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ABSTRACT

Background: Skeletal muscle wasting is often observed in heart failure (HF). The 
growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is impaired in HF. In 
this study, we evaluated the effects of GH on soleus muscle and cardiac remodeling 
in rats with aortic stenosis (AS)-induced HF.

Methods: AS was created by placing a stainless-steel clip on the ascending aorta. 
After clinically detecting HF, GH (2 mg/kg/day) was subcutaneously injected for 14 
days (AS-GH group). Results were compared with those from Sham and non-treated 
AS groups. Transthoracic echocardiogram was performed before and after treatment. 
Protein expression was evaluated by Western blot and satellite cells activation by 
immunofluorescence. Statistical analyzes: ANOVA and Tukey or Kruskal-Wallis and 
Student-Newman-Keuls.

Results: Before treatment both AS groups presented a similar degree of 
cardiac injury. GH prevented body weight loss and attenuated systolic dysfunction. 
Soleus cross-sectional fiber areas were lower in both AS groups than Sham (Sham 
3,556±447; AS 2,882±422; AS-GH 2,868±591 μm2; p=0.016). GH increased IGF-
1 serum concentration (Sham 938±83; AS 866±116; AS-GH 1167±166 ng/mL; 
p<0.0001) and IGF-1 muscle protein expression and activated PI3K protein. Neural 
cell adhesion molecule (NCAM) immunofluorescence was increased in both AS groups. 
Catabolism-related intracellular pathways did not differ between groups.

Conclusion: Short-term growth hormone attenuates left ventricular systolic 
dysfunction in rats with aortic stenosis-induced HF. Despite preserving body weight, 
increasing serum and muscular IGF-1 levels, and stimulating PI3K muscle expression, 
GH does not modulate soleus muscle trophism, satellite cells activation or intracellular 
pathways associated with muscle catabolism.

INTRODUCTION

A major symptom in patients with chronic heart 
failure is a reduced tolerance to exercise caused by the 
early occurrence of dyspnea and fatigue. In addition 
to impaired ventricular function, noncardiac factors 

contribute to exercise intolerance. Metabolic, molecular, 
and functional skeletal muscle abnormalities have often 
been observed and are considered to play an important role 
in the symptoms [1]. Muscle wasting is a common disorder 
which often precedes cachexia and predicts frailty, poor 
quality of life, and mortality in heart failure [2, 3]. Despite 
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being clinically important, its pathophysiology is not 
completely understood and a therapeutic approach for 
preventing muscle wasting and recovering muscle mass 
has not been established [3].

Growth hormone (GH) is essential for metabolic 
homeostasis and muscle growth and function [4]. GH 
exerts its effects either by direct action or mediated by the 
insulin-like growth factor-1 (IGF-1) [5, 6]. The GH/IGF-1 
axis can suppress protein breakdown and stimulate skeletal 
muscle hypertrophy by inducing myocyte survival, 
differentiation, and proliferation [7-10]. However, the 
mechanisms involved in GH-induced mass preservation 
in pathologic conditions are not completely understood. 
IGF-1 can modulate muscle trophism by stimulating 
proliferation and differentiation of satellite cells, which are 
mononuclear and undifferentiated cells located between 
muscle fiber basal lamina and sarcolemma [11, 12]. At 
basal conditions, these cells remain in quiescent state; 
after harmful stimuli to the muscle, they are activated and 
named myogenic precursor cells or myoblasts [13, 14].

Clinical studies have shown that the GH/IGF-1 
axis is impaired in heart failure with approximately 40% 
of patients presenting GH or IGF-1 deficiency [15-20]. 
IGF-1 is mainly reduced in patients with severe heart 
failure [21] or cardiac cachexia [17]. Low IGF-1 levels 
are associated with reduced skeletal muscle performance 
and poor outcome [21, 22]. Although GH administration 
produced beneficial effects on muscle strength in healthy 
men [23], its effects on cardiac remodeling have been 
poorly addressed. Results of therapeutic correction have 
been inconsistent, with some studies reporting unchanged 
functional cardiac indices [24], and others reporting 
improved left ventricular (LV) function, N-terminal 

prohormone brain natriuretic peptide (NT-proBNP) levels, 
and quality of life [19, 25].

Despite a potentially beneficial role on skeletal 
muscle, few authors have evaluated the effects of GH 
during heart failure [26]. In a previous study, we observed 
that GH preserved trophicity and attenuated interstitial 
fibrosis in aortic stenosis rat soleus muscle [27]. Also, 
GH prevented atrophy, apoptosis, and changes in myosin 
heavy chain in right heart failure [28, 29]. In this study, we 
tested the hypothesis that GH treatment improves muscle 
trophicity by activating satellite cells and the intracellular 
signaling pathways involved in muscular response to GH. 
Therefore, the main focus of this study was to evaluate 
the effects of GH administration on soleus muscle of 
rats with chronic heart failure induced by aortic stenosis. 
The effects of treatment on cardiac structures and left 
ventricular function were also assessed.

RESULTS

General characteristics of rats

In the AS group (n=13), 12 animals had tachypnea/
labored respiration, 8 ascites, 7 pleuropericardial 
effusion, 6 thrombi in atria, 13 right ventricular 
hypertrophy, and 12 lung congestion. In AS-GH (n=10), 
8 rats presented tachypnea/labored respiration, 4 
ascites, 7 pleuropericardial effusion, 7 thrombi in atria, 
6 right ventricular hypertrophy, and 8 lung congestion. 
The frequency of heart failure features did not differ 
statistically between groups. There was no evidence of 
heart failure in the Sham group (n=17). Anatomical data 
are shown in Table 1.

Table 1: Anatomical data

Variables Sham
(n=17)

AS
(n=13)

AS-GH
(n=10)

BW (g) 484 ± 42 415 ± 31* 476 ± 58#

LV (g) 0.84 ± 0.12 1.22 ± 0.26* 1.42 ± 0.24*

RV (g) 0.29 ± 0.06 0.50 ± 0.09* 0.60 ± 0.10*#

Atria (g) 0.09 ± 0.02 0.33 ± 0.10* 0.39 ± 0.06*

Soleus (g) 0.23 ± 0.03 0.19 ± 0.02* 0.21 ± 0.04

LV/BW (mg/g) 1.73 ± 0.17 2.93 ± 0.57* 2.91 ± 0.46*

RV/BW (mg/g) 0.61 ± 0.13 1.20 ± 0.22* 1.23 ± 0.19*

Atria/BW (mg/g) 0.20 ± 0.03 0.80 ± 0.23* 0.79 ± 0.11*

Lung (g) 2.17 ± 0.50 3.52 ± 0.76* 3.94 ± 1.18*

Lung/BW (mg/g) 4.53 ± 1.25 8.53 ± 1.96* 8.12 ± 2.74*

Data are expressed as mean ± standard deviation. AS: aortic stenosis; AS-GH: aortic stenosis treated with growth hormone; 
n: number of animals; BW: body weight; LV: left ventricle; RV: right ventricle. ANOVA and Tukey; * p<0.05 vs Sham; # 
p<0.05 vs AS.
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Echocardiographic evaluation

Before treatment, both AS groups had similar 
echocardiographic variables values, except for 
interventricular septum systolic thickness, which was higher 
in AS-GH than AS (Table 2). Final echocardiographic 
data are shown in Table 3. Due to technical problems, we 
could not perform final echocardiogram in two Sham rats 

and two AS-GH rats. Body weight was lower in AS than 
Sham and AS-GH. LV diastolic diameter-to-body weight 
ratio was higher in AS than Sham and AS-GH and did not 
differ between AS-GH and Sham. Diastolic and systolic 
posterior wall and interventricular septum thickness and left 
atria diameter were higher in both AS groups than Sham. 
Systolic interventricular septum thickness remained higher 
in AS-GH than AS. Endocardial fractional shortening was 

Table 2: Pre-treatment echocardiographic data

Variable Sham
(n=17)

AS
(n=13)

AS-GH
(n=10)

BW (g) 508.4 ± 41.1 451.7 ± 89.7 466.7 ± 59.5

LVDD (mm) 8.08 ± 0.45 8.51 ± 1.10 8.64 ± 0.82

LVDD/BW (mm/kg) 15.98 ± 1.21 19.29 ± 3.70* 18.69 ± 1.98*

LVSD (mm) 3.77 ± 0.47 4.07 ± 1.24 3.86 ± 0.90

PWDT (mm) 1.47 ± 0.09 2.25 ± 0.34* 2.46 ± 0.24*

PWST (mm) 2.98 ± 0.21 3.98 ± 0.34* 4.37 ± 0.72*

IVSST (mm) 2.67 ± 0.20 3.25 ± 0.24* 3.59 ± 0.27*#

IVSDT (mm) 1.48 ± 0.08 2.26 ± 0.34* 2.48 ± 0.26*

AO (mm) 3.80 ± 0.21 3.91 ± 0.27 3.93 ± 0.37

LA (mm) 4.99 ± 0.34 7.82 ± 1.08* 7.72 ± 0.87*

LA/AO 1.32 ± 0.15 2.00 ± 0.28* 1.97 ± 0.21*

LA/BW (mm/kg) 9.88 ± 1.07 17.79 ± 3.73* 16.68 ± 1.93*

LVRWT 0.35±0.03 0.52±0.11* 0.53±0.04*

HR (bpm) 287 ± 41 299 ± 34 299 ± 40

EFS (%) 53.4 ± 4.4 53.0 ± 9.5 55.5 ± 8.5

MWFS (%) 30.3 ± 3.1 28.7 ± 4.3 29.5 ± 3.9

LVEF 0.89 ± 0.03 0.89 ± 0.06 0.90 ± 0.05

PWSV (mm/s) 37.0 ± 2.5 27.8 ± 4.6* 28.7 ± 6.3*

E-wave 73 ± 7.0 141 ± 13.8* 122 ± 17.5*

A-wave 48 ± 6.7 34 ± 23.4* 25 ± 6.0*

E/A 1.58 ± 0.35 4.86 ± 1.31* 5.25 ± 2.03*

EDT (ms) 50 ± 6.9 33 ± 8.4* 34 ± 10.6*

IVRT (ms) 31±5.44 24±7.61* 21±6.32*

IVRTn (ms) 33 ± 4.4 23 ± 4.7* 19 ± 5.2*

Data are expressed as mean ± standard deviation. AS: aortic stenosis; AS-GH: aortic stenosis treated with growth 
hormone; n: number of animals; BW: body weight; LVDD and LVSD: left ventricle (LV) diastolic and systolic diameters, 
respectively; PWDT and PWST: LV posterior wall diastolic and systolic thicknesses, respectively; IVSST and IVSDT: 
interventricular septum systolic and diastolic thicknesses, respectively; AO: aortic diameter; LA: left atrial diameter; 
LVRWT: LV relative wall thickness; HR: heart rate (beats/min); EFS: endocardial fractional shortening; MWFS: midwall 
fractional shortening; LVEF: LV ejection fraction; PWSV: LV posterior wall shortening velocity; E/A: early-to-late diastolic 
mitral inflow ratio; EDT: E-wave deceleration time; IVRT: isovolumetric relaxation time; IVRTn: IVRT normalized to heart 
rate. ANOVA and Tukey; * p<0.05 vs Sham; # p<0.05 vs AS.
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lower in AS than Sham and AS-GH, and midwall fractional 
shortening was lower in AS than Sham. Posterior wall 
shortening velocity, A-wave, E-wave deceleration time, and 
isovolumetric relaxation time were lower in both AS and 
AS-GH than Sham. E-wave and E/A ratio were higher in 
AS and AS-GH than Sham.

Histologic analysis

Figure 1A illustrates hematoxylin-eosin stained 
sections of soleus muscle. Soleus fiber cross-sectional 

area was smaller in both AS groups than Sham and did 
not differ between AS-GH and AS (Sham 3,556±447; AS 
2,882±422; AS-GH 2,868±591 μm2; p=0.016 AS and AS-
GH vs Sham; Figure 1B).

Immunofluorescence

In soleus muscle, neural cell adhesion molecule 
(NCAM) staining was higher in both AS groups than 
Sham and did not differ between AS-GH and AS (Sham 
0.50±0.76; AS 2.25±1.04; AS-GH 3.38±0.92 arbitrary 

Table 3: Post-treatment echocardiographic data

Variables Sham
(n=15)

AS
(n=13)

AS-GH
(n=08)

BW (g) 484 ± 42 415 ± 31* 476 ± 58#

LVDD (mm) 7.73 ± 0.53 7.93 ± 1.42 7.98 ± 1.02
LVDD/BW (mm/kg) 15.54 ± 1.45 18.47 ± 3.20* 16.53 ± 3.62#

LVSD (mm) 3.16 ± 0.51 4.08 ± 1.74 3.20 ± 0.91
PWDT (mm) 1.43 ± 0.09 2.25 ± 0.25* 2.41 ± 0.37*
PWST (mm) 3.03 ± 0.21 3.79 ± 0.48* 4.33 ± 0.63*
IVSST (mm) 2.80 ± 0.19 3.05 ± 0.26* 3.44 ± 0.30*#

IVSDT (mm) 1.45 ± 0.08 2.26 ± 0.24* 2.40 ± 0.35*
AO (mm) 3.9 ± 0.1 4.1 ± 0.2* 4.0 ± 0.2
LA (mm) 4.9 ± 0.2 7.0 ± 0.8* 7.8 ± 1.2*
LA/AO 1.28 ± 0.06 1.74 ± 0.19* 1.92 ± 0.30*
LA/BW (mm/kg) 9.89 ± 0.79 16.22 ± 1.68* 15.87 ± 2.08*
LVRWT 0.37 ± 0.03 0.58 ± 0.10* 0.62 ± 0.16*
HR (bpm) 303 ± 43 298 ± 27 308 ± 21
EFS (%) 59.1 ± 5.6 49.8 ± 14.7* 59.8 ± 12.1#

MWFS (%) 32.8 ± 3.2 26.6 ± 7.9* 31.6 ± 6.3
LVEF 0.93 ± 0.03 0.87 ± 0.10 0.92 ± 0.08
PWSV (mm/s) 38.6 ± 7.2 25.2 ± 5.1* 25.6 ± 3.1*
E-wave 74 ± 8.5 132 ± 15.7* 121 ± 19.0*
A-wave 55 ± 15.9 26 ± 5.0* 23 ± 5.8*
E/A 1.45 ± 0.37 5.23 ± 0.97* 5.59 ± 1.31*
EDT (ms) 53 ± 4.3 33 ± 4.8* 29 ± 5.9*
IVRT (ms) 33 ± 4.18 24 ± 4.70* 21 ± 5.77*
IVRTn (ms) 34 ± 4.3 23 ± 5.0* 21 ± 5.5*

Data are expressed as mean ± standard deviation. AS: aortic stenosis; AS-GH: aortic stenosis treated with growth hormone; 
n: number of animals; ; LVDD and LVSD: left ventricle (LV) diastolic and systolic diameters, respectively; PWDT and 
PWST: LV posterior wall diastolic and systolic thicknesses, respectively; IVSST and IVSDT: interventricular septum 
systolic and diastolic thicknesses, respectively; AO: aortic diameter; LA: left atrial diameter; LVRWT: LV relative wall 
thickness; HR: heart rate (beats/min); EFS: endocardial fractional shortening; MWFS: midwall fractional shortening; 
LVEF: LV ejection fraction; PWSV: LV posterior wall shortening velocity; E/A: early-to-late diastolic mitral inflow ratio; 
EDT: E-wave deceleration time; IVRT: isovolumetric relaxation time; IVRTn: IVRT normalized to heart rate. ANOVA and 
Tukey; * p<0.05 vs Sham; # p<0.05 vs AS.
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units; p<0.001 AS and AS-GH vs Sham; Figure 2). MyoD 
[Sham 1.00 (0.00-2.00); AS 2.50 (2.00-3.00); AS-GH 2.50 
(1.00-3.50) arbitrary units; p=0.14] and neonatal myosin 
heavy chain [Sham 0.00; AS 0.50 (0.00-1.00); AS-GH 
0.50 (0.00-2.00) arbitrary units; p=0.19] staining did not 
differ between groups.

Circulating IGF-1 levels

IGF-1 serum levels were higher in AS-GH than the 
other two groups (Sham 938±83; AS 866±116; AS-GH 
1167±166 ng/mL; p<0.0001; Figure 3A).

Protein expression

IGF-1 protein expression was higher in AS-GH 
than the other groups (Sham 1.00±0.25; AS 0.96±0.46; 
AS-GH 1.67±0.45 arbitrary units; p=0.004; Figure 3B). 
Phosphorylated-PI3K was higher in AS and AS-GH than 
Sham (Sham 0.94 (0.74-1.28); AS 3.99 (3.01-5.46); AS-
GH 3.71 (1.97-9.62) arbitrary units; p= 0.004); total PI3K 
was higher in AS-GH than Sham (Sham 0.98 (0.63-1.32); 
AS 1.26 (1.00-2.51); AS-GH 2.51 (2.07-6.05) arbitrary 
units; p=0.037; Figure 4). The other proteins did not differ 
between groups (Table 4 and Supplementary Figure 1).

DISCUSSION

In this study, we evaluated the effects of growth 
hormone administration on satellite cell activation and 
intracellular signaling pathways related to skeletal muscle 
trophism in the soleus muscle of rats with aortic stenosis-
induced heart failure.

Ascending aortic stenosis in rats is a useful model 
for studying pressure overload-induced heart failure. 
Three-to-four week-old rats have a clip placed around the 
ascending aorta. After clip placement, aorta diameter is 
preserved; as rats grow, stenosis progressively develops. 
The model has the advantage that, despite rapid onset 
of LV hypertrophy, LV dysfunction occurs slowly [30, 
31], similar to that observed in human chronic pressure 
overload. Congestive heart failure is usually observed 
from 18 weeks after stenosis induction [27, 30, 32].

Before treatment, aortic stenosis rats presented 
left atrial dilation and LV hypertrophy with systolic and 
diastolic dysfunction. GH treatment attenuated systolic 
dysfunction as endocardial fractional shortening was 
higher in AS-GH than AS. Furthermore, midwall fractional 
shortening was lower in AS than Sham, but did not differ 
between AS-GH and Sham. The increased LV relative wall 
thickness in AS and AS-GH shows that both aortic stenosis 

Figure 1: Photomicrographs of soleus muscle cross-sections stained with haematoxylin-eosin (A). Soleus muscle cross-sectional 
area (B). AS: aortic stenosis; AS-GH: aortic stenosis treated with growth hormone; n: number of animals. Data are expressed as mean ± 
standard deviation. ANOVA and Tukey; * p<0.05 vs Sham.
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groups had LV concentric hypertrophy. Heart failure was 
established by clinical and pathological features evaluated 
in vivo and post mortem. Lung weight and right ventricular 
hypertrophy are often used to diagnose heart failure in rats 
[33]. In this study, heart failure feature frequencies did not 
differ between AS-GH and AS groups. Therefore, despite 

attenuating systolic dysfunction, late GH administration 
did not modulate heart failure severity in aortic stenosis 
rats. The late treatment may have prevented differences in 
heart failure features between groups.

GH and IGF-1 play essential role in cardiac growth 
and performance [34]. Chronic administration of GH 

Figure 3:  Insulin-like growth factor (IGF)-1: serum levels (A) and soleus muscle protein expression (B). AS: aortic stenosis; 
AS-GH: aortic stenosis treated with growth hormone; n: number of animals. Data are expressed as mean ± standard deviation. ANOVA and 
Tukey; * p<0.05 vs Sham; # p<0.05 vs AS.

Figure 2: Representative immunofluorescence of soleus muscle cross-sections stained with anti-neural cell adhesion molecule (NCAM) 
and 4’,6-diamidino-2-phenylindole (DAPI) showing cell nucleus in blue and neural cell adhesion molecule (NCAM) in green (A). 
Quantification of staining intensity of NCAM (B). AS: aortic stenosis; AS-GH: aortic stenosis treated with growth hormone; n: number of 
animals. Data are expressed as mean ± standard deviation; ANOVA and Tukey; * p<0.05 vs Sham.
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to normal rodents induces myocyte hypertrophy and 
improves cardiac performance [35]. However, in failing 
hearts, the effects of GH are still controversial [26, 32, 
36-38]. We have previously observed that short-term 
GH treatment induces cardioprotection by attenuating 
myocardial fibrosis and systolic dysfunction in aortic 
stenosis rats [32]. In a small trial of heart failure patients 
with GH deficiency, GH replacement for 4 years improved 
peak oxygen consumption and systolic function with no 
major adverse events [25]. Therefore, our data reinforces 
the potential beneficial role of GH on cardiac remodeling 
and LV dysfunction.

In this study, GH preserved body weight. A similar 
result was reported post-myocardial infarction [26]. 
Cardiac cachexia is often observed in advanced stages of 
heart failure [39] and is associated with poor prognosis 
[40, 41]. Therefore, the effect of GH in preventing body 
mass loss may be important for heart failure prognosis. 
Although body weight preservation may suggest skeletal 
muscle preservation, this did not occur in soleus muscle. 
Atrophy of soleus muscle is a common finding in different 
experimental heart failure models [30, 42, 43].

As expected, GH increased both IGF-1 serum 
concentration and IGF-1 soleus protein expression. IGF-

Figure 4: Phosphorylated phosphatidylinositol-3-kinase (PI3K) and total PI3K protein expression in soleus muscle 
assessed by Western blot. AS: aortic stenosis; AS-GH: aortic stenosis treated with growth hormone; n: number of animals. Data are 
expressed as median and percentiles; Kruskal-Wallis and Student-Newman-Keuls; * p<0.05 vs Sham.



Oncotarget83016www.impactjournals.com/oncotarget

1 binding to its receptors activates several intracellular 
kinases. PI3K is a well-known signal transduction pathway 
activated by GH [44, 45]. Total PI3K expression was higher 
in AS-GH than Sham and phosphorylated-PI3K was higher 
in both AS groups than Sham. Akt/mTOR acts as IGF-
1 downstream mediators [45]. Down-stimulation of Akt 
activates the forkhead box protein O (FoxO) family which 
increases atrogin-1 and MuRF-1, two potent inducers of 
protein degradation [7, 45-48]. It was therefore unexpected 
to observe that, despite activating IGF-1 and PI3K, GH 
failed to modulate atrogin-1 and MuRF-1 expression. Muscle 
atrophy is caused by the limitation of anabolic processes 
and/or activation of intracellular proteolytic systems [7]. 
In heart failure, proteolysis appears to overcome impaired 
protein synthesis [31, 54, 55]. We observed that the catabolic 
pathways evaluated in this study were not activated in rats 
with aortic stenosis-induced heart failure.

The myostatin/follistatin pathway has attracted 
increasing attention as a modulator of skeletal muscle mass 
[45, 49, 50]. Myostatin negatively regulates muscle size and 
follistatin acts as a myostatin antagonist. Balance between 
these two proteins is important in maintaining skeletal muscle 
mass [51]. Despite muscle atrophy in aortic stenosis rats, 
myostatin and follistatin expression did not differ between 
groups and was not changed by GH. In a previous study on 
infarcted rats, we observed that skeletal muscle atrophy was 
combined with preserved myostatin and reduced follistatin 
expression [43]. This study therefore showed that aortic 
stenosis-induced muscle atrophy is not associated with 
myostatin/follistatin changes.

Several molecular markers have been used to 
evaluate satellite cell activation; these include NCAM, 
MyoD, neonatal myosin heavy chain, and Pax-7 [13, 52, 

53]. In this study, satellite cell activation was observed 
by increased NCAM staining in both the AS and AS-GH 
groups. Activation of quiescent satellite cells is related to 
cell proliferation and differentiation [13, 14]. We therefore 
showed that satellite cells are activated during heart failure 
and not modulated by GH administration.

Myogenic regulatory factors MyoD, myogenin, and 
MRF4 modulate the expression of several muscle proteins. 
In this study, their expression did not differ between groups. 
We have previously observed in aortic stenosis rats that 
GH increased soleus MyoD expression, preserved muscle 
trophicity, and attenuated interstitial fibrosis [27]. These rats 
however had a lower degree of cardiac injury as LV was not 
dilated and LV function was preserved except for a reduced 
LV posterior wall shortening velocity. It is therefore probable 
that GH produces beneficial effects in non-severe heart 
failure.

In summary, our results showed that late 
administration of GH, despite attenuating systolic 
dysfunction, failed to prevent/reverse soleus muscle 
atrophy. In fact, in disagreement with our hypothesis, GH 
did not modulate muscle trophism, satellite cell activation 
or the intracellular signaling pathways evaluated in this 
study. As GH preserved body weight, increased serum 
and muscular IGF-1 levels, and stimulated PI3K muscle 
expression, this study allowed us to raise two hypotheses: 
GH was initiated later when muscle atrophy was already 
established; or GH treatment was not long enough to 
reverse the muscle atrophy process. Therefore, although this 
study adds important information on the use of GH during 
heart failure, it was not possible to establish the best stage of 
heart failure to start GH in order to prevent/reverse skeletal 
muscle atrophy.

Table 4: Protein expression

Proteins
(arbitrary units)

Sham
(n=08)

AS
(n=08)

AS-GH
(n=07)

MyoD 1.04 (0.88-1.13) 1.10 (0.90-1.42) 1.47 (1.11-1.79)

Myogenin 1.00 ± 0.38 0.58 ± 0.36 0.87 ± 0.68

MRF4 0.88 (0.62-1.35) 0.60 (0.34-1.19) 1.33 (0.79-3.27)

Akt 1.00 ± 0.54 0.86 ± 0.35 0.86 ± 0.54

Atrogin-1 1.00 ± 0.44 0.73 ± 0.19 0.92 ± 0.18

MuRF-1 1.00 ± 0.90 0.53 ± 0.41 0.63 ± 0.23

Myostatin 1.00 ± 0.32 1.86 ± 1.09 2.05 ± 1.07

Follistatin 1.00 ± 1.11 1.42 ± 0.83 1.31 ± 1.44

Pax-7 1.00 ± 0.39 1.06 ± 0.63 0.74 ± 0.63

Data are expressed as mean ± standard deviation or median and percentiles. AS: aortic stenosis; AS-GH: aortic stenosis 
treated with growth hormone; n: number of animals. ANOVA and Tukey or Kruskal-Wallis and Student-Newman-Keuls; 
p>0.05 for all proteins.
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In conclusion, short-term growth hormone treatment 
attenuates left ventricular systolic dysfunction in rats with 
aortic stenosis-induced heart failure. Despite preserving 
body weight, increasing serum and muscular IGF-1 levels, 
and stimulating PI3K muscle expression, growth hormone 
does not modulate soleus muscle trophism, satellite cell 
activation, or the intracellular pathways associated with 
muscle catabolism.

MATERIALS AND METHODS

Experimental groups

Male Wistar rats (90-100 g) were purchased from 
the Central Animal House, Botucatu Medical School, 
Sao Paulo State University, UNESP, Botucatu, Brazil. 
Commercial chow and water were supplied ad libitum. 
Animals were housed in a room under temperature and 
light control in collective cages with four rats per cage. All 
experiments and procedures were approved by the Ethics 
Committee of Botucatu Medical School, Sao Paulo State 
University.

Aortic-stenosis was induced as previously described 
[56]. In summary, the animals were subjected to median 
thoracotomy after intramuscular anesthesia with ketamine 
hydrochloride (50 mg/kg) and xylazine hydrochloride (10 
mg/kg). After dissecting the ascending aorta, a 0.6 mm 
stainless-steel clip was placed at approximately 3 mm 
from the aorta root. During surgery, the rats were manually 
ventilated using positive pressure and given 1 mL of warm 
saline solution intraperitoneally. Sham operated rats were 
used as controls.

We have previously observed that aortic stenosis rats 
start to present clinical heart insufficiency approximately 
18 to 28 weeks after the surgery [27, 30, 57]. Therefore, 
beginning 18 weeks after surgery, rats were observed twice 
a week to detect heart failure signs, such as tachypnea 
and weight loss [58, 59]. After observing these features, 
rats were subjected to transthoracic echocardiogram to 
evaluate degree of cardiac injury, and randomly assigned 
to two groups: aortic stenosis with no treatment (AS), 
and aortic stenosis treated with GH (AS-GH). Rats were 
given daily subcutaneous injections of recombinant human 
growth hormone (2 mg/kg/day; Novo-Nordisk Laboratory, 
Bagsvaerd, Denmark) or vehicle for 14 days. Age-matched 
Sham rats were studied at comparable ages.

At the time of euthanasia, we evaluated the presence 
of anatomical heart failure features such as atria thrombi, 
ascites, pleuropericardial effusion, lung congestion (lung 
weight-to-body weight ratio > 2 standard deviations above 
Sham group mean), and right ventricular hypertrophy 
(right ventricle weight-to-body weight ratio greater than 
0.8 mg/g) [60]. Aortic stenosis-induced cardiac remodeling 
was characterized by echocardiographic parameters. GH-
induced increase in IGF-1 levels was determined by 

assessing its systemic concentration and muscular protein 
expression.

Echocardiography

Echocardiographic evaluation was performed using 
a commercially available echocardiograph (General 
Electric Medical Systems, Vivid S6, Tirat Carmel, 
Israel) equipped with a 5-11.5 MHz multifrequency 
probe, as previously described [61-63]. Rats were 
anesthetized by intramuscular injection of a mixture of 
ketamine (50 mg/kg) and xylazine (0.5 mg/kg). A two-
dimensional parasternal short-axis view of the LV was 
obtained at the level of the papillary muscles. M-mode 
tracings were obtained from short-axis views of the LV 
at or just below the tip of the mitral-valve leaflets, and 
at the level of the aortic valve and left atrium. M-mode 
images of the LV were printed on a black-and-white 
thermal printer (Sony UP-890MD) at a sweep speed of 
100 mm/s. All LV structures were manually measured by 
the same observer (KO). Values obtained were the mean 
of at least five cardiac cycles on M-mode tracings. The 
following structural variables were measured: LV diastolic 
and systolic diameters (LVDD and LVSD, respectively), 
LV posterior wall diastolic and systolic thicknesses 
(PWDT and PWST, respectively), interventricular septum 
systolic and diastolic thicknesses (IVSST and IVSDT, 
respectively), left atrial diameter (LA), and aortic diameter 
(AO). LV relative wall thickness (LVRWT) was calculated 
as 2 X PWDT/LVDD. LV function was assessed by the 
following parameters: endocardial fractional shortening 
(EFS), midwall fractional shortening (MWFS), LV 
posterior wall shortening velocity (PWSV), early and 
late diastolic mitral inflow velocities (E and A waves, 
respectively), E/A ratio, E-wave deceleration time 
(EDT), isovolumetric relaxation time (IVRT), and IVRT 
normalized to heart rate (IVRTn).

Morphological analysis

At euthanasia, rats were weighed and anesthetized 
with intraperitoneal sodium pentobarbital (50 mg/kg). 
Hearts were removed by thoracotomy and the atria and 
ventricles were separated and weighed. Soleus muscle was 
dissected, weighed, immediately frozen in liquid nitrogen, 
and stored at -80 °C.

Transverse sections approximately 8-10 μm thick 
of frozen soleus were cut in a cryostat at -20 °C and 
stained with hematoxylin and eosin. Muscle trophicity 
was assessed by measuring at least 200 cross-sectional 
fiber areas from each muscle [64]. Measurements were 
performed using a compound LEICA DM LS microscope 
attached to a computerized imaging analysis system 
(Media Cybernetics, Silver Spring, Maryland, USA). All 
analysis were performed by the same blind investigator.
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Immunofluorescence

We next evaluated the following molecular markers 
of satellite cell activation by immunofluorescence: NCAM, 
MyoD and neonatal myosin heavy chain. Soleus muscle 
transverse sections were fixed in 4% paraformaldehyde 
dissolved in phosphate-saline buffer (PBS), for 10 min 
at room temperature. Sections were then washed in PBS, 
blocked in PBS-albumin bovine serum (BSA) 5%-Triton 
X-100 for 10 min, and blocked again in PBS with 5% 
BSA for a further 20 min. Sections were incubated 
overnight in primary antibody (anti-NCAM, H-300 sc-
10735; anti-MyoD, M-318 sc-760; and anti-neonatal 
myosin, N1.551 sc-53097; Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) diluted in PBS, at 4 °C. Sections 
were then incubated with secondary antibody for one hour 
in a dark chamber at room temperature. Next, sections 
were washed in PBS, incubated with DAPI, and washed 
again in PBS. Coverslips were allocated using ProLong® 
Gold Antifade reagent (Molecular Probes® by Life 
Technologies). Sections were analyzed in fluorescence 
microscope (Olympus BX51, equipped with an Olympus 
U-RFL-T fluorescence emitter and Olympus DP72 
camera, Panasonic). We evaluated 10 histologic frames in 
each section. Immunofluorescence reaction was analyzed 
for staining intensity according to pre-established scores: 
+++ strong, ++ moderate, + weak or - without staining.

Western blotting

Soleus protein levels were analyzed by Western 
blot according to a previously described method [65, 
66]. Protein expression of myogenic regulatory factors 
(MyoD, M-318 sc-760; myogenin, M-225 sc-576e; 
MRF4, Myf-6 C-19 sc-301), IGF-1 (H-70 sc-9013), 
atrophy pathway related-proteins (PI3K, PI 3-kinase 
p85α B-9 sc-1637; p-PI3K, p-PI 3-kinase p85α (Tyr 467) 
sc-293115; Akt, Akt1 G-5 sc-55523; atrogin-1, MAFbx 
H-300 sc-33782; MuRF-1, H-145 sc-32920; myostatin, 
GDF-8 N-19-R sc-6885-R; and follistatin H-114 sc-
30194), and Pax-7 (Pax-3/7 H-208 sc-25409; Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) was evaluated. 
Protein levels were normalized to GAPDH (6C5 sc-32233, 
Santa Cruz Biotechnology). Samples were separated on 
polyacrylamide gel and then transferred to a nitrocellulose 
membrane. After blockade, the membrane was incubated 
with primary antibodies overnight at 4 °C. The membrane 
was then washed with PBS and Tween 20 and incubated 
with secondary peroxidase-conjugated antibody for 90 
min at room temperature. ECL Western Blotting Substrate 
(Pierce Protein Research Products, Rockford, USA) was 
used to detect bound antibodies. The membrane was then 
stripped (Restore Western Blot Stripping Buffer, Pierce 
Protein Research Products, Rockford, USA) to remove 
previous antibody. After blockade, the membrane was 
incubated with anti-GAPDH antibody [67, 68].

Circulating IGF-1 levels

IGF-1 serum concentration was assessed by enzyme 
linked immunosorbent assay (ELISA) using Quantikine® 
ELISA Mouse/Rat IGF-I kit (R&D Systems, Minneapolis, 
MN, USA). The procedure was performed according to 
manufacturer instructions.

Statistical analysis

Data are expressed as mean ± standard deviation 
or median and percentiles. Comparisons between 
groups were performed by one-way analysis of variance 
(ANOVA) followed by the Tukey test for parametric data, 
or by Kruskal-Wallis test followed by Student-Newman-
Keuls for non-parametric data. Heart failure feature 
frequencies were analyzed by the Goodman’s test. The 
level of significance was set at 5%.
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