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ABSTRACT
For a growing number of tumors the BRAF V600E mutation carries therapeutic 

relevance. In histiocytic proliferations the distribution of BRAF mutations and their 
relevance has not been clarified. Here we present a retrospective genotyping study 
and a prospective observational study of a patient treated with a BRAF inhibitor.

Genotyping of 69 histiocytic lesions revealed that 23/48 Langerhans cell lesions 
were BRAF-V600E-mutant whereas all non-Langerhans cell lesions (including 
dendritic cell sarcoma, juvenile xanthogranuloma, Rosai-Dorfman disease, and 
granular cell tumor) were wild-type. A metareview of 29 publications showed an 
overall mutation frequency of 48.5%; and with N=653 samples, this frequency is well 
defined. The BRAF mutation status cannot be predicted based on clinical parameters 
and outcome analysis showed no difference. Genotyping identified a 45 year-old 
woman with an aggressive and treatment-refractory, ultrastructurally confirmed 
systemic BRAF-mutant LCH. Prior treatments included glucocorticoid/vinblastine and 
cladribine-monotherapy. Treatment with vemurafenib over 3 months resulted in a 
dramatic metabolic response by FDG-PET and stable radiographic disease; the patient 
experienced progression after 6 months.

In conclusion, BRAF mutations in histiocytic proliferations are restricted to 
lesions of the Langerhans-cell type. While for most LCH-patients efficient therapies 
are available, patients with BRAF mutations may benefit from the BRAF inhibitor 
vemurafenib.
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INTRODUCTION

Histiocytic tumors are derived from the 
mononuclear-phagocytic and histiocyte system[1-3]. 
The clinical manifestations of the currently recognized 
disease entities are highly variable and range from benign 
localized lesions to highly aggressive systemic diseases[4]. 
A distinction between lesions that share surface markers 
of Langerhans cells (LCH-like lesions) from those that 
carry other surface markers of the histiocytic or dendritic 
cell lineage has been adopted[1]. Briefly, the latter group 
is composed of various entities that can be summarized 
as non-LCH-type tumors and is reviewed elsewhere[1, 
5]. Due to the lack of robust evidence from randomized 
controlled clinical trials, therapeutic strategies currently 
rely on precise histotyping as well as disease classification 
by involved system[6]. For example, therapeutic regimens 
for patients with systemic involvement include radiation 
and/or chemotherapy and, more recently, early evidence 
for molecular targeted approaches[7-9].

In 2010 BRAF mutations have been described in a 
significant number of LCH patients[10]. The biological 
role of BRAF mutations at that time was seen as an 
oncogenic driver leading to constitutive activation of 
the RAS/RAF pathway[11-13]. Notably, recent trials 
(e.g. in melanoma) indicate that pharmacological 
interference using second-generation BRAF inhibitors 
produces sustained tumor regressions[14, 15]. Although 
the original study from 2010 described BRAF V600E 
mutations in 57% of LCH patients, it is only now that 
this finding received the appropriate level of attention 
and several other groups confirmed it (Figure 1). The 
specific diagnostic value of BRAF mutations in LCH has 
still not been thoroughly determined. As for now there is 
no statistical evidence that the BRAF mutation correlates 
with affected site or outcome[10, 16-18]. A dramatic 
response to targeted BRAF inhibition in three patients 
with refractory Erdheim-Chester has been reported[18], 
implying therapeutic relevance although data in classic 
LCH and confirmation by an independent group are 
currently lacking. 

We performed a study consisting of three parts: 
a) a literature review of BRAF mutations in LCH, b) a 
retrospective genotyping study in a series of histiocytic 
tumors. The identified patients were screened for being 
refractory to established treatment regimens and we 
additionally report c) the prospectively observed transient 
response to the targeted BRAF inhibitor vemurafenib in 
one patient. Our data indicate that BRAF mutation testing 
of tumor tissue should be carried out in LCH patients 
refractory to conventional treatment to identify those 
patients that may benefit from the salvage therapeutic 
option of BRAF inhibition.

RESULTS

Mutation analysis was performed in 69 patient 
samples and genotyping results by histological subtype 
are summarized in Table 1. We found no BRAF 
mutations in the 21 tested non-Langerhans cell lesions. 
Briefly, by histological subtype, our findings in juvenile 
xanthogranuloma and Rosai-Dorfman disease are in 
accord with a prior report[19]. We also genotyped three 
follicular dendritic cell tumors that were wild-type, which 
has not been previously examined; however, a BRAF 
V600E mutant interdigitating dendritic cell sarcoma 
has been recently reported[20]. The additionally tested 
granular cell tumors were all wild-type, which has to our 
knowledge not been previously examined.

Genotyping in the 48 patient-samples with 
Langerhans cell-derived lesions identified a total of 
23 BRAF V600E mutations (=47.9%). Comparison of 
detection rates with our literature meta-review findings 
demonstrated that our detection rate is in line with prior 
reports and our cohort representative. With over 600 
tested cases, enough cases have been reported and the 
mutation frequency of 48.5% (95% confidence interval: 
44.7-52.5%) can now be considered well-defined (Figure 
1). Although BRAF variant mutations in LCH have been 
reported (e.g., V600D)[21], we did not observe such 
variant mutations in our series. The fractions of mutant 
LCH-cases were relatively constant between different 
histological subtypes; however, we noted two exceptions. 
First, of the 6 tested Langerhans sarcomas we found only 
one BRAF V600E mutation in a 71 year-old male who 
died 3 months after diagnosis (Figure 2a). Second, we 
found BRAF mutations in all 4 tested solitary cutaneous 
LCHs. Despite the small number of tested samples, these 
findings raise the question whether the BRAF mutation 
status can distinguish between solitary and multiple-site 
or systemic disease.

To explore the diagnostic value of BRAF genotyping 
in LCH, we were interested whether quantification of 
mutant peak heights (by pyrosequencing) can function 
as a surrogate marker for the estimation of histiocytic 
infiltrates. We found significant correlation between 
mutant peak heights and CD1a staining (Figure 2b); 
thus indicating a robust relationship between total 
mutated allele content and CD1a-positive infiltrate. 
Additional diagnostic value may be related to the 
clinicopathological phenotype; however, we failed to 
detect significant associations with age, sex, ‘stage’ (i.e. 
system involvement) or affected organ/site (Table 2). To 
corroborate these findings we also re-tested the diagnostic 
distinction for skin, bone, and lung lesions based on BRAF 
genotype and found no significant associations (Table 
2). For example when confronted with a LCH in a lung 
biopsy, we tested whether the BRAF status can distinguish 
between local vs. systemic disease. Comparison of our 7 
lung samples from patients with systemic involvement vs. 
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4 ‘lung-only’ cases showed that there was a slightly higher 
mutation frequency in systemic (2 of 7 = 28.6%) vs. 
localized cases (1 of 4 = 25%); however, these differences 
did not reach statistical significance (P=1.00; Fisher’s). 

Collectively, these findings suggest a limited value of 
BRAF testing to separate single-site from multi-site or 
multi-system LCH. 

Given the relatively high rate of BRAF mutations in 

Table 2: Demographic and Clinical Characteristics of Genotype-Specific 
Subsets of Patients with Langerhans cell Histiocytosis

BRAF 
mutated
(n=22)

BRAF 
Wild-type
(n=20)

P

Characteristic No. % No. %
Age, years
   Median 13 15 0.68
   Range 0.6-65 0.6-57
Sex
   Male 10 45 12 60 0.37
   Female 12 55 8 40
Stage
   Single-System 12 55 13 65 0.54
   Multi-System 10 45 7 35
Affected Site
   Bone (n=23)
      Solitary (n=17) 9 53 8 47 0.66
      Multi (n=6) 4 67 2 33
   Lung (n=11)
      Solitary (n=4) 1 25 3 75 1.0
      Multi (n=7) 2 29 5 71
   Skin (n=6)
      Solitary (n=4) 4 100 0 0 0.33
      Multi (n=2) 1 50 1 50

Abbreviations: n=total number of cases; No., number of cases per characteristic; 
P-values derived from contingency testing (t-test for age; Fisher’s exact test for 
dichotomous factors); solitary, represents single-site involvement; multi, represents 
multi-system disease; Note: in the „affected site“ part of the table, percentages 
represent the fraction of mutated or wild-type cases in each category (line-wise 
comparisons).

Table 1: Results of BRAF Genotyping by Histological Subtype
Histological subtype Total BRAF V600E

N=69 No. %
Tumors derived from Langerhans cells 48 23 48
   Langerhans cell histiocytosis 42 22 52
      Solitary/unifocal 25 12 48
      Multi-system 13 7 54
      Disseminated/visceral 4 3 75
   Langerhans cell sarcoma 6 1 17
Tested Non-Langerhans cell entities 21 0 0
   Dendritic cell sarcoma 3 0 0
   Juvenile Xanthogranuloma 3 0 0
   Rosai-Dorfman Disease 4 0 0
   Granular Cell Tumor 11 0 0

Abbreviations: N, number of cases, No., number of mutated cases.
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Figure 2: BRAF Mutation Analysis at the Case Level and Correlation with Tumor Cell Density and Event Rate in Non-
Responders. a. Key clinicopathological features of individual patients along with genotyping result and coded outcome data. Samples 
displayed as columns and arranged by disease entity, BRAF mutation status and age. b. Correlation of histiocytic infiltrate (as determined by CD1a 
staining) with peak-height quantification from pyrosequencing in 19 BRAF V600E mutant and 19 wild-type LCH cases. c. Stacked cumulative 
event rate (stable disease, recurrence, progression) in patients with multi-site or multi-system disease according to the BRAF mutation status.  
Abbreviations: *, multiple sites; +, central nervous system/additional organ involved; B, bone; BS, bone and skin; CR, complete response, 
DCS, dendritic cell sarcoma; JXG, juvenile xanthogranuloma; G, genital; GCT, granular cell tumor; L, lung; LCH, Langerhans cell 
histiocytosis; N, lymph node; PD, progressive disease; PR, partial response; RDD, Rosai-Dorfman, disease; S, skin; SD, stable disease; ST, 
soft-tissue; T, tongue ; V, visceral.

Figure 1: Metareview of Reported Mutation Frequencies and our BRAF Genotyping Results in 
Langerhans cell histiocytosis. *A total of 13 case reports/series are summarized (see methods). Abbreviations: 
LCH, Langerhans cell histiocytosis; mut., mutated; N, number of tested samples. In the summary line, the average of all 
studies is provided along with the 95% confidence interval assuming a binomial distribution for all included cases (line).  
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multi-system LCH – for example with bone involvement 
(n=4/6=66.6%), the mutation status may hold prognostic 
information. Therefore, we compared overall and 
progression free survival between BRAF wild-type and 
mutant patients; however, found no significant difference 
(P=0.68 PFS; P=0.37 OS; log-rank). In addition, 
we examined whether the BRAF mutation status can 

distinguish between responders and non-responders. In 
the 18 mutant cases with outcome information, we found 
12 non-responders (66.6%) whereas there were 5 non-
responders among the 15 wild-type cases with outcome 
information (33.3%); however, this difference did not 
reach significance (P=0.084; Fisher’s exact). Thus, the 
BRAF mutation status does not allow stratification of 
either responders or non-responders; at least not in our 
cohort. In addition, we examined whether the BRAF 
mutation status is associated with a different time course 
of events (e.g. progress, recurrence) in the non-responder 
subgroup. Event plots show no difference in the time 
course when non-responders were separated according 
to genotype (Figure 2c). Together, our outcome analysis 
indicates that the BRAF mutation status holds –at this 
point– no prognostic information. 

Due to the compelling rate of BRAF mutations in 
LCH, we started BRAF testing in therapy refractory LCH 
patients as a prospective observational study component. 
At time of review, 10 of the 17 non-responders were lost 
to follow up, 4 had died and only 3 non-responders were 
alive, and required additional treatment. Two of the three 
patients were children (one BRAF mutant; who received 
second-line chemotherapy) and the third patient was a 
45-year-old woman with multifocal and multisystemic 
BRAF V600E mutant Langerhans cell histiocytosis with 
multiple bone lesions (Patient HX36). Diagnosis in patient 
HX36 was established via histology and determination of 
the typical immunophenotype. The patient also had orbital 
and meningeal lesions and infiltration of the pituitary gland 
and hypothalamus without diabetes insipidus. The patient 
also had a severe insulin-dependent diabetes mellitus 
with normal cortisol and ACTH-levels. Given the high 
similarity of affected sites in our patient to the previously 
reported patients with Erdheim Chester disease[18] we 
performed electron microscopic analysis (Figure 3b, 3c) 
and found Birbeck granules in ultrastructural examination 
thereby corroborating the diagnosis of Langerhans cell 
histiocytosis. Consequently, the woman was treated 
with glucocorticoids (prednisolone up to 1mg/kg) and 
vinblastine (for one month; repeated 4 months later), 
which was not tolerated due to aggravation of the diabetes 
mellitus, and which resulted in a progressive disease with 
new intracranial and meningeal manifestations. Therapy 
was switched to cladribine monotherapy (2,1mg/m² day 
1-5; 2 cycles; for three months), which again resulted 
in progressive disease with new intracranial lesions. 
Therefore, we decided to start off-label use of vemurafenib 
with escalating doses over time (240mg once daily for 
one week, 240mg twice daily for 5 weeks and 240mg four 
times a day for another 6 weeks). Overall, treatment was 
well tolerated. Skin examinations were performed during 
and after the treatment. The patient had a reduced need 
for analgesics for the bone lesions, and a slightly lower 
need for insulin. After 6 weeks (at the lower dosage 
of 2x 240mg daily), the patient displayed an almost 

Figure 3: Histology, Immunophenotype and 
Ultrastructural Findings in Patient HX 36.  
a. Bone marrow biopsy sample shows a dense histiocytic infiltrate 
with reactive resorption of trabecular bone and replacement of 
the bone marrow. Morphology and immunophenotype (selected 
images of the immunophenotype are provided) are diagnostic of 
LCH (H&E and alkaline phosphatase immunohistochemistry). 
b: Ultrastructural examination of the histiocytic infiltrate 
shows lobulated nuclei with open chromatin, lack of prominent 
nucleoli, and tennis-racket shaped cytoplasmatic Birbeck 
granules (arrow). c: Ultra high magnification of Birbeck 
granules shows the rod shaped electron dense configuration and 
reveal vacuolated blebs, diagnostic of LCH (arrow).
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complete metabolic remission in the FDG-PET, without 
significant reduction of the size of measurable lesions (e.g. 
hypophyseal-hypothalamic infiltration). After 3 months, 
the patient still had stable disease according to RECIST 
criteria with a continued, dramatic metabolic response 
(Figure 4). Due to a lack of published data, the off-label 
use had to be discontinued and 6 months later, the patient 
had progressive disease. 

DISCUSSION

In our analysis, BRAF V600E mutations in 
histiocytic proliferations are restricted to tumors of the 
Langerhans cell lineage. Of the few refractory patients we 
identified a patient with a BRAF mutant LCH who had a 
transient clinical response to the targeted BRAF inhibitor 
vemurafenib.

The frequency of BRAF mutations in LCH 
approximates 50% (Figure 1) and raises the question 
how these genetically distinct tumors differ from LCH 
wild-type tumors. To this end we performed phenotype 
comparisons (Table 2); however, with two exceptions we 
failed to identify distinctive features. These exceptions 
were: the presence of BRAF mutations in all solitary skin 
LCHs and a somewhat lower rate of BRAF mutations 
in Langerhans cell sarcomas (17%). Due to the small 
number of tested samples in these categories, we abstain 

from speculations; however, would like to point out two 
aspects of these orphan-diseases. First, our BRAF mutated 
Langerhans cell sarcoma patient had died; therefore, given 
the rarity and aggressiveness of this disease the potential of 
targeting BRAF mutations should not be ignored. Second, 
the distinction of localized vs. multi-system disease 
remains a diagnostic challenge[22]. In particular, in the 
setting of a histiocytic lung lesion we assessed the value 
of the BRAF mutation status as a diagnostic biomarker 
but did not succeed in finding a statistical difference 
between mutated and wild-type cases. Similarly, the 
mutation frequency with respect to the involved system 
did not show any differences. In conjunction with the 
available literature, our findings indicate that neoplastic 
lesions related to LCH (e.g., Erdheim-Chester disease)
[19, 23] also harbor BRAF mutations. Nonetheless, the 
specific diagnostic value of BRAF in LCH seems not as 
straightforward as for example in hairy cell leukemia[24]; 
although very recent evidence suggests distinct subtypes 
of Langerhans cell histiocytosis depending on the presence 
or absence of circulating dendritic cells[16], which could 
be used for therapeutic monitoring. However, there is 
currently no convincing evidence that the BRAF status 
by itself has value as a prognostic biomarker; at least not 
in our series of non-responders (Figure 2c). Given recent 
data describing somatic activating ARAF mutations in 
BRAF wild-type LCH[25], it is expected that the advents 

Figure 4: Response of LCH to the BRAF Inhibitor Vemurafenib. Shown are images pretreatment and after 6 weeks. a: 
Pretreatment FDG-PET maximum intensity projection (MIP) images before and after 6 weeks of treatment with vemurafenib 240mg/day 
for 1 week and vemurafenib 480mg/day for 5 weeks. Horizontal lines at full body scan indicate planes for humoral head and tibia plateau 
cross sections. b. PET-CT fusion images of humoral head and tibia plateau. Arrows indicate region of interest (ROI). c. Quantitative 
comparison of mean standardized uptake values (+/- standard deviation); P-values from unpaired t-test.
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of novel sequencing technologies will lead to a more 
comprehensive delineation of the mutational landscape in 
LCH.

Finally, the therapeutic relevance of BRAF 
mutations in LCH has not been clarified and may differ 
between tumor types. Here we add the transient response 
of one LCH patient who demonstrated at least partial 
metabolic response. Besides adding this case as proof of 
principle in LCH, there are three issues worth noting. First, 
despite the classical histological, immunophenotypic and 
ultrastructural findings (that were all diagnostic of LCH), 
the clinical presentation and distribution of the disease is 
highly similar –if not identical– to a patient with Erdheim-
Chester disease reported by Haroche et al.,[18]. Second, 
while the formal criteria for a radiographic partial response 
(by RECIST) were not met, achieving a transient response 
in such an aggressive version of LCH is striking and we 
find the metabolic response at least noteworthy (Figure 
4). The similarities of our data and those from xenograft 
models are impressive[26] and indicate a metabolic 
function of mutant-BRAF in histiocytic neoplasia[26-31]. 
We interpret the stable radiographic disease as an 
apparent lack of ‘oncogenic shock’[32, 33]. Third, from 
an academic perspective, a re-biopsy would have been 
interesting; however, clinically this was not indicated and 
the location of lesions was considered “high-risk” (e.g. 
intracranial). Collectively, the efficacy of vemurafenib 
beyond melanoma[34], for example in Erdheim-Chester 
Disease[18] and our data argue for ongoing exploration of 
the therapeutic value of BRAF mutations in LCH.

In summary, BRAF mutations in histiocytic 
proliferations are restricted to those of the Langerhans 
cell-type and our metareview establishes the BRAF 
mutation frequency of 48.5%. In addition, for the vast 
majority of LCH-patients efficient therapeutic options are 
available; however, for treatment refractory patients with 
lesions harboring the BRAF V600E mutation, targeted 
BRAF inhibition may represent a therapeutic option.

MATERIAL AND METHODS

Design and Ethical Approval

The retrospective part of the study was conducted 
as an anonymized case- and specimen review via the 
Comprehensive Cancer Center Ulm (CCCU). The 
prospective interventional study in one patient included 
informed consent for experimental off-label drug 
treatment. All experiments were performed in accordance 
with the ethical standards of the local ethics committee 
and with the Declaration of Helsinki.

Study Cohort, Tissue Sections, Diagnostic 
Criteria. 

We searched the pathology- and the hospital 
information systems using diagnostic terms and ICD-O 
codes. After removal of duplicates, samples with tissue 
available for molecular genetic analysis were reviewed. 
Atleast two board-certified pathologists confirmed each 
primary diagnosis by review of original sections and 
immunohistochemical stains. Diagnostic criteria followed 
the 2008 WHO guidelines.

Microdissection and DNA extraction

 Regions for microdissection were identified by 
immunohistochemistry and H&E stains. The tumor 
regions were either sectioned (at 2-5µm thickness) and 
microdissected, or cored using a 2 mm dermal punch-
biopsy needle. After deparaffinization and DNA extraction, 
concentration was determined using an Ultrospec 2100pro 
(Amersham Biosciences; Upsala; Sweden).

Molecular Genetic Analysis

PCR-reactions using the primers: F-5’-TGC-
TTG-CTC-TGA-TAG-GAA-AAT-G-3’ and R-5’-AGC-
ATC-TCA-GGG-CCA-AAA-AT-3’, were followed by 
pyrosequencing [R-5’-GAC-CCA-CTC-CAT-CGA-G-3’; 
PyroMark Q24 (Qiagen, Hilden, Germany)] according 
to established protocols [35]. Alternatively, mutation 
analyses was performed using the BRAF 600/601 
StripAssay (Vienna Labs, Vienna, Austria) according to 
the manufacturer’s instructions. Mutations were validated 
using conventional Sanger sequencing.

Electron Microscopy

Electron Microscopy was performed according 
to established protocols [36]. Briefly, FFPE tissue was 
microdissected, deparaffinized and post-fixed overnight at 
4°C in modified Karnovsky’s fixative (3% glutaraldehyde 
in 1% paraformaldehyde in sodium cacodylate buffer 
at pH 7.4). After rinsing in sodium cacodylate buffer, 
samples were postfixed in phosphate cacodylate-buffered 
21% OsO4 for 1h, dehydrated in graded ethanol with a 
final dehydration in propylene oxide, and embedded 
in epon (Electron Microscopy Sciences, Hatfield, PA). 
One-micron-thick plastic sections were examined by 
light microscopy after being stained with toluidine blue. 
Ultrathin sections (90 nm thick) were cut and mounted 
onto slot grids. Sections were poststained with uranyl 
acetate and lead citrate and viewed with an EM10 (Zeiss, 
Jena, Germany). Digital images were acquired using the 
TVIPS 1k system (TVIPS, Gauting, Germany). 
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Literature review

Two electronic databases (Medline, Scopus) 
were searched (Jan 1976 – Feb 2014) independently 
by three authors (AMB/SEW/JKL) using the search 
terms histiocy*, langerhans*, erdheim*, bone or lung 
in combination with BRAF or V600E. In addition, we 
performed review of reference lists in all selected articles 
to identify additional studies that contained BRAF 
mutational analysis. For each study [10, 16, 18, 19, 37-
48], we noted histological subtype of the lesion, BRAF 
mutation status, and the total number of mutated and tested 
cases. We present the overall BRAF mutation frequency 
along with the 95% confidence interval assuming a 
binomial distribution for all included cases. For simplicity 
of display we summarized case reports and small series 
that contained less or equal to ten patients in one category 
(Figure 1) [19-21, 49-58].

Outcome and Statistical Analysis

Outcome analysis consisted of four elements: a) 
overall- and b) progression free survival defined as the 
time interval between diagnosis and death or recurrence/
progression; c) we determined the fraction of responding 
and non-responding patients and d) determined the time 
course of the events in the non-responding subgroup. 
We defined non-responders as those patients with stable 
disease, progressive disease or relapse (‘events’) whereas 
patients with partial or complete response were considered 
responders. For a time to event analysis, we defined the 
timeframe from initial diagnosis to first event, which we 
plotted as stacked event curves that we compared by using 
a log-rank test. For statistical comparisons of mutation 
frequencies we used the Fisher’s exact- or Chi-square test, 
age comparisons employed the student’s t-test, and we 
considered P<0.05 as statistically significant. 
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