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ABSTRACT
The treatment of peritoneal surface malignances has changed considerably 

over the last thirty years. Unfortunately, the palliative is the only current treatment 
for peritoneal carcinomatosis (PC). Two primary intraperitoneal chemotherapeutic 
methods are used. The first is combination of cytoreductive surgery (CRS) and 
Hyperthermic IntraPEritoneal Chemotherapy (HIPEC), which has become the gold 
standard for many cases of PC. The second is Pressurized IntraPeritoneal Aerosol 
Chemotheprapy (PIPAC), which is promising direction to minimally invasive as 
safedrug delivery. These methods were improved through multicenter studies and 
clinical trials that yield important insights and solutions. Major method development 
has been made through nanomedicine, specifically nanoparticles. Here, we are 
presenting the latest advances of nanoparticles and their application to precision 
diagnostics and improved treatment strategies for PC. These advances will likely 
develop both HIPEC and PIPAC methods that used for in vitro and in vivo studies. 
Several benefits of using nanoparticles will be discussed including: 1) Nanoparticles 
as drug delivery systems; 2) Nanoparticles and Near Infrred (NIR) Irradiation; 3) use 
of nanoparticles in perioperative diagnostic and individualized treatment planning; 
4) use of nanoparticles as anticancer dressing’s, hydrogels and as active beeds for 
optimal reccurence prevention; and 5) finally the curent in vitro and in vivo studies 
and clinical trials of nanoparticles. The current review highlighted use of nanoparticles 
as novel tools in improving drug delivery to be effective for treatment patients with 
peritoneal carcinomatosis.

                                                                             Review
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INTRODUCTION

The treatment of peritoneal surface malignancies 
has evolved extraordinarily over the years from 
cyto-reductive surgery (CRS) techniques through 
intraperitoneal drug delivery to intraoperative 
chemotherapy with hyperthermia (HIPEC) and/or post-
operative normothermic chemotherapy (EPIC) [1]. One 
of the most recent evolving intraperitoneal delivery 
systems is PIPAC (Pressurized IntraPeritoneal Aerosol 
Chemotheprapy) [2, 3], which is performed with palliative 
intent or before HIPEC in selected cases [4]. It is also 
used as intraperitoneal neoadjuvant therapy that can be 
combined with systemic neoadjuvant chemotherapy to 
induce responsiveness with CRS+HIPEC to treat with 
curative intent patients. The cytostatics do not remain 
in the abdominal cavity for prolonged periods of times 
particularly small molecular weight chemotherapeutics, 
which are quickly absorbed into the circulation [5, 6]. 
The ideal drug for intraperitoneal administration should 
remain active in the peritoneal cavity for prolonged 
period of time to avoid systemic absorption and toxicity. 
In addition, it should be a selective target for the 
tumor cells with deep penetration into tumor nodules 
[7, 8]. Currently, most of the HIPEC, EPIC and PIPAC 
procedures are using the intravenous formulation of 
chemotherapeutic agents.

The rationale for using nanoparticles (NPs) in the 
treatment of peritoneal carcinomatosis is to take advantage 
of the anti-cancer therapy as potential target for longer 
effectiveness in the peritoneal cavity. The high intracellular 
concentrations of nanoparticles can be achieved because 
they are able to enter the cells without being recognized 
by P-glycoprotein, which is one of the most important 
mechanisms in drug resistance [9]. Nanoparticles work as 
carriers of chemotherapeutics selectively target the tumor 
cells [10]. Twelve nanomedicines are clinically approved 
as anti-cancer drugs but their intraperitoneally use has 
not been reported [11]. However, the peritoneum can be 
targeted with NPs [12, 13] and EPIC can be performed 
using NPs carrying chemotherapeutics as metronomic 
therapy. The NPs can also be used for HIPEC or PIPAC. 
The depot systems such as hydrogels have some problems 
of homogeneus distribution and tolerance was investigated 
to achieve the sustained release of NPs.

The large surface area of the peritoneum, presence 
of adhesions, mucus, fluid and effects of gravity make 
intraperitoneal delivery of chemotherapy challenging. 
Many of the intravenous formulations are currently use 
the off-label for HIPEC and PIPAC which are susceptible 
to rapid clearance, exhibit local toxicity have limited 
penetration depths [14]. Nanoparticles with their sub-
micron size, versatility of physical, chemical properties 
and easily modifiable surface are uniquely poised to bypass 
the body clearing systems. They penetrate through extra- 
and intracellular barriers to deliver drugs into cancer cells 

thereby enhancing chemotherapeutic efficacy. Specific 
manipulation of the chemical composition of nanoparticles 
can significantly increase peritoneal residence time, 
thereby prolonging exposure of tumor to chemotherapeutic 
agents will increase the local drug concentration is primary 
goal of intraperitoneal chemotherapy [15].

The latest advances in the field of nanoparticles and 
their application to precision diagnostics and improved 
treatment strategies for peritoneal carcinomatosis (PC) 
will be discussed. These advances will likely develop both 
the HIPEC and PIPAC methods that were tested in in vitro 
and in vivo studies. We will discuss: 1) Nanoparticles as 
drug delivery systems; 2) Nanoparticles and Near Infrred 
(NIR) Irradiation; 3) use of nanoparticles in perioperative 
diagnostic and individualized treatment planning; 4) use 
of nanoparticles as anticancer dressing’s, hydrogels and 
as active beeds for optimal reccurence prevention; and 5) 
finally the current in vitro and in vivo studies and clinical 
trials of nanoparticles. 

Nanoparticles as drug delivery systems

Nanocarriers are the epitome of rational drug design 
with advancements in material science allowing for the 
manufacture of nanoparticles optimized for desired mode 
of delivery, location within the body, and characteristics of 
the tumor. These advantages offer an exciting prospect for 
improving the therapeutic index of chemotherapy drugs, 
overcoming drug resistance mechanisms and enhancing 
tumor penetration [16–18]. The important for the treatment 
of peritoneal surface malignancies that that has limited 
response to systemic chemotherapy since no current 
approved Food and Drug Administration (FDA) drugs for 
intraperitoneal treatment [19]. The following section will 
provide an overview of nanoparticle technologies used for 
intraperitoneal cancer drug delivery.

Advantages of using nanoparticles as drug 
delivery vehicles in the peritoneum 

Nanoparticles delivered intravenously or 
intraperitoneally selectively localize to tumor through 
passive and active targeting mechanisms. Passive 
accumulation of nanoparticles is mediated by enhanced 
permeability and retention effect (EPR), which relies 
on imperfections in tumor architecture for intratumoral 
accumulation, and retention due to diminished 
lymphatic recovery by the tumor [20]. Active targeting 
is achieved through the addition of specific moieties 
to the surface of nanoparticles that can interact with a 
wide range of molecular targets to enhance nanoparticle 
localization to tumors. The availability of biodegradable 
slow-release formulations and offers the prospect of 
long-acting intraperitoneal chemotherapy. Xu and 
colleagues developed a biodegradable Paclitaxel-loaded 
thermosensitive hydrogel system that demonstrated 
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enhanced cytotoxicity to CT26 cells, residence time 
upward of 96 hrs compared to 24 hrs for Taxol® and 
excellent biocompatibility [21]. 

In addition to rapid clearance, many existing 
chemotherapeutic agents effective for IV treatment of 
peritoneal malignancies are either highly hydrophobic 
or toxic to peritoneal tissues [22–25]. Sequestering 
drugs within nanoparticles allows delivery of highly 
hydrophobic drugs into the peritoneum and minimizing 
toxicity to healthy tissues by eliminating solvents or 
carriers. The use of nanocarriers also increases the 
intraperitoneal and intratumoral concentration of drugs 
as well as the maximize the tolerated dose compared 
to conventional formulations [26]. For example, 
nanoparticle formulation of paclitaxel (Nanotax®) at 
doses up to 275 mg/m2 was delivered intraperitoneally 
with no Grade 2, 3, or 4 neutropenia compared to Grade 
4 neutropenia at 175 mg/m2 of standard formula of 
paclitaxel [27]. Differences in sampling methods and 
data reporting preclude the comparisons of efficacy and 
pharmacokinetics of standard versus nanoparticle drug 
formulations. Available pharmacokinetics data from 
selected studies are summarized in Table 1. 

While most of the literature on the intraperitoneal 
use of nanoparticles has focused on nanoparticle delivery 
of chemotherapeutic or imaging agents, some studies 
have explored the possibility of using nanoparticles as 
palliative therapy to prevent peritoneal adhesions and 
scarring [29]. Such of these studies showed that tanshinone 
IIA loaded nanoparticles delivered intravenous (IV) was 
successfully prevented peritoneal adhesions in rats by 
upregulating fibrinolysis [30]. Alternatively, developing of 
tissue plasminogen activator loaded with thermosensitive 
hydrogel exhibited an excellent anti-adhesion effect 
in a rat model that repeated-injury of intraperitoneal  
adhesions [31]. 

Types of nanocarriers

A variety of materials including polymers 
(dendrimers, nanospheres, nanoparticles, polymer-drug-
conjugates, injectable and implantable depots), lipids 
(liposomes, solid lipid nanoparticles), metals (quantum 
dots, gold nanoshells), and carbon (buckyballs, nanotubes) 
are available for nanoparticle synthesis. Selection of 
material depends on the desired properties of the final 
nanoparticle as well as characteristics of the intended 
drug cargo such as hydrophobicity and susceptibility 
to enzymatic degradation. Polymers and lipids have 
received special attention for use in drug delivery system 
because of their excellent biocompatibility and versatility 
as well as their promising results from in vivo studies of 
intraperitoneal delivery [32, 33]. The list of nanocarriers 
that have been used so far in medicine is summerized in 
Table 2.

Overview of nanoparticle types

The shape and architecture of nanoparticles 
determine how the drug is affixed to the carrier and 
transported in the body. Drugs can be absorbed onto, 
encapsulated within, conjugated to or absorbed into 
nanocarriers. Drugs can also be loaded into nanoparticles 
using self-assembling hydrophobic/hydrophilic micelles, 
direct conjugation via chemical synthesis, self-assembled. 
Drug loaded nanoparticles have several mechanisms 
to release of the encapsulated material, including light 
triggers (near-infrared, ultra-violet), thermal stimulation, 
magnetic guidance, ultrasound, electrical stimulation and 
endogenous gradients which can be dependent on pH, 
enzymatic concentrations or redox potential [51, 52]. 
Table 3 provides the brief descriptions of nanoparticles 
with peritoneal applications.

Challenges in intraperitoneal nanoparticle drug 
delivery

Nanoparticles face multiple physical and biological 
barriers on the way to their target. Increasing the number 
of barriers resulted in diminishing scale of the targets. 
These barriers include reticular structures, lumens of small 
capillaries, endothelial covering of vessels, epithelium 
and stroma of tumors, cell membranes, and nuclear 
membranes. Additional challenges in the peritoneum 
include achieving its distribution in the cavity due to the 
presence of organs, mucus, fluid, effects of gravity, and 
micro-scale obstacles such as phagocytosis that remove 
by macrophages and clearance through lymphatics. The 
distribution of nanoparticles can be physically improved 
through manipulation of organs and positional changes, 
adverse effects of mucus and premature clearance. A 
review of human and animal peritoneal physiology studies 
reveals several important considerations for the design of 
intraperitoneal therapeutics including: 1. higher molecular 
weight and diameter of prolong peritoneal residence time, 
2. lymphatic drainage is the major route of removal of 
intraperitoneally delivered drugs, 3. peritoneal capillary 
membrane transports water and water-soluble substances 
through 4 nm pores and proteins through 25 nm pores 
and 4. negatively charged agents are rapidly cleared from 
the peritoneum, while positively charged agents exhibit 
increased retention time [67, 68]. Previously considerable 
effort has been devoted to develop a nanocarrier that 
optimized for peritoneal delivery, including manipulation 
of size, surface charge and PEG coating.

Studies of nanoparticle-mucus interactions reveal that 
mucus interferes with penetration of nanoparticle through 
hydrogen bonding, adhesion, and electrostatic interactions 
[69]. PEG coating has been used to minimize mucus-
nanoparticle interaction thereby increasing nanoparticle 
penetration through mucus [70]. To achieve the target, 
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alternative strategies include conjugation of mucolytic to the 
nanoparticle surface or the extensive mucin content of mucus 
has been used. It is important to consider the toxicity effects 
of intraperitoneal delivery of nanoparticles. These effects 

include systemic penetration, splenic and liver accumulation, 
and inflammatory responses in the peritoneum. The safety 
findings from selected studies of intra-peritoneal (IP) 
nanoparticle delivery are summarized in Table 4.

Table 1: Comparisons of efficacy and pharmacokinetics of standard versus nanoparticle drug 
formulations

Drug Exposure Time Cmax IP
mg/L

Cmax Plasma
mg/L

Paclitaxel [28] 2 hours 46.61 0.112
Nab-PTX [36] Not reported 40.622 0.138
Nanotax® [120] 30–60 minutes 5.723 0.004

1Dose of 175 mg/m2 measured at 2 hours in 12 patients. 
2Doses of 35–112.5 mg/m2 measured at 0, 1, 2, 4, 6, 8, 24 and 48 hours over 1 cycle (Days 1 and 15) in 8 patients.
3Doses of 50–275 mg/m2 measured at 2 hours in 13 patients.

Table 2: Types of nanocarriers used in clinical applications
Type of nanocarriers Examples Advantages Application
Naturally polymers [34] - heparin 

- chitosan 
- gelatin 
- hyaluronate 
- albumin

- highly biocompatible 
- biodegradable
- non-toxic
- non-immunogenic

- advanced prostate cancer 
- non-small cell lung cancer and 
breast cancer [35]
- intraperitoneal treatment [36]
- peritoneal metastasis in gastric 
cancer [37]

Synthetic polymers [38] - PEG 
- PLGA

- biodegradable 
- biocompatible 
- non toxic
- modifies the surface of a variety of 
nanoparticles
- improves in-vivo stability
- preventing opsonization and 
phagocytosis 
- diminishing clearance by the 
reticuloendothelial system [39, 40]

- imaging and therapy [39]
- drug delivery in the 
peritoneum [41]

Liposomes [43] - approved by the FDA [42]
- susceptibility to opsonization and 
clearance by the reticulo-endothelial 
system
- increase likelihood of lodging in the 
lymph nodes
- propensity to liposomal vesicle 
destabilization [44, 45]
- ready availability 
- non-toxic, 
- biodegradable 
- unique structure that creates two 
separate compartments for entrapment 
for both lipophilic and hydrophobic 
compounds [46, 47]

- ovarian cancer [48]
- drug encapsulation and 
loading
- controlled rate of drug release 
[49, 50]

PEG - polyethylene glycol; PLGA - poly(lactic-co-glycolic acid).



Oncotarget78212www.impactjournals.com/oncotarget

Surface modifications for targeting of peritoneal 
malignancies

The search for molecular targets to enhance 
target the tumor by the nanoparticle has yielded several 
candidates with potential for clinical utilization. These 
candidates include folic acid and transferrin which 
are showing the most effective enhancers [72–76]. An 
alternative targeting strategy involves is encapsulation 
of targeted therapeutic agent in non-targeted nanocarrier 
[77]. Currently, the bevacizumab and pemetrexed only 
target therapeutics have been used in the peritoneal 
cavity. Bevacizumab was successfully used as a 
palliative treatment of malignant ascites in peritoneal 
carcinomatosis of ovarian origin [78]. Pemetrexed (folic 
acid targeting drug) used in Phase I trial for treatment of 
optimally debulked ovarian, peritoneal, and tubal cancers 
showed lower toxicity and efficacy compare to other 
chemotherapeutic agents [79, 80].

Nanoparticles and near infrared (nir) 
irradiation

Many advances listed for the aforementioned 
drug delivery systems (DDS) that encourage number of 
groups to explore the great effect of dual combination of 
external excitatory source and nanoparticle based DDS 
[81, 82]. The investigations have entailed to use different 
types of external energy sources to activate or control 
the drug release [83]. This approach via the anticancer 
hyperthermia techniques method has been quickly adopted 
and focused on the Near Infrared (NIR) Irradiation to take 
the therapeutic advantages of specific effects to deliver the 
nanoparticles [84, 85]. 

NIR irradiation identified 200 years ago and its 
used in nanomedical since 1990s [86]. NIR irradiation 
represents specific electromagnetic wave that exhibiting 
both wave and particle properties to be strongly absorbed 
by water, hemoglobin and myoglobin. As demonstrated 

Table 3: Types and peritoneal cancer applications of nanoparticles
Type Description Applications

Liposomes

Colloidal particles composed of phospholipids. 
On contact with water, hydrophobic and 
hydrophilic components

Mirvetuxumab soravansine in combination with 
pegylated liposomal doxorubicin in adults with 
folate receptor alpha positive primary peritoneal 
cancer [53]
Intraperitoneal delivery of paclitaxel [54]

Nanospheres Solid spherical structures composed of a matrix 
into which a drug is disbursed

IP injection for in vivo imaging of intraperitoneal 
tumors [55]

Micelles
Self-assembling spherical structures with an 
inner hydrophobic core and an outer hydrophilic 
shell

IP delivery of paclitaxel-loaded micelles to treat 
ovarian cancer [56]
Prevention of peritoneal adhesions [28]

Injectable and 
implantable depots

Macroscale deposits of liquid or gel-like matrix 
containing a therapeutic agent or nanoparticles 
loaded with a therapeutic agent

Intraperitoneal chemotherapy with extended 
residence time and slow release
Hyaluronic acid-based hydrogels for delivery of 
paclitaxel to treat peritoneal tumors [57] 
Hyaluronic acid-based hydrogels for delivery of 
cisplatin for treatment of disseminated gastric 
cancer [58] 
Prevention of peritoneal adhesions [59, 60] 

Expansile 
Nanoparticles

Environment-responsive spheres that expand and 
release contents in response to a programmed 
stimulus such as pH

pH-triggered intraperitoneal delivery of 
chemotherapy [61]
Paclitaxel loading for intraperitoneal delivery 
with extended release time [61, 62]

Gelatin nanoparticles

Solid spheres composed of natural, non-toxic 
biopolymer in micro- or nano-size range

Gelatin nanoparticles for paclitaxel delivery 
in mouse model of disseminated peritoneal 
cancer [63] 
Suppression of peritoneal fibrosis using siRNA-
conjugated gelatin microspheres [64] 

Bioadhesive 
nanoparticles

Polylactic acid-based copolymer nanoparticles Adhesion to proteins allows longer residence 
time in the peritoneum [65] 

Mesoporous silica 
nanoparticles

Biocompatible, biodegradable spheres with 
pores of adjustable sizes allowing drug loading 
and modifiable drug release rate

Mesoporous silica nanoparticles improve paclitaxel 
loading and peritoneal residence time [66] 
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in experimental animal models, this type of irradiation 
noninvasively delivers energy to cytochrome C oxidase 
by stimulating the respiratory chain enzyme (Complex 
IV) and leads to increased adenosine triphosphate (ATP) 
production [87, 88]. The most important therapeutic 
useful effect in targeted tumor involves hyperthermia 
implementation when the nanoparticles used for 
phototherapy-based therapeutic strategies [89–93]. The 
main specific effects of NIR irradiation and nanoparticle 
implantation are favored and/or considered most important 
to cancer treatment are summarized in Table 5.

There have been only a few published papers 
that have fully referred to the potential use and initial 
experimental effects of nanoparticles and NIR for 
HIPEC and none for PIPAC. One of the first publications 
addressing this topic is detailed review suggested that the 
NIR/nanoparticle concept could improve HIPEC [102]. 
They further discussed the current three main types of 
nanoparticles including: carbon nanotubes, metal and 
magnetic nanoparticles. Moreover, Single Walled Carbon 
Nanotubes (SWNT) is more efficient than gold nanoshells 
when its stimulated by infrared light and when SWNT 
stimulated by radiofrequency induces much higher 
temperature. 

Wu et al. tested nanoparticle-induced intraperitoneal 
hyperthermia and targeted photoablation on ovarian cancer 
using ID8 cells and non-scid mouse with artificially 
induced PC using ID8-luc cells (C57BL/6 origin) [103]. 
They used pegylated silica-core gold nanoshells (pSGNs) 
with external near-infrared (NIR) laser irradiation and 
found that repeated photothermal treatment can effectively 
eliminate intraperitoneal tumors. Furthermore, they 
found that conjugation of pSGNs with anti-human CD47 
monoclonal antibody enhanced targeted intraperitonal 
anti cancer therapy. Their findings raised the possibility 
of repeated non-invasive photoablative therapeutic 
interventions after initial HIPEC. The number of 

promising nanomaterials for NIR-induced hyperthermia 
increased but their cytotoxicity and systemic impact need 
more evaluation [104].

Nanoparticles in perioperative diagnostic 

Over the last few years there are improvements 
in the treatment of patients with peritoneal metastases 
(PM) as well as diagnosis of the advance stage of the 
disease by using the fluorophore nanoparticles. The new 
era of surgical guide with molecular navigation helped 
in detection of tumor in lymph nodes, vessels and vital 
structures and lead to improve the surgical precision. 
The fluorphores are visible in the near-infrared light 
range (700–900 nm) [105]. It can be visualized using a 
special camera with light emitting diodes (LED) when 
it injected into the patient [106]. The LED produce is 
a beam with near-infrared wavelength to which the 
fluorophore responds and emits another wavelength of 
near-infrared light that can be detected with a camera 
[107]. Many new nanoparticles have been developed that 
are widely used in sentinel node biopsy, visualization of 
gastrointestinal structures, ureter visualization, and tumor 
visualization as well as peritoneal spread [108–112]. Real 
time visualization of fluorphores may help in optimizing 
the planning of surgical procedures, the protection of 
important vital structures such as the ureter or common 
bile duct, visualization of blood vessels or nerves, 
obtaining a negative resection margin and detection of 
small tumor deposits. The limitation of NIRF (near-
infrared fluorescent) guided surgery is small detection 
depth (about 5–8 mm) [107]. Currently, the mostly 
widely fluorophores that approved for use in humans 
are indocyanine green (ICG), methylene blue (MB) that 
represents some NIRF properties, 5-aminolevulinic acid 
(5-ALA), and fluorescein. In cytoreductive surgery (CRS) 
and HIPEC, we can use NIRF-guided nanoparticles like 

Table 4: Conclusions from select studies/trials of intraperitoneal nanoparticle safety
Nanoparticle Study Year Results 

Animal studies

Microspheres Kohane at al. [40] 2006

Microspheres induced 
inflammation
Liver and splenic sequestration 
with foamy macrophages

Human studies

Paclimer microspheres Phase I Trial [25] 2006 Microspheres induced 
inflammation; study discontinued

Pegylated liposomal Doxorubicin (with 
HIPEC at the time of CRC) Phase I trial [71] 2008 Well tolerated

Nanotax® (nanoparticulate paclitaxel Phase I Trialm [25] 2015

Well tolerated with minimal 
systemic exposure and reduced 
toxicity compared to IV 
paclitaxel
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MB for visualization of important structures such as 
the ureter, which is extremely important in reoperations 
[110]. NIRF nanoparticles are also used in the detection 
of peritoneal spread. One study has used tumor specific 
fluorescence imagining to target over expressed folate 
receptor-α in ovarian cancer and more tumor deposits were 
visualized using NIRF nanoparticle than with the naked 
eye [111]. The visualization with targeted NIR fluorphores 
in CRS and HIPEC procedures may result in more efficient 
cytoreduction due to more precise resection of even the 
smallest tumor nodules [111]. Another study from the same 
team also analyzed the sensitivity and diagnostic accuracy 
of α(v)β(3)-integrin-targeted NIRF compound in ovarian 
cancer and found it has 95% sensitivity, 88% specificity, 
and 96.5% diagnostic accuracy [113]. Optimization of 
molecular imaging that combines immunological probes 
with fluorophores in order to improve cancer detection is 
actively being pursued [114]. Currently, there are clinical 

3 trials to evaluate NIRF technology for the detection of 
peritoneal spread (NCT02032485, NCT01982227, NCT 
01834469). The pilot study results from the first trial 
(NCT02032485) showed evaluation of NIRF imagining 
in peritoneal metastases detection due to colorectal 
cancer [115]. Intravenous indocyanine green (ICG) was 
intraoperatively applied to 63 of 78 peritoneal resected 
nodules in 14 patients. These data showed that the 
fluorescence and final pathological examination are 84% 
malignant and 16% benign. Moreover, in 4 of 14 (29%) 
patients surgery the fluorescent detection was adjusted 
because of the additional PM not detected by naked eye 
visualization and palpation. The data from the pilot study 
concluded that ICG fluorescence imaging appears to be 
particularly useful for non-mucinous PM of colorectal 
origin. The visualization of PM in gastric cancer mouse 
model using ICG combined with antibodies against 
CEA or EGFR was reported [112]. The potential of near 

Table 5: Data from in vitro and in vivo studies described the main specific effects of Near-infrared 
(NIR) irradiation use combined of nanoparticle implementation potentially prospectively that 
useful in HIPEC and PIPAC

Selected specific effects of the NIR 
irradiation use combined with 
nanoparticle implementation

Possible practical application Reference

Hyperthermia

The possible usage of NIR induced 
hyperthermia for example using the 
phenomenon of surface plasmon resonance 
effect to destroy only cancer cells.

Chatterjee DK et al. 2011 [91]
Margheri G. et al. 2016 [92]
Huff TB et al. 2007 [93]

Fully localized (targeted) therapy

The use of NIR and selected nanoparticles 
allows for fully targeted anticancer treatment 
i.e. in intratumoral nanospheres–cytostatics 
systems application or selective anatomical 
distribution with subsequent radiation. 
Such therapy could prospectively acts more 
sparing on healthy cells and tissues.

Gupta S. et al. 2012 [94]
Hong C. et al. 2011 [95]

The possibility of multiple 
therapeutic interventions

The use of a representative group of 
nanoparticles allows the multiple NIR 
intervention in case of the planed interval 
treatment or rapid progression.

Krishnan S. et al. 2010 [96]
Chitgupi U. et al. 2017 [97]

Radiation dose enhancement

Some authors suggested that selected 
nanoparticles such as gold nanoparticles 
could be used to enhance the radiation dose 
with good anticancer effects.

Hainfeld JF. et al. 2004 [98]
Chen CW. et al. 2014 [99]

Precise control over the released 
dosage

In some applications of nanoparticle based 
DDS the amount of the released anticancer 
molecules could be well-tuned by altering 
the time duration and intensity of NIR 
light exposure. This specific effect and 
property is especially important in practical 
application when the depot form of nano-
DDS is used

Bagheri A. et al. 2016 [100]
Carling CJ et al. 2015 [101]
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infrared photoimmunotherapy in peritoneal carinomatosis 
was reported in ovarian origin of mouse model [116]. The 
utility of ICG with other probes was demonstrated using 
a liposomal synthesized ICG liposomal derivative [117]. 

Another potential 5-ALA fluorophore demonstrated 
in PM evaluated the best pre-operation application 
time and the dose for intraoperative detection of 
peritoneal metastases in ovarian cancer patients [118]. 
In addition, 5-ALA was used for detection of staging of 
laparoscopic gastric cancer surgery [119, 120]. These 
studies evaluated the peritoneal visualization after 
chemotherapy by conventional laparoscopy in 12 of 38 
patients with advanced gastric cancer and peritoneal 
metastases. Additional 4 patients were positive for 
peritoneal metastases with laparoscopy and 5-ALA 
visualization and interestingly 3 of these 4 patients were 
negative by peritoneal washing cytology analysis [120]. 
Combination of 5-ALA fluorescence detection with 
molecular analysis of specific genes that mediate 5-ALA 
transport, such as peptide transporter PEPT1 (ALA influx 
transporter). PEPT1 was overexpressed in tumors suggest 
that evaluation of the expression of PEPT1 may help in 
the selection of patients who will benefit from 5-ALA 
visualization of tumor deposits [121]. 

Nanoparticles as anticancer dressing’s, hydrogels 
and as active beads used for optimal recurrence 
prevention

The preclinical studies from using of novel 
DDS systems based on nanoparticles for the treatment 
and diagnosis in the peritoneal surface malignancy 
could lead to new applications for NP’s such as direct 
chemotherapeutics delivery into the compartment created 
after resection or before or after HIPEC and PIPAC 
procedure [122]. Fan et al. demonstrated antitumor 
effects of docetaxell/LL37 in tumor bearing mice and 
loaded thermosensitive hydrogel nanoparticles in PC 
of colorectal origin [123]. In addition, polymer-lipid 
biodegradable depot (PoLigel) used in mouse model of 
ovarian cancer for sustained intraperitoneal chemotherapy 
resulted in reduction of tumor burden supporting the 
notion that nanomaterials loaded with cytostatic could be 
used to enhance anti-tumor effects and prevent or mitigate 
recurrence [124].

Various advances in DDS for intraperitoneal 
therapy such as implants and injectable depots to 
extend the residence time of chemotherapeutic agents 
in the peritoneal cavity have been discussed [125]. 
Based on nanofibers, carbonaceous nanomaterials and 
polycaprolactone materials were evaluated and termed 
nano- desings or hybrid beads with anticancer properties 
[32, 122, 126]. The honokiol nanoparticles and called 
the forms thermosensitive hydrogel composites have 
been also used [127]. The terminology for DDS will be 
depend on number of diverse factors including: types of 

nanomaterial (i.e., biodegradable-active carriers of drug), 
pharmacodynamics and pharmacokinetic knowledge of 
the material; the particular programmable smart targeted 
drug delivery device [128, 129] and the intraoperative 
application(s) of particular depot.

Currently there are two primary direction to use the 
array of available nanoparticles to extend the residence 
time of cytostatic in the peritoneal cavity and improve 
their targeted influence [122, 130]. First is to be used 
it before HIPEC to support CRS and prospectively for 
protection with biopsy for histopathology and resections 
performed laproscopically before PIPAC procedure. 
Second is to be used it after completion of HIPEC or 
PIPAC during the last perfusion/spraying cycle or after 
the washing procedure [32]. The biodegradable depot 
solutions available are summarized in Table 6. The tumors 
following resection after organ sparing of non-anatomical 
resections parenchymal organs are detected on the liver 
surface [32]. The material used in these procedures should 
be sufficiently durable to withstand all subsequent HIPEC 
or PIPAC procedures. The second approach is not required 
any special development of materials after HIPEC or 
PIPAC to avoids exposure to circulating/sprayed liquid or 
heat [32]. The large challenge is to find the depot forms 
that meet specific product characteristics and important 
following requirements; full cytotoxicity without side 
effects, cytostatic distribution, planned biodegradation 
and physicochemical stability. Nonetheless, it is widely 
recognized that drug delivery by nanoparticles is highly 
promising and will likely follow the rigorous of preclinical 
and clinical studies develop in HIPEC and PIPAC [32, 
134–136].

In vitro, in vivo and clinical studies

Nanoparticles have a potential important role in 
cancer therapy. However, utilization of nanomaterials in 
HIPEC is a new concept. Most of the research with the 
application of nanoparticles in peritoneal carcinomatosis 
treatment has been without the use of hyperthermic 
conditions. The registered clinical studies using 
nanoprticles in peritoneal carcinoma are summarized 
in Table 7. Using nanoparticles in ovarian cancer and 
associated peritoneal carcinomatosis is the primary 
interest. Hijaz et al. evaluated the preclinical use of cerium 
oxide nanoparticles conjugated with folic acid (NCe-FA) 
for treatment of ovarian cancer. Folate receptor-α has been 
reported to be overexpressed in ovarian cancer. Exposure 
of ovarian cancer cells to NCe-FA led to the intracellular 
accumulation of drug and inhibited cell proliferation. 
Mice treated with NCe-FA compared with NCe exhibited 
decreased in tumor burden without toxicity. In addition, 
combined treatment of mice with cisplatin enhanced the 
anti-tumor action of NCe-FA [137]. 

The cytotoxicity of another folate receptor-targeted 
formulation with paclitaxel [folic acid-coupled PEGylated 
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nano-paclitaxel liposome (FA-NP)] was evaluated in 
paclitaxel-resistant SKOV3/TAX ovarian cancer cells 
and in murine model of peritoneal ovarian cancer. FA-NP 
overcame paclitaxel-resistance in ovarian cancer raising the 
possibility of the FR-targeted chemoagents might prolong 
the survival in patients with drug-resistant ovarian cancer 
[138]. Another group with similar findings underscore 
the potential of folate-targeted nanoparticles containing 
chemoradiotherapy for treating ovarian peritoneal 
metastasis [139]. Most ovarian tumors and peritoneal 
implants express the CD44 receptor, a mediator of drug 
resistance that is associated with unfavorable prognosis. 
Hyaluronic acid (HA) is the ligand for CD44 promotes the 
proliferation, migration and invasion of cancer cells. Based 
on this observation HA has been evaluated for CD44-

targeted chemotherapy in ovarian cancer. Injection of HA-
based Paclitaxel (PTX)-loaded nanoparticles significantly 
reduced tumor burden compared to conventional PTX, 
thereby underscoring the promise of HA-based nano-
system for delivering PTX [140]. 

Wang et al. evaluated the preclinical effect of 
selenium (Se) nanoparticles in mouse model of peritoneal 
carcinomatosis. The Se nanoparticles were administrated 
intraperitonally prior to the injection of high malignant 
H22 hepatocarcinoma cells into the abdominal cavity. 
Overall, their findings demonstrated that Se nanoparticles 
induced of reactive oxidant species (ROS), exhibited 
potent anti-tumoral effects without induction of host 
cytotoxicity indicate the possibility of high risk to patients 
with PC [141]. 

Table 6: Potentially suitable materials possible to use in the future construction of depot supporting 
tools for HIPEC and PIPAC
Type of used material Type of experimental intervention Reference
Pegylated silica-core gold nanoshells (pSGNs) 
in vivo with external near-infrared (NIR) laser 
irradiation.

Experimental nanoparticle-induced 
intraperitoneal hyperthermia and targeted 
photoablation in treating ovarian cancer.

Wu et. al. [103]

Thermosensitive hydrogel system (PTX/
PECT(gel)) assembled by PTX (paclitaxel)-
loaded amphiphilic copolymer 

Thermosensitive hydrogel system used in 
experimental for sustained intraperitoneal 
chemotherapy of peritoneal carcinomatosis.

Xu et. al. [21]

Nanovehicles based on anti-CD133 antibodies 
bioconiugated to carbon nanotubes loaded with 
platinum (Pt) –prodrugs

Nanovehicles used as a novel target strategy for 
hyperthermic intraperitoneal chemotherapy on 
mouse melanoma B16 PC model.

Nowacki et. al. [32]

Curcumin loaded polymeric micelles (Cur-M) Anti-Tumor Activity of Curcumin by Polymeric 
Micelles in Thermosensitive Hydrogel System 
tested in Colorectal Peritoneal Carcinomatosis 
Model

Zhang et al. [131]

Paclitaxel-loaded pH-responsive expansile 
nanoparticles (Pax-eNP)

Expansile nanoparticles used in in vitro and  
in vivo murine models of malignant peritoneal 
mesothelioma

Colson et al. [142]

Paclitaxel loading nanoparticle (PLA) by 
ultrasonic emulsification

Nanoparticles tested in vitro on rat ovarian 
carcinoma cells and in vivo on PC induced in 
F344 rats

Lu et al. [132]

Combination of 5-fluorouracil (5-FU) loaded 
polymeric micelles and cisplatin (DDP) in 
biodegradable thermosensitive chitosan (CS) 
hydrogel

Nanosystems tested on colorectal peritoneal 
carcinomatosis mouse model

Yun et al. [133]

Table 7: Registered clinical studies using nanoprticles in peritoneal carcinoma
Conditions Intervention Enrollment Phase Number
Fallopian tube carcinoma Primary 
peritoneal carcinoma Recurrent ovarian 
carcinoma

Nab-PTX 51 II NCT00499252

Peritoneal carcinoma Nanotax 22 I NCT00666991
Ovarian cancer Peritoneal cavity cancer Nab-PTX 27 I NCT00825201
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A number of studies have investigated the 
application of paclitaxel (PTX) nanoparticles for peritoneal 
cancer treatment. Polymeric pH-sensitive nanoparticles 
engineered to slowly release PTX (Pax-eNP) at endosomal 
pH (pH ≤ 5), thereby allowing for extended drug action 
to deliver the chemotherapeutic drug in mouse models of 
malignant peritoneal mesothelioma. The DDS exhibited 
prolonged intraperitoneal residence time, enhanced 
cellular uptake and increased tumor affinity. It was 
approved to be effective against a mesothelioma cell line 
(MSTO-211H) in vitro, and simultaneous treatment with 
DDS of the tumor potently decreased tumor burden, initial 
intraperitoneal tumor implants and extended survival 
[142]. Pax-eNP was also evaluated in rat xenograft model 
of pancreatic peritoneal carcinomatosis using Panc-1-
cancer stem cells. They found that cancer stem cells are 
responsible for disease recurrence, therapy resistance 
and metastatic phenotype. Although nanoparticles 
loaded with PTX inhibited tumor growth to the same 
extent as PTX alone but it showed fewer side effects 
[143]. The ability of liposome-encapsulated paclitaxel 
(Nano-Taxol) to influence the stemness phenotype and 
metabolic reprogramming of a paclitaxel-resistant cell 
line was investigated. Intraperitoneal delivery of Nano-
Taxol in mouse xenograft model controls of tumor growth 
compared to standard treatment with Taxol® (intravenous 
delivery) [144].

Promising preclinical studies have led to 
introduction of nanoparticles in clinical practice. A number 
of reported advantages of using albumin nanoparticles 
loaded with PTX (nab-PTX) include: ability to delivery 
of higher dose of paclitaxel; obtain higher intratumor 
concentration of paclitaxel; easy administration and 
avoidance of Cremophor EL medium and related toxicity 
[145]. Nab-paclitaxel was used to treat 47 patients with 
platinum- and taxane-resistant ovarian cancer. Data 
showed the persistent or progressive disease following 
primary chemotherapy or recurrence within six months of 
completing treatment. Nab-PTX demonstrated significant 
clinical efficacy and was well tolerated [145]. Nab-PTX 
was also evaluated in patients with recurrent epithelial 
cancer of the ovary, fallopian tube, or peritoneum. Among 
the 44 patients who underwent treatment, 15 demonstrated 
complete and 13 partial response [146]. Nanotax®, a sterile 
nanoparticulate paclitaxel powder was used in 21 patients 
with peritoneal malignances and its intraperitoneal 
administration was well tolerated by patients with slide 
side effect. Use of DDS showed significant and prolonged 
concentrations of paclitaxel in peritoneal fluid [147]. 
Although there are small numbers of registered clinical 
trials evaluating nab-PTX for peritoneal carcinoma 
treatment, this area of clinical investigation is nonetheless 
highly promising (Table 7). Currently, clinical studies are 
evaluating the use of intraperitoneal administration of 
nanoparticles alone, without induction of hyperthermic 
conditions. Combining nanotherapy with hyperthermia 

could potentially enhance peritoneal carcinoma treatment 
and important step in the evolution of the treatment of 
peritoneal carcinomatosis. 

SUMMARY AND CONCLUSIONS

The number of HIPEC and PIPAC administrations 
performed yearly is growing systematically worldwide. 
Simultaneously, the number of fully qualified and 
reference centres offering these therapies is fortunately 
increasing as well [148, 149]. There are also many new 
studies related to development of these techniques being 
conducted such as those aimed to improve the surgical and 
technical aspects of the procedures to optimize the patient 
selection [150–152]. The large investment of resources 
correlates naturally with the emmerging social need and 
register the number of patients suffering from peritoneal 
carcinomatosis [153]. Currently, the HIPEC is fully 
recommended and recognized for treatment to increase 
patient survival with improvement this kind of therapy 
using nanomedicine [154, 155].

In the current review, we summarized the current 
use, developing concepts and strategies of nanoparticles 
in vitro, in vivo and in clinical studies and their potential 
impact on HIPEC and PIPAC. The use of nanoparticles 
as novel drug delivery systems and the evaluation 
of diverse materials in various applications has been 
area of concerted investigation pushing the frontier of 
cancer diagnostics and therapeutics. Developments of 
nanoparticle-based DDS have occurred with carbonaceous 
origin nanoparticles and gold nanoshels. Many novel 
advances have been made using of nanoparticles 
together with NIR irradiation for enhance drug delivery 
and improvements of perioperative diagnostics. The 
implementation of special beads and hydrogels in the 
construction of nanovechicles loaded with specific drug 
combinations and conjugated with select antibodies for 
targeted anti-cancer treatment has generated significant 
excitement.

In conclusion, there is large a number of 
innovative and translational studies to advance using 
of nanotechnologies as permanent treatment for 
peritoneal carcinomatosis. Several preclinical and early 
clinical studies using nanoparticle in intraperitoneal 
chemotherapeutic methods in HIPEC and PIPAC provided 
a new evidence of its effectiveness for treatment patients 
with PC. Most of the research projects have been carried 
out in vitro and in vivo models has been invaluable prior 
to clinical translation. The key issues of non-tumor 
cytotoxicity and product safety need to be fully addressed 
prior to nanoparticle implementation. We hope the new 
direction of therapy using advance nanotechnologies as 
nanoparticle-based chemotherapy will be more effective 
for treatment patients with peritoneal carcinomatosis.
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