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ABSTRACT

Pancreatic cancer (PC) is one of the most common causes of cancer mortality 
worldwide. As the genetic mechanism of this complex disease is not uncovered clearly, 
identification of related genes of PC is of great significance that could provide new 
insights into gene function as well as potential therapy targets. In this study, we 
performed an integrated network method to discover PC candidate genes based on 
known PC related genes. Utilizing the subnetwork extraction algorithm with gene co-
expression profiles and protein-protein interaction data, we obtained the integrated 
network comprising of the known PC related genes (denoted as seed genes) and the 
putative genes (denoted as linker genes). We then prioritized the linker genes based 
on their network information and inferred six key genes (KRT19, BARD1, MST1R, 
S100A14, LGALS1 and RNF168) as candidate genes of PC. Further analysis indicated 
that all of these genes have been reported as pancreatic cancer associated genes. 
Finally, we developed an expression signature using these six key genes which 
significantly stratified PC patients according to overall survival (Logrank p = 0.003) 
and was validated on an independent clinical cohort (Logrank p = 0.03). Overall, the 
identified six genes might offer helpful prognostic stratification information and be 
suitable to transfer to clinical use in PC patients.

INTRODUCTION

Pancreatic cancer (PC) is a common type of cancer 
with an estimated 53,070 new cases and 41,780 deaths 
expected in the United States in 2016 [1]. In contrast to 
most cancers, the 5-year relative survival of PC patients 
which is currently 8% increases slowly [1]. Risk factors 
for developing PC include tobacco smoking, obesity, 
diabetes, and certain rare genetic conditions. Several 
mutations in PIK3CA, PALB2 and TP53 involve in the 
carcinogenesis of PC. However, these mutations account 
for only a fraction of the total PC burden.

The types of PC can be divided into two general 
groups based on histological origin, i.e. the majority 

and minority group occurring in exocrine and endocrine 
component of pancreas, respectively. Usually by the 
time of diagnosis, pancreatic cancer has often spread 
through the body due to less symptoms in the disease's 
early stages. Generally, 25% of people survive one year 
and 5% live for five years after diagnosis [2]. Genomic 
analyses of PC reveal a complex molecular landscape. 
And numerous events have been found involved in 
pancreatic tumorigenesis which can be acted as signatures 
for diagnosis and further clinical application, such as 
mutations found in well-known cancer genes (KRAS, 
TP53, SMAD4, and CDKN2A) [3]. Among these, 
Mutations in SMAD4 are especially associated with a 
worse prognosis [4]. Despite significant improvements in 
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the early molecular diagnosis and treatment decisions of 
PC, new therapies and biomarkers are still needed.

At present, although a variety of relevant genes 
have been identified, they are insufficient to elucidate 
the tumorigenesis of PC unless more related genes being 
uncovered. Therefore, it is an extremely critical task to 
discover novel candidate genes. It is time-consuming 
and cost-spending to find disease related genes by 
experiment alone on account of the vast search space. 
Computational approach is an alternative solution which 
can assist researchers to cope with a mount of biological 
problems, for instance, to clarify complicated biological 
network [5–9] and to identifycandidate genes [10, 11]. 
For example, Huang et al. presented a model for inferring 
protein-protein interactions based on protein-protein 
correlation utilizing least squares regression [9]. Zhu et 
al. proposed a robust geometric approach for modeling 
protein-protein interaction networks [8]. Deng et al. 
developed a method to predict novel genes associated 
with cervical carcinoma using gene co-expression 
networks [10]. Moreover, several studies have reported 
prognostic genomic signatures for PC [12–14]. Stratford 
et al. analyzed the gene expression profiles of primary PC 
patients from localized tumors compared to metastatic 
ones and identified a six-gene signature associated with 
metastatic PC [12]. Haider et al. performed a retrospective 
meta-analysis on publicly available mRNA abundance 
datasets to discover gene signatures based on differentially 
expressed genes and univariate prognostic gene selection 
[13]. Chen et al. derived a prognostic gene signature for 
patients with early stage pancreatic ductal adenocarcinoma 
using sparse principal component analysis and univariate 
analysis of Cox proportional hazards model [14]. 
However, these studies have generally been limited by 
only gene expression analysis and particular PC subtypes. 
Thus, presentation of a more robust molecular predictor 
that incorporates multi-omics data and overcomes PC 
subtype variability will undoubtedly have an important 
role in the management of patients as well as identification 
of novel genes.

In this research, a computational approach was 
proposed to discover PC candidate genes based on known 
PC related genes retrieved from PCGene (Pancreatic 
Cancer Gene Database, http://pcgene.bioinfo-minzhao.
org) [15]. Utilizing the subnetwork extraction algorithm 
with gene co-expression profiles and protein-protein 
interaction (PPI) data, we obtained the network comprising 
of the known PC related genes (denoted as seed genes) 
and the putative genes (denoted as linker genes). After 
prioritizing the linker genes on the basis of subnetwork 
information, we found top-six valuable candidate genes. 
Further analysis indicates that all of these six genes are in 
accord with previous reports that they are implicated with 
PC or cancers. Using the 6-genes signature, we observed 
significant differences in overall survival between low-
risk and high-risk PC patients in survival analyses of 

both training and independent test datasets. Overall, our 
analysis developed significant insight that will lead to 
improved prognostication and risk stratification of PC 
patients.

RESULTS AND DISCUSSION

Strategy for prediction of pancreatic cancer 
candidate genes

This work was aimed at using seed genes and 
a common biological network containing gene co-
expression and PPI information to discover candidate 
genes related to the pathogenesis of PC with a subnetwork 
extraction algorithm. The method mainly divided into 
three steps as follows (Figure 1).

(1) A human PPI network was obtained from 
STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins), which is a database of verified and 
predicted protein interactions [16]. And then we collected 
gene expression data of 179 PC tumor samples derived 
from The Cancer Genome Atlas (TCGA) using UCSC 
Cancer Genomics Browser [17]. The co-expression 
network was constructed by an R software package named 
“WGCNA” [18]. Through comparing the PPI network 
with the gene co-expression network, a common gene 
network containing both information types was generated. 
Table 1 illustrated the number of nodes and edges in PPI 
network, co-expression network and common network.

(2) 52 seed genes were collected from PCGene, after 
removing 11 genes which are not included in the common 
network (Table 2). Seed genes and the common network 
were then inputted into GenRev software [19]. We used 
the limited k-walks algorithm in GenRev for extracting 
a subnetwork (see more details in the Materials and 
Methods section).

(3) In this step, we identified 6 key candidate genes 
among the 82 linker genes derived from the subnetwork 
using an evaluation indicator denoted as ranking score 
(RS), which is the sum of weights of all edges linked to a 
particular gene. In order to underline the linkage between a 
seed gene and a linker gene, the weight of them is doubled 
when calculated. RSs of all the 82 linker genes were listed 
in Table 3. Then we analyzed these 6 genes (RS > 1) by 
retrieving existing literature and estimated the prognostic 
value of this 6-genes signature using the transcriptomic 
data by survival analysis.

Figure 1 illustrated a summary workflow for 
identifying genes critical to PC.

Subnetwork and pancreatic cancer candidate 
genes

As described in the Methods section, proteins or 
genes in a same biological (PPI or co-expression) network 
may share some common or similar features. Thereby, 
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Figure 1: Summary workflow for prediction of pancreatic cancer candidate genes. The approach was based on three 
steps: (1) We constructed a PPI network and a co-expression network using data derived from STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) and The Cancer Genome Atlas (TCGA), respectively. A common network was obtained through comparing 
the two networks. (2) Seed genes and the common network were imported into GenRev which was used to extract a subnetwork with 
the limited k-walks algorithm. (3) 6 key candidate genes were identified among the subnetwork using an evaluation indicator denoted as 
ranking score (RS).
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after importing seed genes and the common network that 
represented both gene co-expression and PPI information 
into GenRev software, we extracted a subnetwork 
connecting high-confident PC related genes by edge-
weighted limited k-walk algorithm [20].

The network extracted by edge-weighted limited 
k-walk algorithm was illuminated in Figure 2 which 
contained 341 edges and 134 nodes. Except for 52 
seed genes, there are 82 linker genes included in the 
subnetwork. Then we obtained 6 key candidate genes from 
the 82 linker genes using the ranking score defined, which 
is a prioritization strategy of candidate genes.

Literature analysis of pancreatic cancer 
candidate genes

After ranking the linker genes from the extracted 
subnetwork, we obtained 6 genes which might have a 
strong relationship with PC. We identified the smallest 
subnetwork connecting six key genes derived from the 
network representing both PPI and gene co-expression 
information (Figure 3). The other four genes in this 
subnetwork are all PC related seed genes (BRCA2, MET, 
ITGB1, ERBB2). Succeeding analysis manifested that 
all of these six key genes (KRT19, BARD1, MST1R, 
S100A14, LGALS1 and RNF168) have been shown as PC 

associated genes based on previous reports. Next, these 6 
genes will be elaborated one after another in the following 
paragraphs.

The KRT19 is the gene encodes a member of the 
keratin family which is intermediate filament protein 
responsible for the structural integrity of epithelial 
cells and consists of cytokeratins and hair keratins. It is 
expressed in the periderm, the transiently superficial layer 
that envelopes the developing epidermis. Previous study 
has revealed that it can be a marker gene as a way to detect 
circulating tumor cells in peripheral blood of pancreatic 
cancer patients [21].

The protein encoded by BARD1 interacts with the 
N-terminal region of BRCA1 which is a tumor suppressor 
gene found in various cancers [22, 23] and shares 
homology with the conserved regions of it (the N-terminal 
RING motif and the C-terminal BRCT domain). An 
allele-specific expression assay have supported that this 
is a candidate PC related gene with altered germline 
expression properties as compared to controls [24]. 
In addition, Brakeleer et al. provided evidence for an 
increased breast cancer risk associated to specific BARD1 
germline mutations [25].

The MST1R gene encodes a cell surface receptor 
for macrophage-stimulating protein (MSP) with tyrosine 
kinase activity which has been identified as an important 

Table 1: Numbers of nodes and edges in networks

PPI Network Co-expression Network Common Network

Nodes 17865 16226 12716

Edges 8548003 451034 225517

Table 2: Seed genes used in this present study

Gene names

PTGS2 ARID1A NFKB1 TFF2

STK11 HRAS MSH2 CTNNB1

MEN1 HIF1A MTHFR MAP2K4

AKT1 XRCC1 S100P KLF5

PARK2 NR5A2 CLPTM1L GLI1

CDH1 VEGFA S100A4 CXCR4

BRCA1 SHH PRSS1 TERT

IGF1R TP53 IL6 ITGB1

BRCA2 PALB2 MET CD44

MUC4 MSLN SSTR2 TNF

KRAS SMAD4 TGFB1 ERBB2

ROBO2 ATM BIRC5 MMP9

PTEN STAT3 EGFR MMP2
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mediator of KRAS oncogene addiction and is over-
expressed in the majority of pancreatic cancers. Inhibition 
of its function decrease pancreatic cancer cell migration, 
invasion and survival and can sensitize PC cells to 
chemotherapy on the basis of preclinical studies [26, 27].

The protein encoded by S100A14 is a member of the 
S100 protein family which contains an EF-hand motif and 
binds calcium. Proteins in this family, including S100A14, 
have a broad range of intracellular and extracellular 
functions that regulate multiple cellular pathways related 
to pancreatic cancer progression and metastasis [28, 

29]. Such as, Intracellular S100A14 may promote cell 
motility and invasiveness by regulating the expression 
and function of matrix metalloproteinase-2 (MMP-2) in a 
p53-dependent manner.

The LGALS1 encodes the galectins which belong 
to a family of beta-galactoside-binding proteins involved 
in modulating cell-cell and cell-matrix interactions. It 
has been reported that the expression of this gene might 
provide insights into prognostication for resectable 
pancreatic ductal adenocarcinoma. Analyses of very long-
term survivors (VLTS) compared with short-term ones 

Table 3: The 82 linker genes with their ranking scores

Gene names RS Gene names RS Gene names RS

KRT19 1.6 PTGES2 0.4 BCL7C 0.2

BARD1 1.6 PREX2 0.4 ZNF18 0.2

MST1R 1.5 USP1 0.4 PGLS 0.2

S100A14 1.2 EHF 0.4 CNTN4 0.2

LGALS1 1.2 ADM 0.4 BACH1 0.2

RNF168 1.1 GRM4 0.4 ZFPL1 0.2

TFF1 1 SHFM1 0.4 MAGED2 0.1

SPEN 1 EMP3 0.4 TMEM43 0.1

WDR18 0.9 PTGES 0.3 GALNT5 0.1

RRAS 0.9 TRAF1 0.3 HMX1 0.1

PLEK2 0.8 NAMPT 0.3 RASSF6 0.1

CD248 0.8 BCL2L12 0.3 PFN1 0.1

RHBDL2 0.8 MAML1 0.3 SLC16A7 0.1

CAPN5 0.7 USP24 0.3 ZBTB40 0.1

S100A16 0.7 AMHR2 0.3 MAGED4 0.1

CDC6 0.6 PSMG3 0.3 PIF1 0.1

ENDOG 0.6 NFE2L2 0.3 MBTPS1 0.1

GNG2 0.6 RAPH1 0.3 HDAC4 0.1

CLDN18 0.6 TSHZ2 0.2 VASN 0.1

RNF169 0.5 RNF146 0.2 PSME3 0.1

NR3C1 0.5 NFIL3 0.2 AMN 0.1

TMC8 0.5 SPINK1 0.2 ERCC1 0.1

AKT1S1 0.5 OSTM1 0.2 BRD9 0.1

KLK10 0.5 ESRRG 0.2 B4GALNT1 0.1

SLC2A1 0.5 XRCC3 0.2 PLEKHG5 0.1

ANTXR1 0.4 SLC4A7 0.2 ARHGAP33 0.1

CHSY1 0.4 DPH1 0.2 CYP24A1 0.1

ELAC1 0.4

RS, ranking score.
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confirmed that significantly lower expression of stromal 
galectin-1 was associated with VLTS [30, 31].

The protein encoded by RNF168 is an E3 ubiquitin 
ligase protein that contains a RING finger, a motif 
present in functionally distinct proteins and known to be 
implicated in DNA double-strand break (DSB) repair and 
protein-protein interactions. In a recently published study, 
Slavin et al. evaluated a set of genes for their mutation 
profile in pancreatic adenocarcinomas. 27 genes had 
truncating variants identified in patients from a hereditary 
pancreatic cancer cohort, including a stop-gain variant 
at position 131 (Arg) in RNF168, which may be related 
to hereditary PC predisposition [32]. Kongsema et al. 
demonstrated that the expression level of FOXM1 reduced 

upon RNF168 overexpression and increased with RNF168 
depletion by siRNA. And further experiments suggested 
that this enzyme cooperates with RNF8 to mediate 
FOXM1 ubiquitination and degradation in breast cancer 
epirubicin treatment [33]. Together, these six key genes 
are shown to play a direct or indirect role in PC according 
to the existing literature and deserve further investigation 
concerned with their application against PC.

Correlation analysis of pancreatic cancer 
candidate genes

To analysis correlations between the expression of 
identified candidate genes and their corresponding seed 

Figure 2: The subnetwork extracted by limited k-walks algorithm. The network extracted by edge-weighted limited k-walk 
algorithm was illustrated. It contained 341 edges and 134 nodes. Red nodes represent 52 seed genes, green nodes represent 6 identified 
candidate genes and yellow nodes represent the other 76 linker genes except for the 6 candidates.
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genes, we computed the Pearson correlation coefficients 
using the expressions in 179 cancer samples from TCGA. 
As expected, all the 34 seed-candidate pairs in the 
extracted subnetwork have significant correlations with 
each other since the co-expression information has been 
incorporated. The coefficients and P-values are listed in 
Supplementary Table 1.

We also performed the correlation analysis of 
the 6 candidate genes with some clinical features of 
the PC patients. It turned out that gene expressions of 
the 6 candidates are not influenced by gender, alcohol 
and smoking history. For instance, as illustrated in 
Supplementary Table 2, there is no significant difference 
between the male and female group for each of genes 

according to t-test. The same scenario is presented 
considering either alcohol or smoking history.

Survival analysis of pancreatic cancer candidate 
genes

We then developed an expression signature 
consisting of the six genes by survival analysis in R 
software. After removing 16 patients whose clinical data 
are not included in TCGA, this 6-genes signature could 
significantly stratify 163 PC patients according to overall 
survival (Logrank p = 0.003). As seen in Figure 4, the 
low-risk group had significantly better overall survival 
than the high-risk group. In consistent with the known 

Figure 3: The smallest subnetwork connecting six key candidate genes derived from the extracted network. Red nodes 
represent 4 seed genes and green nodes represent 6 identified candidate genes.
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Figure 4: Survival plot of overall survival in samples from TCGA using the 6-genes signature. Black dotted line depicts 
genes with higher expression associated with poor overall survival and red solid line depicts genes with lower expression associated with 
good survival.

Figure 5: Survival plot of overall survival in samples from Moffitt et al. using the 6-genes signature. Black dotted line 
depicts genes with higher expression associated with poor overall survival and red solid line depicts genes with lower expression associated 
with good survival.
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function of these genes, particularly of MST1R, S100A14 
and LGALS1, the low-risk group is exactly the half with 
lower expressions. For further validation of the 6-genes 
signature, we obtained gene expression and clinical data 
of 125 primary pancreatic cancers from Moffitt et al. [34]. 
When applied to this independent test set, the result in 
Figure 5 (Logrank p = 0.03) suggested that the biomarker 
is able to prognosticate PC independent of patient cohorts 
and sequencing platforms. Further work on the functional 
actions and downstream events of these genes is likely to 
uncover true genomic candidates for PC therapeutics.

In conclusion, the identified six candidate genes 
from this study provide a better understand for the 
underlying molecular mechanisms of PC and might be 
useful for possible personalized therapeutic regimen 
selection to improve survival. It has not escaped our notice 
that this approach may facilitate a further exploration of 
PC as well as other cancers. In addition to the PPI and 
gene co-expression information concerned in this study, 
integrated genomic analysis, such as incorporation of 
epigenetic and mutation level information, might play a 
greater role in diagnosis, prognosis and therapy of PC. 
Furthermore, we will identify driver mutations that confer 
a selective growth advantage of PC cells using these 
multidimensional data sets in the future work.

MATERIALS AND METHODS

Protein-protein interaction network

Protein-protein interaction (PPI) networks carry 
a large amount of valuable information to understand 
cellular function and biological events. Numerous 
researches have indicated that the two adjacent proteins 
of the same interaction in the PPI network usually have 
some common features [35–38]. It can be further deduced 
that proteins in the subnetwork linking known PC related 
genes have more possibility to share similar biological 
functions as demonstrated in many studies [39, 40]. In 
this study, the PPI network was developed based on the 
protein-protein interaction derived from a well-known 
online interaction repository, STRING (Search Tool for 
the Retrieval of Interacting Genes/Proteins, http://string-
db.org/) (9606.protein.links.v10.0) [16], which includes 
direct physical and indirect functional relations.

Gene co-expression network

For the past few years, gene co-expression network 
has presented as a new scheme for transcriptome analysis 
[41, 42]. The expression levels of two co-expressed 
genes always go up and down synchronously. It has been 
shown that functionally associated genes are frequently 
co-expressed forming conservative transcription modules 
[43, 44]. Here, gene expression data of 179 PC tumor 
samples from The Cancer Genome Atlas (TCGA, http://

cancergenome.nih.gov) were downloaded using UCSC 
Cancer Genomics Browser. TCGA is a project aimed 
to generate comprehensive, multi-dimensional maps of 
the key genomic changes in major types and subtypes 
of cancer [45]. UCSC Cancer Genomics Browser is 
an online interactive genome browser hosted by the 
University of California, Santa Cruz, which offers access 
to genome sequence data (https://genome-cancer.ucsc.edu/
proj/site/hgHeatmap/) [17]. Then a gene co-expression 
network was developed in R software. Through package 
“WGCNA” (Weighted correlation network analysis) 
which is a comprehensive collection of R functions, we 
performed the weighted correlation network analysis 
[18]. The similarity scores were evaluated to denote the 
distance between each pair of genes using the function 
“adjacency ()”. Pearson's correlation coefficient is acted 
as the co-expression measure. The number of nodes and 
edges in PPI network, co-expression network and common 
network, respectively, were illustrated in Table 1.

Seed genes

PC related genes were collected from the PCGene 
Database (http://pcgene.bioinfo-minzhao.org) which is 
a literature-based knowledgebase of pancreatic cancer 
related gene [15]. After removing 11 gene which are 
absent in the common network representing both PPI and 
gene co-expression information, we obtained 52 genes 
as PC related genes (seed genes) with a high level of 
confidence (Table 2).

Subnetwork extraction

In this study, we aimed to propose a protocol 
to discover candidate genes related to PC through 
constructing a common network contained both protein 
interaction and gene co-expression information. To 
date, there are a number of methods that can be used to 
find the subnetworks. Here, a standalone and platform 
independent software named GenRev [19], which is able 
to explore the functional relevance genes, was used to 
extract subnetwork. The input documents contained seed 
genes and common network. The Pearson's correlation 
coefficients in co-expression network were used as edge 
weights. Because the common network imported into 
GenRev has only weights of edges but not weights of all 
nodes, we used the suitable edge-weighted limited k-walk 
algorithm in GenRev. As results, by GenRev the genes 
were mapped to the common network and the subnetwork 
was extracted. Visualization of the subnetwork and the 
linker genes were implemented using Cytoscape software 
[46].

Limited k-walks algorithm

The limited k-walks algorithm is one of three 
subnetwork extraction algorithms in GenRev, which can 
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run randomly in the network by utilizing a Markov chain 
and construct a relevant subnetwork connecting seed 
nodes. The relevance of an edge and a node associated 
with the seed genes is calculated through the expected 
times random walk passes starting from one seed node 
to any of the others. Here, the Pearson's correlation 
coefficients in co-expression network were set as weights 
of edges when the limited k-walk algorithm was used. 
More details with respect to it are available in the original 
work [20].

Prioritization of candidate genes

The network extracted by edge-weighted limited 
k-walk algorithm contained 134 genes. Among them, 82 
linker genes are considered as the putative genes. For each 
of the 82 linker genes, we calculated the sum of all edge 
weights in the subnetwork denoted as ranking score (RS). 
Due to linkage between a seed gene and a linker gene is 
of greater meaning than that between two linker genes, 
we doubled the edge weights of linker and seed genes 
when calculated the RSs. A larger ranking score of a gene 
signifies that it might be more likely to significant in PC. 
In consequence, the top-six genes which are deemed to 
key candidate genes of PC were obtained when the RS 
cutoff greater than 1 was used. The 82 linker genes with 
their ranking scores were listed in Table 3.

Survival analysis of candidate genes

In this study, an R package “survival” (Survival 
Analysis) which contains the core survival analysis 
routines, including a series of survival models [47], was 
used to assess prognosis value of the signature developed 
by the six key candidate genes. To analyze the prognostic 
ability of 6 genes, excluding 16 patients whose clinical 
data are absent in TCGA, the remaining 163 overall 
survival samples were split into two groups according to 
the median of sums of the proposed 6 gene expressions. 
The two patient cohorts were compared by survival curves 
using the function “survfit ()”. Meanwhile, p-value of Log-
rank test was calculated using the function “coxph ()”. The 
same method of dichotomy was applied to the 125 overall 
survival samples in the independent test dataset [34].
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