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ABSTRACT
Schizophrenia is often considered to be a disconnection syndrome. The abnormal 

interactions between large-scale functional brain networks result in cognitive 
and perceptual deficits. The present study investigated event-related functional 
connectivity networks to compare facial processing in individuals with and without 
schizophrenia. Faces and tables were presented to participants, and event-related 
phase synchrony, represented by the phase lag index (PLI), was calculated. In 
addition, cortical oscillatory dynamics may be useful for understanding the neural 
mechanisms underlying the disparate cognitive and functional impairments in 
schizophrenic patients. Therefore, the dynamic graph theoretical networks related to 
facial processing were compared between individuals with and without schizophrenia. 
Our results showed that event-related phase synchrony was significantly reduced 
in distributed networks, and normalized clustering coefficients were significantly 
increased in schizophrenic patients relative to those of the controls. The present data 
suggest that schizophrenic patients have specific alterations, indicated by increased 
local connectivity in gamma oscillations during facial processing. 

INTRODUCTION

Schizophrenia is a mental disorder often characterized 
by abnormal social behavior, such as difficulty understanding 
and dealing with social interactions. Social cognition has 
been globally defined as the ability to perceive the intention 
and disposition of others and then guide social interaction. 
During the interactions, facial information plays a key role.

Several lines of research have provided evidence for 
impaired facial processing in schizophrenia. For example, 
in terms of the underlying neural correlates of facial 

processing in schizophrenia, abnormities in the frontal 
and temporal lobes seem to prevail [1], including reduced 
activation and volume of the fusiform facial area [2, 3]. 
In response to neutral faces, schizophrenia patients also 
show hyper-activations in the frontal and cingulate areas 
and in the basal ganglia [4]. In a recent meta-analysis of 
functional neuroimaging data, Li et al. concluded that 
relative to healthy controls, individuals with schizophrenia 
show less activation in the bilateral amygdala, the para 
hippocampal gyrus and fusiform gyrus, the right superior 
frontal gyrus and the lenti-form nucleus. Schizophrenia 
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patients show more activation in the left insula while 
performing facial processing tasks [5]. In addition, event-
related potential results show that the face-specific N170 
is decreased in schizophrenia patients [6–10].

Importantly, synchronous oscillatory neural activity 
is a possible candidate mechanism for the coordination of 
neural activity between and within functionally specialized 
brain regions [11–13]. It has been shown that the 
coordination of distributed neural activity is dysfunctional 
in people with schizophrenia [14–17]. For example, 
Uhlhaas et al. reported that deficits in Gestalt perception in 
schizophrenia patients are associated with reduced phase 
synchrony of the beta-band in the 200–300 ms interval 
involving fronto-temporal and parieto-occipital electrodes, 
indicating impairment of the long-range synchronization 
of neural responses, which may reflect a core deficit in the 
coordination of neural activity and underlie the specific 
cognitive dysfunctions associated with the disorder [17]. 
In addition, there is evidence that gamma-band phase 
synchronization related to higher cognitive processes, such 
as facial perception, is significantly lower at 200–300 ms 
in schizophrenia patients [16].

The conventional approach for investigating the 
functional connectivity graph of the brain is extracting 
the characteristics of a so-called small world network, a 
network with a high clustering coefficient (a measure of 
large-scale network segregation) and low path length (a 
measure of large-scale network integration) simultaneously 
[18]. Importantly, recent studies using functional magnetic 
resonance imaging (fMRI) and electroencephalography 
(EEG) showed decreased local specialization in 
schizophrenia, measured as either local efficiency or as 
the conceptually similar clustering coefficient [14, 19, 20]. 
Anatomical networks constructed with diffusion tensor 
tractography (DTI) also found decreases in local efficiency 
and global efficiency [21, 22]. In structural networks, local 
and global efficiencies negatively correlate with scores on 
the Positive and Negative Symptom Scale [21]. The above 
neuroimaging findings suggest that schizophrenia is indeed 
associated with a subtle randomization of connection 
patterns within the brain [23].

It is highly likely that the topological configuration 
of functional brain networks is dynamically reorganized 
in the context of changing environmental conditions or 
different experimental task demands. Previous research 
has averaged functional connectivity over longer time 
periods, neglecting the physiological reality that the 
brain’s information processing system must be rapidly 
reconfigurable [24]. However, thus far, few studies 
have directly investigated the dynamics of the topology 
of the human brain network, and this has remained a 
methodologically challenging area [25, 26]. Spatially 
precise hemodynamic neuroimaging measurements, such 
as fMRI, do not measure neuronal dynamics directly and 
do not have subsecond time resolution. These technical 
limitations clearly constrain what fMRIs can reveal 

about network dynamics on faster time scales, which 
are important for immediate perception, rapid action, 
and cognition. EEG analysis is an important method that 
permits the analysis of coordinating interactions over large 
distances in the brain with millisecond resolution, which is 
necessary because synchronization of oscillatory activity 
in the EEG frequency bands occurs with precision in the 
millisecond range [12]. As one of the synchronization 
measurements, the PLI refers to a period of phase locking 
between two events and can only be estimated in a 
statistical sense, reflecting the extent of phase variability 
for a given frequency over time. Actually, the PLI removes 
and attenuates synchronization that occurs at or near the 
zero phase difference and thereby reduces the impact 
of spurious synchronization originating from common 
sources or volume conduction [27–29]. The present study 
combined the phase synchrony of electrode interactions 
and the graph theoretical metrics of network topography 
to investigate event-related functional connectivity derived 
from EEG data during facial perception in individuals 
with and without schizophrenia. The PLI, a linear and 
nonlinear estimator computed for each pair of sensors, 
was used to construct graphs. PLI-weighted connectivity 
networks were calculated according to graph theory and 
characterized by a normalized clustering coefficient. We 
hypothesized that reduced event-related phase synchrony 
and increased event-related clustering coefficients in 
networks related to facial processing would be observed in 
schizophrenia patients relative to those of healthy controls.

RESULTS

The main results of phase synchrony are summarized 
in Figure 1. Event-related changes in connectivity were 
observed in the alpha (8–14 Hz) and beta (15–30 Hz) 
frequency ranges; however, we did not investigate the 
alpha and beta activities because there were no significant 
group effects. For the gamma band, there were clear 
differences in event-related connectivity between the two 
groups, especially in the 150–300 ms time window after 
stimuli onset. 

Topographical analysis of phase synchrony 

The network-based statistic (NBS) was employed 
to investigate group differences in event-related phase 
synchrony during each condition in each active time 
window for the gamma band. NBS connectivity analysis 
showed that there were no significant differences 
between the groups in the 0–150 ms time window. In the  
150–300 ms time window for the upright face condition, 
NBS revealed reduced event-related connectivity in 
individuals with schizophrenia in a distributed network 
of brain regions, which included strong involvement of 
the frontal, central, parietal and occipital brain electrodes 
(p < 0.05, Figure 2). No significant group differences 



Oncotarget107314www.impactjournals.com/oncotarget

were observed for other stimuli conditions (ps > 0.1). 
Comparison of connectivity between the baseline and 
active windows within the schizophrenia and control 
groups using NBS  (ps > 0.1). 

Event-related small-world properties

Analysis of the normalized clustering coefficient 
index (γ) revealed a significantly increased coefficient for 
the schizophrenia group compared to that of the healthy 
controls for the upright face condition (Figure 3). In 
the 150–300 ms time window, there were no significant 
main effects (Group: F(1,47) = 0.456, P = 0.503,  
= 0.010; Orientation: F(1,47) = 0.866, P = 0.357,  
= 0.018; Category: F(1,47) = 0.992, P = 0.324, = 0.021). 
Interestingly, there was a significant OrientationGroup 
interaction, as F(1,47) = 4.839, P = 0.033, and = 0.093, 
revealing that the event-related clustering coefficient was 
lower for the upright condition (–0.007) than the inverted 
condition (0.004; F(1,47) = 5.001, P = 0.030, = 0.096) 
in healthy controls, whereas stimuli orientation did not 
modulate the event-related clustering coefficient in the 
schizophrenia group (0.004 and -0.001 for the upright 
and inverted conditions, respectively; F(1,47) = 0.789,  

P = 0.379, = 0.017). The three-way interaction of 
OrientationCategoryGroup was also significant, as 
F(1,47) = 4.184, P = 0.046, and = 0.082. Further analysis 
showed that the OrientationGroup interaction was 
significant for face stimuli (F(1,47) = 11.368, P = 0.002,  
= 0.195) but not for table stimuli (F(1,47) < 1). In the 
controls, the event-related clustering coefficient was 
significantly lower for the upright faces (–0.0069) than 
for the inverted faces (0.0091; P = 0.025), whereas 
in schizophrenia patients, the event-related clustering 
coefficient was significantly higher for upright faces 
(0.0111) than for inverted faces (–0.0030; P = 0.024). For 
upright conditions, the event-related clustering coefficient 
was significantly lower in healthy controls (–0.0069) 
than in schizophrenia patients (0.0111; P = 0.017), and 
for inverted conditions, there was no significant group 
difference (0.0091 and –0.003 for healthy controls and 
schizophrenia patients, respectively; P = 0.119). 

DISCUSSION

The goal of the present study was to clarify the 
characteristics of facial processing in schizophrenia 
patients by analyzing phase synchronization and the 

Figure 1: Time courses of connectivity strength. Time courses of the gamma-band connectivity strength calculated by the PLI 
between the Fz and Pz electrode sites averaged across subjects. Values are standard deviations from the 150 ms baseline.
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graph theoretical network of the gamma band. The 
results of this study support the hypothesis that patients 
with schizophrenia are characterized by dysfunctions in 
the long-range coordination of neural activity and local 
connectivity of the graph theoretical network, as indicated 
by significant reductions in event-related phase synchrony 
and increases in event-related normalized clustering 
coefficients during facial processing.

The present findings of phase synchrony are 
consistent with previous research showing that long-range 
coordination occurs in the gamma-band range [10, 30–35]. 
Gamma -band oscillations have been implicated repeatedly 
in a wide variety of cognitive and sensory processes, 
including feature binding and stimulus identification 
processes, which indicates fast reorganization in response to 
visual signals [13]. The preferred time window of 150 ms,  

Figure 2: Topography. Topography of phase synchrony for all conditions, baseline and time window, respectively, in the 150–300 ms 
gamma band. Top row, healthy controls. Middle row, patients with schizophrenia. Bottom row, difference map. In the map of the healthy 
controls and the map of the schizophrenia patients, synchrony between electrodes is indicated by lines, which were drawn only if the 
synchrony value was beyond the distribution of shuffled data sets (p < 0.05). In the difference maps, functional connectivity differences 
between the patients and the controls involve a decreased distributed network of connections (black edges) for the frontal, central parietal, 
temporal and occipital areas. 
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which we choose to resolve network changes, was too short 
of a time frame to allow the dynamic network changes in 
the lower frequency bands to be investigated. Importantly, 
we found that phase synchrony was distinguished between 
the schizophrenia patients and the healthy controls 
during upright face perception, which is in agreement 
with previous reports [16, 17]. Synchrony patterns in the 
gamma-frequency range in patients with schizophrenia 
were mainly reduced in the 150–300 ms interval relative 
to that of the controls, suggesting that patients with 
schizophrenia fail to coordinate neural activity among 
the central, frontal, parietal, and occipital brain regions 
to produce a fully integrated perception. Actually, there 
is evidence that the effective communication structure 
is mechanistically implemented by the pattern of phase-
locking among oscillations in communicating neuronal 
groups [11]. The present patients with schizophrenia 
demonstrated a selective deficit in facial perception, as a 
reduction in phase synchrony was observed, suggesting 
that dysfunction in phase synchrony has a causal role in the 
cognitive deficits in schizophrenia. Generally, synchrony 
measures the relation between the temporal signal structures 
regardless of signal amplitude, and two signals are said to 
be synchronous if their rhythms coincide. In fact, patients 

with schizophrenia are characterized by their tendency 
to exhibit desynchronized neural activity, suggesting a 
marked dysfunction not only in the initiation but also in the 
maintenance of synchronous oscillatory neural activity [17]. 

In addition, the present study shows that on average, 
the PLI-weighted functional networks exhibited increased 
clustering coefficients in people with schizophrenia 
relative to those of healthy controls. The increased 
clustering coefficients in schizophrenia were associated 
with reduced long-range phase synchrony, implying 
relatively stronger local connectivity in schizophrenia. 
Higher local connectivity is correlated with more regions 
of the brain neuronal network that need to be isolated from 
the others, and coincidentally, these regions need to have a 
dense synchronization among their own sub-parts. Neural 
networks in schizophrenia patients had less connections 
between clusters and more connections within clusters to 
achieve a level of network integration equivalent to that of 
controls. The presence of clusters in functional networks 
suggests an organization of statistical dependency 
indicative of segregated neural processing [36]. This study 
reports a network topology in highly segregated but poorly 
integrated networks, revealing abnormalities in the large-
scale topology of functional connectivity networks.

Figure 3: Normalized clustering coefficient differences. Bar graphs display the mean (standard error) Event -related normalized 
clustering coefficients in healthy controls and schizophrenia patients in the –150~0 ms baseline time window and the 150~300 ms active 
time window.
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Graph theory is a useful tool for its simplicity and 
generalizability. For example, the hubs of macroscopic 
brain structural networks derived from tract-tracing data 
show distinct microscopic properties related to neuronal 
morphology and density. Associations have been found 
between network topology and local gene expression 
profiles, and the hubs of human functional MRI networks 
have been located in brain regions that have high rates of 
glucose metabolism, as determined by positron emission 
tomography (PET). In the present study, the increased 
normalized clustering coefficient in schizophrenia patients 
while processing faces may be a good guide for micro 
research. 

The current data also allow for the primary 
conclusion of the relationship between deficits in large-
scale integration and the symptoms of schizophrenia. 
Additional studies are needed that link the deficits 
in large-scale network integration to anatomical and 
neurophysiological dysfunctions, as well as to clinical 
parameters that have been associated with coordination 
failure in schizophrenia, which may potentially lead to a 
new therapeutic perspective on the disorder [17].

Based on the present experimental design, it is 
possible to elucidate whether the observed impairment is 
a face-specific phenomenon. The data showed increased 
event-related local connectivity in schizophrenia patients 
relative to that of healthy controls for only the upright 
face condition. Specifically, in healthy controls, the event-
related local connectivity for the inverted face condition 
was significantly increased relative to that of the upright 
face condition, whereas in schizophrenia patients, the 
event-related local connectivity in the inverted face 
condition was significantly reduced relative to that of the 
upright face condition. The data indicate that lower local 
connectivity related to configurable facial processing 
reflected by facial inversion tends to promote long-
range connectivity in healthy controls, and higher local 
connectivity tends to impair long-range connectivity in 
schizophrenia patients. In line with the phase synchrony 
results, there was a significantly reduced long-range 
connectivity in patients with schizophrenia. To the best of 
our knowledge, this is the first study to show increased 
event-related local connectivity in networks constructed by 
the graph theory in schizophrenia patients when viewing 
pictures of real human faces.

Although group differences in the gamma 
frequency range synchronization were evident during 
the perception of the upright face, the approach of using 
NBS for characterizing network connectivity differences 
did not support the direct analysis of interactions [28]. 
Furthermore, it is only valid to make inferences about the 
component as a whole [37, 38] as a consequence of weak 
control of the familywise error rate (FWER) [37, 38]. Thus, 
while the NBS can offer a considerable gain in statistical 
power, this gain comes at the expense of not being 
able to localize the effects to individual edges [36, 38].  

Accordingly, it is possible that patients with schizophrenia 
may express different network connectivities during the 
processing of inverted faces, upright tables and inverted 
tables relative to those of the controls. Additional studies 
are needed that link deficits in phase synchrony to 
anatomical and neurophysiological dysfunction as well 
as to clinical parameters that have been associated with 
coordination failure in schizophrenia.

MATERIALS AND METHODS

Participants

Twenty-five patients with schizophrenia  
(10 females; mean 31.1 ± 10.8 y) and 25 age-matched 
healthy controls (10 females; mean 31.9 ± 10.5 y) 
participated in this study. Each patient was diagnosed 
with schizophrenia according to the DSM-IV (Diagnostic 
and Statistical Manual of Mental Disorders, Fourth 
Edition). None of the included patients had a history of 
severe medical disorders or severe neurological disorders. 
A trained psychiatrist or psychologist evaluated the 
psychiatric symptoms on the Positive and Negative 
Syndrome Scale (PANSS). The Personal and Social 
Performance (PSP) scale was used to assess the social 
functioning ability of each of the participants, which was 
also found to be an acceptable, quick and valid measure of 
their personal and social functioning ability.

The healthy volunteers had no history of any major 
psychiatric disorders or major physical illnesses and were 
not taking any medications that affect the central nervous 
system. This study was approved by the Institutional 
Review Board of the Beijing Institute of Technology. All 
participants received payment for their participation and 
gave their informed consent prior to the experiment.

Stimuli and procedure

The stimuli used in the study were 75 photographs 
of unfamiliar faces, 75 photographs of tables, and 
45 photographs of flowers, all in gray-scale. Fifty percent 
of the faces were male, and 50% were female; all were 
presented without hair, eyeglasses, or other accessories 
(Figure 4). Five stimulus conditions were upright faces, 
inverted faces, upright tables, inverted tables, and upright 
flowers. All the images were equated for luminance and 
root-mean-square (RMS) contract with the Photoshop 
software system (Adobe Systems, Inc., San Jose, CA). The 
stimuli were presented at the center of a computer screen 
and viewed from a distance of 1.2 meters at a visual angle 
of 5.05 degrees vertically and 6.06 degrees horizontally. 
The study procedure consisted of the presentation of three 
blocks of 25 faces and 25 tables each, with 15 flowers 
as the target stimuli for block 1, 14 flowers for block 2, 
and 16 flowers for block 3, which was counterbalanced 
within the subjects. All stimuli were pseudo-randomized, 
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and each stimulus was presented for 250 ms, with an 
inter-stimulus interval randomized to range from 800 ms 
to 1,200 ms. The subjects were instructed to keep a mental 
count of the number of flowers in each presentation block. 
The subjects reported the number of flowers counted at the 
completion of viewing each block.

EEG recording

EEG signals were continuously recorded with a 
DC band pass of 200 Hz and a sampling rate of 1000 Hz 
using the Cognitrace amplifier (www.ant-neuro.com). An 
electrode cap with 16 Ag/AgCl electrodes were mounted 
according to the extended international 10–20 system (F3, 
Fz, F4, C3, Cz, C4, P7, P3, Pz, P4, P8, PO7, PO8, O1, Oz, 
and O2) and referenced to the tip of the nose. Vertical and 
horizontal EOG signals were recorded with two pairs of 
electrodes, one placed above and below the right eye and 
the other placed 10 mm from the lateral canthi. Electrode 
impedance was maintained at less than 5 KΩthroughout 
the recording phase of the study. The array of electrodes 
was used to focus on the interest areas that have significant 
connectivity with the occipito-temporal area, known as the 
“core system of face perception” [24].

Data analysis

Interregional phase synchronization

Data from each epoch were filtered into alpha 
(8–14 Hz), beta (15–30 Hz), and low-gamma (30 to 
45 Hz) frequency ranges. Alpha, beta and low-gamma 
band network synchronizations were investigated, as 
these rhythms are particularly relevant for interregional 
communication [39–42]. The Hilbert transform operator 

was employed to obtain the time series of instantaneous 
phase measures for each trial, sensor and frequency band. 
Epochs were extracted from 300 ms prior to stimulus onset 
through 600 ms after stimulus onset. Due to distortions 
involved in calculating the Hilbert transform at the edges 
of the analyzed epochs, we did not display the first or 
last 150 ms (150 sample points) time windows in the 
synchrony analysis of our epochs. Inter-regional phase-
locking was calculated for each sensor pair and frequency 
using the PLI, which measures the reliability of phase 
relations between two regions at a given time point 
relative to stimulus onset. For each electrode pair, i and 
j, and time point, t (ms), and for all the trials (n = 1,…N), 
the connectivity over the trials was indexed by calculating 
the PLI across trials for each frequency band and subject 
using the following formula: 

PLIij t sign ij t n()= D ( )=å
1

1N n
N| [ , ]|j  (1)

where D ( )jij nt, s is the phase difference of 

j -j .i t n j t n, ,( ) ( )
Connectivity over time is more sensitive for resting-

state data or for tasks that have long event durations, 
such as at least several hundred milliseconds, due to poor 
temporal precision of connectivity over time. Connectivity 
across trials has a higher temporal precision and is 
therefore able to better identify the time course of changes 
in connectivity and transient changes in connectivity. 

This method produces a sensor-by-sensor adjacency 
matrix for each time point within each analyzed 
frequency band. Time series of adjacency matrices were 
compared across groups for each trial condition. These 
adjacent matrices were used to investigate event-related 

Figure 4: Stimuli. Examples of faces and objects, as well as the target flowers used as stimuli.
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connectivity dynamics and to identify windows for further 
statistical analysis. 

To visualize our results, we defined the unbiased 
functional connection in the network with surrogate data. 
Twenty surrogate data sets were computed in shuffled 
trials [13, 35]. For a connection pair of i and j, if the 
distribution of 20 PLI values of surrogate data were 
deviated from the PLI of original data, the i and j pair was 
deemed to be a true connection. Otherwise, it was 
disconnected (PLIij = 0). Nonparametric Wilcoxon signed-
rank tests were performed such that the median of 20 PLI 
values of surrogate data were compared with the PLI of 
original data. (H0 [null hypothesis]: 20 PLI values of 
surrogate data [ PLIij

surrogate ] have symmetric distribution 
with the median µ, where µ is the PLI of original data  
[ PLIij

orignal ]) [43].

PLIij P= -PLIij
orignal median PLIij

surrogate( )if   0.05<
 

PLIij otherwise    (2)

Topographical analysis of phase synchrony 

To characterize the event-related network 
connectivity dynamics, adjacent matrices were averaged 
for non-overlapping 150 ms time-windows (0–150 ms,  
150–300 ms), which represented the mean connectivity 
within these active windows for each subject. Adjacent 
matrices were then averaged across an equivalent number 
of time points (–150 to 0 ms) in the pre-stimulus baseline 
interval.

The NBS is a network-specific approach to 
control the FWER in the weak sense when performing 
mass univariate testing on all connections in a network. 
The component analysis is in NBS for dealing with the 
multiple comparisons problem during connectome-
wide analysis. The NBS seeks to exploit the topological 
characteristics of an effect to boost the power with which 
that effect can be detected. Any such effects on brain 
networks are likely to encompass multiple connections 
and nodes, which form interconnected subnetworks. A 
corollary of this observation is that interesting variations 
in network connectivity are more likely to span multiple 
edges rather than to be confined to individual connections. 
Therefore, we focused on the widespread changes in 
brain activity rather than the localize effects of individual 
edges. Traditional methods, such as the Bonferroni or 
false discovery rate corrections, are overly conservative 
because they treat each test independently. The NBS 
evaluates the null hypothesis at the level of connected 
edge components showing a common effect. This method 
provides a considerable gain in statistical power. Instead of 
identifying clusters of voxels in physical space, the NBS 
identifies connected subnetworks in topological space. The 
size of a subnetwork is most typically measured by the 
number of edges that it comprises. The NBS defines these 
interconnected subnetworks as connected components 
and ascribes a familywise error corrected p-value to each 
subnetwork using permutation testing [37, 38]. 

The detailed step of the NBS is shown in Figure 5. In 
the present study, the initial univariate threshold for between-

Figure 5: Schematic of the network-based statistics analysis. (A) Schematic of the comparison of functional connectivity networks 
in healthy participants and schizophrenia patients, as calculated by the PLI, in the upright face condition. (B) A t-test statistic was computed 
at each network edge, resulting in a matrix of statistical values. (C) This matrix was then thresholded using a primary, component-forming 
threshold (T = 1.7, corresponding to p < 0.01) to yield a thresholded and binarized statistical matrix. (D) The connected components of this 
thresholded statistical matrix were identified, and the size of each was computed; this component comprises 22 edges. (E) The control and 
patient subjects of were shuffled randomly 5000 times, and steps (b-d) were repeated. (F) At each iteration, the size of the largest component 
was stored to generate an empirical null distribution of maximal component sizes. (G) The observed size of the component illustrated in (d) 
corresponded to P = 0.0150. The functional connectivity differences between the patients and the controls involve a distributed network of 
connections (d) for the frontal, central parietal, temporal and occipital areas.
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group comparisons was adapted for the data distributions 
being analyzed to T = 1.7, corresponding to a p-value of 
p < 0.01, while effective control for multiple comparisons 
was achieved irrespective of this initial threshold. Data 
surrogation was repeated 5,000 times to create a null 
distribution. In this case, to explore the temporal evolution 
of connectivity changes between the groups, we subtracted 
the mean baseline adjacency matrix from the mean active 
window adjacency matrix for each subject. 

Graph theoretical analysis of dynamic network 
topologies

Functional connectivity among sensors was measured 
by computing the PLI for every possible pair during the 
active and baseline time windows. The resulting nonlinear 
correlation matrices were converted to weighted graphs.

To characterize the event-related weighted network 
dynamics, we constructed an active and baseline network 
G (16 × 16) for each subject using GRETNA (http://www.
nitrc.org/projects/gretna/) [44]. In the present study, global 
threshold methods (0.3 ≤ S ≤ 0.40) were used to distinguish 
real connections from spurious connections, which altered 
the network connection density. The clustering coefficient 
is essentially the ratio of the geometric weight of all closed 
triplets to the total weight of both open and closed triplets 
in the network [18, 45]. The clustering coefficient was 
calculated with the following formula: 

Ci i h G WijWihW jh
ki ki

i G= å
Î , ( )

( )/
Î

-
å

1
3

1 2
 (3) 

where ki is the degree of node I, and Wij is the weight 
difference between node i and node j in the network. The 
mean clustering coefficient of network C is the average 
over each node’s clustering coefficient, reflecting the level 
of local connectedness of a node.

C
N
Ci=

1
�  (4)

The clustering coefficient for a given network 
was obtained by averaging all clustering coefficients of 
individual nodes. 

To address the dependence of network measures 
on the connectivity density, we normalized the clustering 
coefficients with respect to 100 randomized networks 
matched to the empirical network for size, connection 
density, and degree distribution.

We integrated the normalized clustering coefficient 
across the full range of thresholds analyzed to yield the 
area under the curve (AUC) rather than on each of the 
many threshold-specific measures to avoid the multiple 
comparisons problem. Statistical testing was then 
performed on the event-related AUC of the normalized 
clustering coefficient, calculated by subtracting the baseline 

AUC from the active AUC, indicating changes from a 
baseline period.

Statistical analysis 

SPSS version 20.0 (SPSS, Inc, Chicago, IL) was used 
for statistical analysis (http://www.spss.com/). Repeated-
measures ANOVA was carried out separately for the event-
related AUC of the clustering coefficient, path length and 
small-worldness involving Group (schizophrenia patients 
vs. healthy controls) as the between-subjects factor and 
Category (faces vs. tables) and Orientation (upright vs. 
inverted) as the within-subject factors. The Greenhouse-
Geisser epsilon value in which the repeated-measures data 
failed the sphericity test was obtained in all cases [46]. All 
statistical comparisons were two-tailed with α = 0.05. We 
used the Bonferroni correction to correct for the effect of 
multiple comparisons in neural oscillations.
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