cancer patients and controls (Figure 1B), and 
the second set of criteria (method 2) identified miRNAs 
whose expression was detected only in cancer samples 
(i.e., read counts were almost 0 in healthy controls, as 
shown in Figure 1C). Because the optimal biomarker 

is one that would be detected only in the disease cohort 
and not in healthy patients, or vice versa (i.e., all-or-none 
expression), we used both sets of criteria. To select the 
maximum number of candidates from the sequencing 
data, our standard mapping parameters were set to allow 
up to 1 mismatch per miRNA sequence (Figure 1B and 
1C). Over 40 miRNAs showed statistically significant 
difference in expression between cancer patients and 
healthy controls (p < 0.01). The top 10 miRNAs with the 
most significant differences in expression from both the 
0-mismatch and the 1-mismatch mapping results were 
retained; given the overlap between both sets of results, 
a total of 12 miRNAs were selected in this step (Figure 
1B). Similarly, we identified 17 miRNAs with statistically 
significant differences in expression (p < 0.05, cancer 
vs. healthy) that had read counts of 0 in over 5 healthy 
controls (Figure 1C). To test the reproducibility of these 
29 miRNAs by qRT-PCR analysis, RNA was re-extracted 
from 200 μL of serum in the same sample set that was 
used for the initial miRNA-seq (Supplementary Table 1). 
As a result, 16 of the 29 miRNAs were validated, as they 
showed statistically significant differences in expression 
and prominent trends indicating that they are highly 
expressed only in the sera of cancer patients (Figure 1A 
and Supplementary Figure 2). Furthermore, the correlation 
data for the miRNA-seq read counts and the CT values 
of the qRT-PCR were provided in Supplementary Figure 
3. In subsequent analyses, we used 45 serum samples 
as an independent trial set (Supplementary Table 5) 
and identified 8 miRNAs with statistically significant 
differences in expression that were able to predict the 
development of OvCa and early-stage OvCa (Figure 2A–
2B). Although there were no miRNAs featuring an all-or-
none expression pattern in the qRT-PCR analysis, 2 out 
of the 8 miRNAs (miR-200a-3p and miR-374a-5p) that 
were retained in this final step had been identified using 
method 2.

Diagnostic performance of 8 miRNAs in the 
development set

To evaluate the diagnostic value of these 8 
miRNAs in a large-scale development cohort (Table 1), 
the expression of the miRNAs was measured by qRT-
PCR in 269 samples. Initial analysis with clustering 
and PCA mapping did not effectively separate patients 
based on clinical status (Supplementary Figure 4), and 
it was difficult to predict diseases by using only one 
miRNA (Supplementary Figure 5). Thus, to develop an 
optimal predictive algorithm by using multiple miRNAs, 
cross-validation analysis was performed as described in 
Supplementary Figure 6. The sample was randomly split 
into a CV training dataset and a CV test dataset 1,000 
times, and the AUC was calculated for models based on 
every possible combination of the miRNAs. Equations to 
compute the probability of OvCa were based on logistic 
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Figure 1: An overview of the process for selecting candidate miRNAs. (A) Flowchart of the process for the development of 
biomarkers for early-stage ovarian cancer. A total of 301 serum samples were prepared from patients with ovarian tumors, and 250 samples 
were analyzed. Eighty-three samples from healthy controls were also prepared. Candidate miRNAs were selected based on the results of 
miRNA-seq, and further narrowed down using multiple validation steps. LPM: low potential of malignancy. (B) Results of selection from 
miRNA-seq using method 1. The heat maps show the distribution of read counts for miRNAs using the data with 0 or 1 mismatch allowed. 
The yellow line encloses results from healthy controls. The miRNAs shown in bold were selected. The bar charts on the right show the read 
counts of 2 miRNAs (miR-98 and miR-26a-5p) as examples. Read counts are on the vertical axis, and samples are on the horizontal axis. 
(C) Results of selection from miRNA-seq using method 2. The heat maps show the distribution of read counts for miRNAs using the data 
with 0 or 1 mismatch allowed. The yellow line encloses results from healthy controls. The miRNAs shown in bold were selected. The bar 
charts on the right show the read counts of 2 miRNAs (miR-487b and miR-330-5p) as examples. Read counts are on the vertical axis, and 
samples are on the horizontal axis.
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Figure 2: Distributions of 8 selected miRNAs in trial cohort. (A) Serum levels of miRNAs. The dot plots are overlaid with box 
plots. The vertical axis shows 2^⊿Ct values, which were normalized to the values for cel-miR-39. Descriptions of the data points are shown 
below the graphs. (B) Statistical analyses. The Mann–Whitney U-test was used. *p < 0.01, ** p < 0.05.
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regression models with highest AUC values for both the 
training dataset and the test dataset. The best diagnostic 
performance values obtained for the identification of 
OvCa patients vs. healthy controls were 0.968 [95% 
confidence interval (CI), 0.948-0.989] for the AUC, 0.921 
for sensitivity and 0.910 for specificity, at the optimal cut-
off points (Figure 3A). With the addition of CA-125, the 
conventional serum biomarker for OvCa, performance 
further improved; the optimal model, selected after 
considering all possible combinations with the 8 miRNAs, 
included CA-125 and 6 miRNAs (miR-200a-3p, miR-766-
3p, miR-26a-5p, miR-142-3p, let-7d-5p and miR-328-3p), 
and had an AUC of 0.994 (95% CI, 0.988-0.999) (Figure 
3B), sensitivity of 0.984, and specificity 0.956 at the 
optimal cut-off points. The formulas derived from all the 
prediction models are shown in Supplementary Table 6.

Detection of early-stage cancer in patients with 
ovarian tumors

When tumors are incidentally detected on 
transvaginal ultrasonography, distinguishing benign 
tumors from malignant cancers is a major concern for 
gynecologists. Currently, it is impossible to establish a 
definite diagnosis without surgery, and needle biopsy is 
proscribed for ovarian tumors because it may result in the 
dissemination of cancerous cells in the peritoneal cavity. 
To address these limitations, we developed a predictive 
algorithm that differentiates early-stage cancers from 
benign tumors using 7 miRNAs (miR-200a-3p, miR-766-
3p, miR-26a-5p, miR-142-3p, let-7d-5p, miR-130b-3p 
and miR-328-3p). These 7 miRNAs were selected after 
analyzing models featuring all possible combinations 
of 8 miRNAs. The diagnostic performance values of 
the optimal model were calculated as shown above; the 
AUC was 0.902 (95% CI, 0.844-0.960), the sensitivity 
was 0.861, and the specificity was 0.833 (Figure 3C). 
Furthermore additional comparison by using prediction 
models developed herein were performed (Supplementary 
Figure 7). These results suggest that the predictive model 
based on this combination of miRNAs is highly accurate 
in distinguishing patients with early-stage OvCa from 
healthy controls and patients with benign tumors.

Subtype classification using the 8-miRNA 
signature

Epithelial OvCa consists of the following 4 major 
histological subgroups: serous, clear-cell, endometrioid 
and mucinous, each of which has distinct molecular and 
pathological characteristics. Identification of subtypes 
in OvCa before surgery provides useful information for 
clinicians because drug response and prognosis differ by 
subtype [14]. We performed further statistical analyses 
using the 8 miRNAs identified earlier, to develop 
classification models that can distinguish different OvCa 

subtypes based on serum miRNA expression levels. As 
shown in Figure 4, the diagnostic performance values for 
these models were calculated in the same manner as for 
OvCa prediction. The 8-miRNA classification model had 
AUC, sensitivity and specificity values of 0.761 (95% CI, 
0.674-0.849), 0.759 and 0.698, respectively, for serous 
OvCa, 0.745 (95% CI, 0.622-0.870), 0.737 and 0.735, 
respectively, for clear-cell OvCA, 0.808 (95% CI, 0.716-
0.900), 0.769 and 0.754, respectively, for endometrioid 
OvCA, and 0.822 (95% CI, 0.683-0.961), 0.727 and 0.833, 
respectively, for mucinous OvCA. These findings indicate 
that the expression levels of circulating serum miRNAs 
are representative of histopathological subtypes. In other 
words, different types of OvCa cells may release different 
types and levels of miRNAs in body fluids.

Ovarian cancer cells secrete miRNAs packaged 
in EVs

Almost all living cells secrete EVs, including 
exosomes, which are small membranous vesicles that 
carry small RNAs, including miRNAs [15]. Recently, 
EVs have attracted major interest as a potential target for 
new diagnostic biomarkers in various diseases [16, 17]. 
Although it is known that not all circulating miRNAs are 
packaged in EVs [18], we sought to investigate whether 
the 8 miRNAs we identified were associated with EVs and 
released from OvCa cells. Total RNA was extracted from 
EVs derived from the culture supernatant of 12 OvCa cell 
lines, and microarray analysis was performed to examine 
the distribution of miRNAs (Figure 5A). As shown in the 
heat map, 7 of the miRNAs (all except miR-328-3p) were 
detected in EVs derived from cancer cell lines (Figure 
5B). To further confirm that the selected miRNAs detected 
in serum were derived from ovarian tumor epithelial cells, 
in vivo experiments were performed. Orthotopic mouse 
models were established by transplanting A2780 and ES-2 
OvCa cell lines, and blood was collected from the mice 
after the establishment of early-phase metastasis (Figure 
5C). Of the selected 8 miRNAs, miR-766-3p was the 
only one that is found in humans but not in mice. The 
amount of circulating miR-766-3p in EVs in the mouse 
serum samples was measured by qRT-PCR. EV-associated 
miR-766-3p was detected in mice with human OvCa, 
but not in those with no tumor (control 1-2). These data 
demonstrated that the selected miRNA could be derived 
from OvCa cells and that the majority of the miRNAs 
were packaged in EVs.

DISCUSSION

Early detection of OvCa is particularly important 
for improving patient outcomes [2–4], as optimal 
cancer prevention is not realistically feasible given 
the multitude of cancer risk factors [1]. In this study, 
we successfully developed two types of prediction 
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models by combining the expression levels of 8 miRNAs, 
and the models showed excellent diagnostic performance. 
The fact that the 8 miRNAs selected in this study have 
previously been reported as functional miRNAs in OvCa 
[18, 19] suggests that the selection process worked 
well. Among the 8 miRNAs, miR-200a is known to be 
involved in OvCa tumorigenesis [20], and miR-26a 
possesses similar functions [21]. In addition, miR-374a 
is reported to regulate cisplatin resistance in OvCa cells 
[22]. Other miRNAs are also reported as functional 
miRNAs that are involved in cancer pathogenesis [23–
26]. The first model discriminates OvCa patients from 
healthy controls, assuming use in general screening; 

the second model distinguishes early-stage cancer from 
benign tumors, which is useful in routine clinical practice 
for gynecologists. In addition, the data presented here 
demonstrate the potential of miRNA panels to predict 
histopathological subtypes, although the size of each 
cohort in this study was not large enough, and independent 
validation would be needed to develop clinical 
applications. This model could provide information on 
tumor subtype before initiation of treatment, which would 
be highly valuable because subtype is tightly linked to 
tumor origin and can guide treatment strategies. For 
example, serous-type cancer cells originate from the 
fimbria of the fallopian tubes and could be diagnosed not 

Table 1: Characteristics of patients in validation study

Characteristic N

Study population 269

 Age, years 54.1 (mean)

 BMI 25.6 (mean)

 Ethnic background

 Caucasian 219

 Asian 50

Ovarian cancer 155

Histopathological subtype

 Serous adenocarcinoma 112

 Mucious adenocarcinoma 11

 Endometrioid adenocarcinoma 13

 Clear cell adenocarcinoma 19

Stage

 I 52

 II 13

 III 86

 lV 4

Borderline tumor (LPM) 8

 Histopathological subtype

 Mucious adenocarcinoma 7

 Endometrioid adenocarcinoma 1

Benign diseases 43

 Histopathological subtype

 Serous cystadenoma 28

 Mucinous cyst adenoma 8

 Endometrial cyst 7

Healthy controls 63
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Figure 3: Diagnostic outcomes in each model for the prediction of ovarian cancer.  (A) ROC curve for identification of 
patients with ovarian cancer (N = 155) versus healthy controls (N = 63) using 8 miRNAs. (B) ROC curve for identification of patients with 
ovarian cancer (N = 155) versus healthy controls (N = 63) using 6 miRNAs and CA-125. (C) ROC curve for identification of early-stage 
patients with ovarian cancer (N = 65) versus patients with benign ovarian tumors (N = 43) using 7 miRNAs. The AUC values are shown 
on the graphs.

Figure 4: Diagnostic outcomes in each model for the prediction of histopathological subtypes ROC curves for the 
discrimination of each histopathological subtype versus other subtypes.  AUC values are shown on the graphs. N = 155 
(serous: 112; mucinous: 11; Endometrioid: 13; clear-cell: 19).
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only as OvCa but also as peritoneal cancer or fallopian 
tube cancer [27]. Furthermore, patients with clear-
cell OvCa could also have endometriosis and would be 
poor candidates for surgical procedure [28]. Thus, the 
information provided by these classification models may 
be useful and could lead to appropriate preparation for 
treatment.

CA-125 has been used as the single biomarker for 
OvCa [29–32] in screening trials for a long time, but its 
specificity is limited. It is only elevated in approximately 
50% of stage I cases, and approximately 80% of advanced 
cases [33]. Unfortunately, several recent studies using CA-
125 as the single biomarker revealed no improvement in 

diagnostic power in pre-clinical samples [29, 34]. Thus, 
better biomarkers for OvCa have been needed for a long 
time. In this context, the use of circulating miRNAs as 
new biomarkers [35, 36] is a welcome development. In 
fact, several studies have reported the utility of circulating 
serum miRNAs in the past several years [37–39]. In 2009, 
Resnick et al. analyzed 28 serum samples from OvCa 
patients and 15 from healthy controls, and identified 8 
miRNAs that were significantly differentially expressed 
by qRT-PCR [37]. In 2013, Guo et al. analyzed 50 serum 
samples from OvCa patients and 50 from healthy controls, 
and found that miR-92 levels were significantly higher in 
cancer patients [38]. In addition, there were significant 

Figure 5: Validation of selected miRNAs in ovarian cancer cell lines. (A) Heat map showing the levels of miRNAs in exosomes 
derived from ovarian cancer cell lines. (B) Table showing the signal intensity of 8 selected miRNAs in EVs derived from ovarian cancer 
cell lines in microarray analysis. Each spot is colored according to the Z-score. (C) Schematic of the protocol for identifying circulating 
miRNAs in EVs derived from ovarian cancer cells. Orthotopic mouse models were established with A2780 cells and ES-2 cells, and blood 
was collected from the mice on day 10 (ES-2 cells) and day 21 (A2780 cells). (D) Levels of miR-766-3p in mouse serum EVs as assessed 
by qRT-PCR. The vertical axis indicates the ⊿Ct value normalized to the levels of miR-766-3p. A2780_1 and _2: orthotopic mouse model 
with A2780 cells. ES-2_1 and _2: orthotopic mouse model with ES-2 cells. Ctrl_1 and _2: mouse without human ovarian cancer cells.
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correlations between miR-92 expression, regional lymph 
node involvement and clinical stage of the tumor. In the 
same year, Hong et al, described the potential of miR-221 
as an OvCa biomarker, by analyzing 96 serum samples 
from OvCa patients [39]. They found that miR-221 
was upregulated in cancer patients and that its serum 
levels were associated with prognosis. Although these 
reports have clearly demonstrated the validity of serum 
miRNAs as cancer biomarkers, most of the studies were 
not performed in large-scale research cohorts (less than 
100 samples) and lacked assessments of diagnostic 
performance for possible clinical applications [4, 40, 41]. 
To address these issues, our study was conducted with a 
larger number of clinical samples. Our prediction models 
showed excellent diagnostic performance and have bright 
prospects for clinical use. Further prospective validation 
is currently in planning. Nevertheless, our results show 
that circulating miRNA may have potential as major 
biomarkers in OvCa.

To investigate miRNA expression, most studies use 
qRT-PCR, which is widely recognized as the standard 
method for analyzing the expression of miRNAs. This 
study also used qRT-PCR to validate miRNA-seq, but 
this method is unfit for clinical use because it is a time-
consuming and complex procedure. This may be one of 
the reasons why miRNA biomarkers are not presently used 
in clinical applications. Soon, it is expected that a new 
device to quantify circulating miRNAs will be developed, 
and the clinical use of miRNAs as disease biomarkers will 
then proceed rapidly.

In the last part of this study, we found that most 
selected miRNAs were packaged in EVs and that they 
could be derived from OvCa cells. EVs, including 
exosomes, have been intensively researched in the last 
decade because of their increasingly recognized value as 
disease biomarkers [42]. The first striking report on the 
diagnostic potential of miRNA in EVs was published 
by Taylor et al. in 2008 [18]. In that study, EVs were 
isolated from patient serum, and miRNAs in EVs and 
cancer tissues were analyzed. The authors reported that 
the profiles of 8 miRNAs were correlated between cellular 
and EV-expressed miRNAs, providing strong evidence 
for the potential to develop “liquid biopsy” methods. 
Since that initial report, research involving EV-related 
biomarkers has accelerated. Ogata-Kawata et al. found 
that 7 miRNAs in EVs were significantly increased in 
colorectal cancer, and those signatures appeared to mirror 
pathological changes [43]. Huang et al. reported that 
miR-1290 and miR-375 in EVs are promising prognostic 
biomarkers for prostate cancer [44]. Chiam et al. suggested 
that 10 miRNAs could serve as new biomarkers for the 
detection of esophageal cancer [45]. EVs contain cell 
surface proteins as well as miRNAs and other molecules. 
If OvCa-specific cell surface proteins can be identified, it 
may be possible to capture cancer-specific EVs by ELISA 
or other methods [46]. Recently, research on the detection 

of specific EVs using new tools has also expanded [17]. 
EV-expressed miRNAs have great potential as biomarkers, 
and they could also help to elucidate disease mechanisms. 
In breast cancer, miR-105 and miR-181c in EVs may 
induce breakdown of the blood-brain barrier and promote 
brain metastasis [47]. Furthermore, miR-21 in EVs derived 
from stromal cells may influence malignant phenotypes, 
such as drug resistance, in metastatic OvCa cells [48]. 
Therefore, the fact that the miRNAs selected in the present 
study are expressed in EVs may be useful in generating 
further insights into the functions of circulating miRNAs 
and developing new technologies for cancer detection.

MATERIALS AND METHODS

Patients and sample preparation

Serum samples from preoperative patients with an 
adnexal mass suspicious for malignancy were collected 
from 2014 to 2016 at the National Cancer Center Hospital 
(N = 40) and Nagoya University Hospital (N = 10). An 
additional 284 samples from similar patients as well as 
healthy controls were purchased from ProteoGenex 
(Culver City, CA, USA). The Institutional Review Boards 
at the National Cancer Center (number: 2014–164) and the 
Nagoya University Graduate School of Medicine (number: 
4881) approved this study, and all materials were obtained 
with written informed consent. Total RNA was extracted 
from the serum (200 μL for qRT-PCR and 600 μL for 
NGS) using QIAzol and the miRNeasy Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s 
protocols.

Library preparation and Sequencing

Total RNA extracted from 600 μL of each serum 
sample was used to construct a sequencing library with 
the TruSeq Small RNA Sample Prep Kit (Illumina), as 
outlined by the manufacturer’s protocol. Quality control 
of the libraries was performed using the Bioanalyzer 
system (Agilent). The pooled libraries created from the 
samples were sequenced using the Illumina HiSeq system 
in 51-base pair (bp) single-end reads. Before analysis 
of the small RNA-Seq data, the adaptor sequences 
were trimmed, and non-small RNA-related reads (e.g., 
null inserts [insert size < 15nt], long inserts [insert 
size > 28 nt], 5' adapter contaminants and sequences 
containing poly-A tails) were removed by a custom 
Perl script. Trimmed sequence reads were aligned to 
the human reference genome (hg19) using COBWeB 
aligner implemented in StrandNGS ver. 2.6 (Agilent 
Technologies, Santa Clara, CA, USA). Mismatches of 
1 bp were allowed in the alignment. The read counts 
allocated for each small RNA were quantified using the 
Trimmed Mean of M-value (TMM) method [49].
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qRT-PCR

For qRT-PCR analysis, complementary DNA was 
generated from total RNA using a TaqMan® MicroRNA 
Reverse Transcription Kit (Thermo Fisher Scientific Inc.) 
according to the manufacturer’s protocols. Real-time 
PCR was then performed in duplicate with a 1:4 dilution 
of cDNA using a Universal PCR Master Mix (Applied 
Biosystems). The data were collected and analyzed 
using StepOne Software v2.3 (Applied Biosciences). 
The miRNA quantification data in the final development 
cohort was normalized to the expression of miR-16. All 
TaqMan MicroRNA assays were purchased from Applied 
Biosystems.

Cell lines

Human OvCa cell lines were purchased from 
the American Type Culture Collection (ATCC), the 
European Collection of Cell Cultures (ECACC) and the 
Japanese Collection of Research Bioresources (JCRB) 
cell bank. The SKOV3, OVCAR3, CAOV3, ES-2, and 
OC-90 lines were from the ATCC, the A2780, OAW42, 
and COV362 were from the ECACC, and the MCAS, 
RMG-1, RMUG-S, and KURAMOCHI lines were from 
JRCB. All cell lines were cultured in optimal medium 
according to the suppliers’ recommendations. Total RNA 
was extracted from cultured cells or extracellular vesicles 
(EVs) derived from cell culture supernatants using QIAzol 
and the miRNeasy Mini Kit (Qiagen, Hilden, Germany) as 
instructed by the manufacturer’s protocols.

EV purification and analysis

The cells were washed with phosphate-buffered 
saline (PBS), and the culture medium was replaced with 
advanced Dulbecco’s modified Eagle’s medium for ES-2, 
SKOV3, CAOV3, OV-90, OAW42, COV362 and MCAS 
cells, advanced DMEM/Ham's F-12 medium for RMG-1 
and RUG-S cells, or advanced RPMI medium for A2780, 
OVCAR3 and KURAMOCHI cells. In all cases, the 
cell culture medium contained antibiotic and antifungal 
drugs as well as 2 mM L-glutamine (but not FBS). After 
incubation for 48 h, the conditioned medium (CM) was 
collected and centrifuged at 2,000 x g for 10 min at 4°C. 
To thoroughly remove cellular debris, the supernatant 
was filtered through a 0.22-μm filter (Millipore). The 
CM was then used for EV isolation. To prepare EVs, CM 
was ultracentrifuged at 35,000 rpm using a SW41Ti rotor 
for 70 min at 4°C. The pellets were washed with PBS, 
ultracentrifuged at 35,000 rpm using the SW41Ti rotor for 
70 min at 4°C and resuspended in PBS.

Microarrays

Total RNA was extracted from cultured cells using 
QIAzol reagent and the miRNeasy Mini Kit (Qiagen). The 

quantity and quality of extracted RNA were determined 
using a NanoDrop ND-1000 spectrophotometer (Thermo 
Fisher Scientific Inc.) and the Agilent Bioanalyzer system 
(Agilent Technologies), as recommended. Total RNA 
was labeled with cyanine 3 (Cy3) using the miRNA 
Complete Labeling and Hyb Kit (Agilent Technologies) 
as instructed by the manufacturer. Briefly, total RNA 
was dephosphorylated by incubating with Calf Intestinal 
Alkaline Phosphatase (CIP) Master Mix at 37°C for 30 min. 
Dephosphorylated RNA was denatured by incubating with 
DMSO at 100°C for 5 min and then immediately transferred 
to ice for 2 min. After addition of a ligation master mix 
for T4 RNA Ligase and Cyanine 3-Cytidine bisphosphate 
(Cy3-pCp), the RNA was incubated at 16°C for 2 h. 
Labeled RNA was dried using a vacuum concentrator at 
55°C for 1.5 h, then hybridized onto Agilent SurePrint G3 
Human miRNA 8x60K Rel.19 (design ID: 046064) arrays 
at 55°C for 20 h. After washing, the microarrays were 
scanned using an Agilent DNA microarray scanner. The 
intensity values for each scanned feature were quantified 
using Agilent Feature Extraction software version 10.7.3.1, 
which performs background subtractions. We only used 
features that were flagged as having no errors (detected 
flags) and excluded features that were not positive, not 
significant, not uniform, not above background, saturated, 
or population outliers (undetected flags). The expression 
analysis was performed with Agilent GeneSpring GX 
version 13.0. There were a total of 2,006 miRNA probes on 
the SurePrint G3 Human miRNA 8x60K Rel.19 (design ID: 
046064) array, excluding the control probes.

Animal experiments

Animal experiments were performed in compliance 
with the guidelines of the Institute for Laboratory Animal 
Research and the National Cancer Center Research 
Institute (Number: T14-013). Female CB-17/Icr-scid/
scidJcl mice (CLEA, Tokyo, Japan) 6-7 weeks of age 
were used in the experiments. An orthotopic OvCa 
mouse model was established as previously described 
[50]. The IVIS Spectrum imaging system (Caliper Life 
Science, Hopkinton, MA) was used to verify the onset 
of peritoneal metastasis. The mice were administered 
150 mg/kg D-luciferin (Promega, Madison, WI) by 
intraperitoneal injection. Ten minutes later, photons in the 
whole bodies of the animals were measured by assessing 
bioluminescence. After cancer cells had metastasized, 
blood was obtained by cardiac puncture. After generating 
serum from the blood, EVs were isolated using Exosome 
Isolation Reagent (Thermo Fisher Scientific Inc) 
according to the manufacturer's instructions.

Statistical analysis

To identify the optimal combination of miRNAs for 
prediction, we used the miRNA dataset normalized with 
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miR-16 and the training-validation strategy displayed in 
Supplementary Figure 6. First, we randomly split the data 
into a training dataset and a test dataset, for two-fold cross-
validation (CV). Using the training dataset, we developed 
prediction models based on logistic regression with the 
best subset selection method. The eight miRNAs that we 
identified in the first step of the study generated 255 (= 8C1 
+ 8C2 + … + 8C8) possible prediction models. When CA-
125 was added as a variable, 511 (= 9C1 + 9C2 + … + 9C9) 
models were generated. For each model, the area under 
the curve (AUC) of the receiver-operating characteristic 
(ROC) curve for the training and test datasets were 
calculated. This two-fold CV step was repeated 1,000 
times and the 1,000 AUCs for the training and test datasets 
were averaged for each model. The top 10 prediction 
models, which all had an average AUC greater than 0.7 
for both datasets, were selected. All statistical tests were 
two-sided. All the analyses were performed using SAS 
software (version 9.3, SAS Institute Inc., Cary, NC, USA).
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