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ABSTRACT

Immunohistochemical (IHC) determination of receptor status in breast cancer 
patients is frequently inaccurate. Since it directs the choice of systemic therapy, it is 
essential to increase its reliability.

We increase the validity of IHC receptor expression by additionally considering 
gene expression (GE) measurements. Crisp therapeutic decisions are based on IHC 
estimates, even if they are borderline reliable. We further improve decision quality 
by a responsibility function, defining a critical domain for gene expression. Refined 
normalization is devised to file any newly diagnosed patient into existing data bases. 
Our approach renders receptor estimates more reliable by identifying patients with 
questionable receptor status. The approach is also more efficient since the rate of 
conclusive samples is increased. We have curated and evaluated gene expression 
data, together with clinical information, from 2880 breast cancer patients. Combining 
IHC with gene expression information yields a method more reliable and also more 
efficient as compared to common practice up to now.

Several types of possibly suboptimal treatment allocations, based on IHC receptor 
status alone, are enumerated. A ‘therapy allocation check’ identifies patients possibly 
miss-classified. Estrogen: false negative 8%, false positive 6%. Progesterone: false 
negative 14%, false positive 11%. HER2: false negative 2%, false positive 50%. 
Possible implications are discussed.

We propose an ‘expression look-up-plot’, allowing for a significant potential to 
improve the quality of precision medicine.

Methods are developed and exemplified here for breast cancer patients, but they 
may readily be transferred to diagnostic data relevant for therapeutic decisions in 
other fields of oncology.

INTRODUCTION

The selection of an optimum breast cancer therapy 
has to include the expression of estrogen receptors (ER), 
progesterone (PGR) and human epidermal growth factor 
2 (HER2) receptor proteins in an individual patient. The 

reliable assessment of these 3 receptor status is hence 
mandatory for optimum individualized therapy.

Although immunohistochemistry (IHC) is 
considered the gold standard for status determination, 
doubts have been raised [1–3] by reported differences 
between readers repeatedly examining the very same data. 
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While almost complete concordance was found for ER--
status, up to 20% of patients assigned ER+- status may be 
erroneously classified, according to reports in the literature 
[4, 5]. Of note, we also found a considerable number of 
ER- that might be misclassified.

First, correct assignment of ER-status is most 
important for the individualized choice of treatment [6]. 
As gene expression measurements can be achieved by 
different techniques, we investigate if the assessment 
of receptor status could be improved by additionally 
exploiting gene expression data.

Second, gene expression signatures for the 
prediction of individual therapeutic outcome have been 
established [7–11] and biomarker discovery methods 
developed [12–14], as recently reviewed [4, 15]. Each 
of these signature-algorithms includes receptor status 
as decisive variables upon which calculated prognosis 
crucially depends. Correct prognostic algorithms can thus 
be developed only on the basis of reliable receptor status 
[16].

Hence, it is of paramount value for both, patient 
treatment and research, to increase the reliability or even 
impute receptor status by the use of additional information, 
e.g., gene expression measurements [17–20]. In the 
present work we restrict ourselves to a single measurement 
platform for gene expression (Affymetrix U133A+2.0), in 
order to avoid inter-platform batch effects.

The present work deals with three receptors, ER, 
PGR and HER2.

RESULTS

For the present work we used and curated the 
datasets listed in Table 1.

Receptor status obtained from gene expression 
by conventional methods

Given the IHC-estimate of a receptor-status, e.g. 
ERIHC

−  or ERIHC
+ , two distributions of expression values  

(xi , i = 1,…, Nsample, number of patients/samples) of 
the corresponding gene (e.g. ESR1. see Table 2) were 
estimated, see Figure 1. These plots show results for the 
estrogen receptor and also illustrate the computational 
procedure, see section ‘Methods and models for 
expression of receptor genes’.

Obtaining receptor status ROC curves

As a prerequisite, we assumed IHC-estimates (e.g.: 
ERIHC

+ , ERIHC
− ) to be ‘true’ and computed a ROC-curve 

(blue curve in Figure 2) by classifying a patient as receptor 
positive/negative if the expression value, xi, of gene ESR1 
was above/below a running threshold, x̂. The area under 
the curve resulted as AUC = 0.94.

Cut-points resulting from models of receptor 
gene expression

In order to evaluate gene expression we assumed 
expression values, xi , to be approximately normally 
distributed (N ( , )µ σ+ +  for ERIHC

+  and N ( , )µ σ− −  for 
ERIHC

− ), see Figure 1, lower panel. Adding both normal 
distributions with proper weights (λ λ+ −+ =1) yielded 
a bimodal distribution, see the stacked bars in Figure 
1. Likewise, we obtained bimodal distributions for 
progesterone (gene PGR) and human epidermal growth 
factor receptor 2 (HER2, gene ERBB2), see Figure 3.

To obtain thresholds discriminating receptor 
positive versus negative we evaluated 5 different methods: 
MaxLike, ParEst, LogReg, Youden and ExMax, for maths 
see the ‘Methods and models for expression of receptor 
genes’ in ‘Material and methods’. We decided to finally 
adopt method ExMax, see section ‘Why to adopt ExMax’ 
in ‘Material and methods’, and obtained the cut-points 
given in Table 3.

Similar results were obtained for PGR and HER2, 
see the bottom rows in Figure 3. Computationally, we 
proceeded along the very same lines as for ER. Note that 
the majority of patients was HER2-. As a consequence, 
thresholds shifted towards larger expression values (as 
compared to ER) and specificity of discrimination resulted 
fairly large.

Although HER2+ has much lower prevalence then 
HER2-, the ExMax-estimate performs outstandingly well, 
as can be seen from Figure 3.

Agreement between receptor status obtained by 
IHC versus gene expression cut-points

Using the cut-points (CP) shown in Table 3, we 
obtained receptor status from gene expression as compared 
to IHC-estimates, see Table 4.

Association between IHC and gene expression 
was quantified by Kruscal’s gamma, Cohen’s Kappa (cf. 
Table 4) and also by the diagnostic odds ratio, DOR, and 
its 95% confidence intervals [21].

Disagreement between IHC and GE, as quantified 
by the rate of discordant samples, is highly problematic in 
the clinical setting, and a clinical decision should not be 
made on the basis of IHC data only.

PGR showed less agreement than ER due to its 
lower expression values, entailing a broad distribution of 
PGR expression values for PGRIHC

+ . Regarding HER2, the 
precision of determination suffered from an imbalance 
in the data: Much more patients are HER2 negative than 
positive. Note that missing IHC-estimates, as considered 
in the next chapter, were not included here.

In order to improve this situation we enhanced the 
decision process by furnishing GE with a responsibility 
function and a critical domain.
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Improved decision quality due to responsibility 
function and critical domain

Instead of using a single cut-point for each receptor 
we introduced a ‘critical domain’ X Xlower upper,   for 
a probability level α = 0.05, see Figure 4 and, for 
mathematical details, the chapter ‘Material and methods’. 
For expression values x X< lower  we decided for receptor 

negative, for x Xupper>  receptor positive: In both cases 
we classified the expression value as ‘informative’. As 
opposed, expression values within the critical domain  
Xlower ≤  x ≤ Xupper were classified as ‘undecidable’, and 
we refrained from a decision. Critical domains thus 
constructed are given in Table 5 and their practical 
application is described in section, Expression lookup 
plot‘ in ‘Material and methods’.

Table 1: Expression datasets used
GEO 
Accession 
number

Citation
Number of samples

Nsample ER- ER+ PGR- PGR+ HER2- HER2+

GSE5460 [36] 29 11 18 0 0 21 8

GSE11001 [37] 30 12 18 16 14 23 7

GSE12777 [38] 51 0 0 0 0 34 17

GSE16179 [39] 18 0 0 0 0 0 18

GSE16391 [40] 55 0 55 0 0 42 3

GSE16446 [41] 120 0 0 0 0 90 28

GSE18728 [42] 61 29 32 36 25 44 17

GSE18864 [43] 84 53 31 53 31 64 18

GSE19615 [44] 115 45 70 51 64 79 36

GSE20685 [45] 327 0 0 0 0 0 0

GSE20711 [46] 88 45 42 0 0 62 26

GSE23177 [47] 116 0 116 0 0 116 0

GSE26639 [48] 226 88 138 128 95 145 81

GSE27120 [49] 28 4 24 12 16 26 2

GSE29431 [50] 54 0 0 0 0 12 41

GSE31448 [51] 353 162 188 154 167 234 31

GSE32646 [52] 115 44 71 70 45 0 0

GSE42568 [53] 104 34 67 0 0 0 0

GSE43365 [54] 111 18 93 34 77 96 13

GSE48390 [55] 81 28 53 0 0 47 34

GSE50948 [56] 156 104 52 121 35 42 114

GSE58812 [57] 107 107 0 107 0 107 0

GSE61304 [58, 59] 58 25 28 23 22 0 0

GSE71258 [60] 128 48 51 61 38 77 22

GSE76124 [61] [62] 198 198 0 198 0 198 0

GSE76274 [61] [62] 67 18 49 25 42 28 22

Total 2880 1073 1196 1089 671 1587 538

GSE-numbers refer to GEO [25, 26], using Affymetrix platform U133A+2.0. Number of samples are given for each study: 
in total (Nsample) and also separately for receptor positive and receptor negative patients according to IHC measurements.
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Table 2: Probe sets for receptor genes ER, PGR and HER2 for the Affymetrix platform U133A+2.0

Receptor ER PGR HER2

Probeset ID 205225_at 208305_at 216836_s_at

HUGO Nomenclature ESR1 PGR ERBB2

ENTREZID 2099 5241 2064

Figure 1: Distribution of gene expression for estrogen-receptor (ESR1): Data, models and thresholds for Affymetrix 
platform U133A+2.0. X-axis: gene expression. Upper panel: Boxplots for expression values of receptor gene ESR1 (Affymetrix-probe 
set 205225_at), grouped according to IHC-estimate (ER+ ERIHC

−∆ + , ER- ERIHC
−∆ − ). Lower panel: Y-axis: probability density. Normalized 

histograms for expression values (blue: ERIHC
− , yellow: ERIHC

+ ). Estimated probability density functions (PDFs) modelled as sums of two 
normal distributions. PDF obtained ‘classically’ from means and standard deviations: green curves. Dashed lines: individual distributions 
for ERIHC

+  and ERIHC
− . Solid: superposition. For methods used see legend. Green dashed curves represent portions for ERIHC

+  and ERIHC
−  - 

patients (integrals < 1), adding up to the solid green curve (integral = 1). Cut-points (vertical lines) resulting from different computational 
approaches (see legend and text), discriminating receptor negative (left) and receptor positive (right) patients. Note that cut-points for 
MaxLike and ExMax coincide (only ExMax is shown in the figure).



Oncotarget77345www.impactjournals.com/oncotarget

Figure 2: ROC-curve for estrogen-receptor gene (ESR1). ROC-curve from IHC-estimates (e.g.: ERIHC
+ , ERIHC

− ) and RMA-
normalized expression values of gene ESR1 (Affymetrix-probe set 205225_at) yields AUC = 0.94 for U133A+2.0. Several concepts have 
been applied (see legend) to obtain thresholds for discrimination between ER+ and ER-. Sensitivity and specificity of each threshold can be 
read off the diagram axes.

The information conveyed by gene expression was 
thus refined, yielding the results for GE 0, shown in Table 
6 and the yellow sub-bars in Figure 5.

A critical domain regarding GE indicates whether or 
not to trust in GE expression alone. This is especially useful 
in cases of lacking IHC estimates. For ER in particular, 81 
cases revealed as untrustworthy, since missing IHC was 
accompanied by GE within the critical domain.

Introducing a critical domain is in particular useful 
in the case of PGR, since GE estimates of PGR offer only 
limited power of discrimination (leaving as many as 782 
samples in column GE 0). But also for ER, 338 samples 
were revealed untrustworthy (column GE 0).

HER2 estimates revealed a special problem: 
Many HER2IHC

+  samples had low (i.e. contradicting) 
GE, suggesting they might be false positives from IHC 
measurement, see the red part of the rightmost bar in left 
panel of Figure 5.

Therapy allocation check and consequences

In order to scrutinize if the additional information 
conveyed by GE might change therapeutic decisions based 
on IHC only, we compared four groups:

1. ER ER PGR PGRGE GEIHC IHC
+ + + +∧( )∨ ∧( ), ,0 0  (see 

Figure 6, blue curves, left column, 329 Pat.): Receptor 

positive patients according to IHC, had received hormone 
treatment. Since GE confirmed IHC, the choice of 
systemic therapy deems correct in these cases.

2. ER PGR ER PGRGE GEIHC IHC
− − − −∧( ) ∧ ∧( )0 0, ,  (see 

Figure 6, blue curves, right column, 137 Pat.): Receptor 
negative patients according to IHC, had not received 
hormone treatment, accordingly. Since GE confirmed IHC, 
the choice of systemic therapy deems correct in these cases.

3. ER PGR ER PGRGE GEIHC IHC
+ + − −∨( ) ∧ ∧( )  (see 

Figure 6, violet, upper left, lower right, 18 Pat.): Patients 
deemed receptor positive according to IHC, had received 
hormone treatment, accordingly. Since GE contradicted 
IHC, the choice of systemic therapy might have been 
incorrect in two possible ways: Those patients who had 
received neoadjuvant hormone therapy (in addition to 
adjuvant chemotherapy) would not have benefitted from it 
(negligible harm). Those patients receiving only hormone 
therapy without chemotherapy would have been given an 
ineffective therapy while at the same time being deprived 
of the adequate, live-saving therapy.

4. ER PGR ER PGRGE GEIHC IHC
− − + +∧( ) ∧ ∨( ) (see Figure 

6, violet, upper right, lower left, 9 pat.): Patients deemed 
receptor negative according to IHC, not having received 
hormone treatment, accordingly. Since GE contradicted 
IHC, the choice of systemic therapy might have been 
suboptimal in these cases.



Oncotarget77346www.impactjournals.com/oncotarget

Figure 3: ROC-curves and probability density (distribution) of PGR and HER2-receptor genes’ expression (PGR 
and ERBB2, respectively): Data, models and thresholds. Left panels: PGR. Right panels: HER2. Upper panels: ROC-curves 
constructed from PGR- and HER2-values from IHC and RMA-normalized expression values of genes PGR and ERBB2 (Affymetrix-probe 
sets 208305_at and 216836_s_at, respectively). The areas under the curves (AUC) are 0.90 (for PGR) and 0.91 (for HER2). To obtain 
thresholds for discrimination (between PGR+ vs. PGR- and HER2+ vs. HER2-), the same concepts have been applied as described for the 
estrogen receptor, see legend and text for details. Mid panels: Box plots for gene expression after RMA-normalization for PGR and HER2, 
with boxes classified according to IHC (+/-). For numbers of samples see Table 1. Lower panels: Normalized histograms of expression 
values (blue bars). x-axis: gene expression after RMA-normalization over all samples. Y-axis: estimated PDF. PDFs obtained ‘classically’ 
from means and standard deviations: green curves, see the dashed lines for individual distributions of IHC+ and IHC-, respectively. PDF 
obtained via maximum likelihood: red curve.
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For each group, we calculated the Kaplan Meier 
product limit estimator for time free from relapse (see 
Figure 6) and obtained 95% confidence limits via the 
Greenwood formula [22].

In group 1 (blue, left column), a patient’s positive 
hormone-receptor status according to IHC was not 
contradicted by GE. Accordingly, these patients are likely 

to have been allocated the ‘correct’ i.e. anti-hormone 
treatment and have actually benefitted therefrom.

Patients in group 2 (blue, right column) had been 
assessed hormone receptor negative via IHC, and this 
was confirmed by GE: They are likely to have received 
optimum systemic therapy.

In contrast, patients in group 3 (violet, upper left and 
lower right) had been assessed hormone receptor positive 

Table 3: Distribution parameters and cut-points for receptors ER, PGR and HER2
Receptor Method CP μ− μ+ σ− σ+ λ− λ+ π+

ER MaxLike 9.453 6.515 11.624 1.415 0.947 0.483 0.517 n/a

ParEst 9.099 6.835 11.300 1.870 1.580 0.483 0.517 n/a

LogReg 9.177 n/a n/a n/a n/a n/a n/a n/a

Youden 8.832 n/a n/a n/a n/a n/a n/a n/a

ExMax 9.363 6.557 11.472 1.534 1.013 n/a n/a 0.519

PGR MaxLike 4.046 3.587 5.560 0.197 1.483 0.542 0.458 n/a

ParEst 4.399 3.647 5.336 0.409 1.555 0.542 0.458 n/a

LogReg 4.145 n/a n/a n/a n/a n/a n/a n/a

Youden 3.929 n/a n/a n/a n/a n/a n/a n/a

ExMax 4.164 3.619 5.722 0.241 1.486 n/a n/a 0.454

HER2 MaxLike 11.680 9.481 12.982 0.870 0.585 0.754 0.246 n/a

ParEst 11.053 9.396 11.912 0.867 1.484 0.754 0.246 n/a

LogReg 11.101 n/a n/a n/a n/a n/a n/a n/a

Youden 10.633 n/a n/a n/a n/a n/a n/a n/a

ExMax 12.304 9.492 13.209 1.251 0.538 n/a n/a 0.124

Cut-points (CP) as obtained by 5 different methods (MaxLike, ParEst, LogReg, Youden and ExMax), cf. the colored dots in 
Figure 2 and Figure 3.

Table 4: Agreement (contingency tables) between receptor status from IHC versus gene expression
estrogen ER progesterone PGR HER2

GE– GE+ GE– GE+ GE– GE+

IHC– 943 130 892 197 1573 14

IHC+ 112 1084 184 487 305 233

log(DOR) ± 95% 4.25±0.27 2.48±0.23 4.45±0.55

Cohen’s Kappa 0.79 0.54 0.52

Kruscal’s Gamma 0.97 0.85 0.98

Rate of discordant samples 11% 22% 15%

Rate of conclusive samples 89% 78% 85%

Cut-points for gene expression were those derived by the ExMax-algorithm, see Table 3. Four measures of agreement are 
given: log(DOR) (natural logarithm of the Diagnostic Odds Ratio, DOR), Cohen’s Kappa (inter-rater agreement), Kruscal’s 
Gamma (strength of association) and the rate of discordant samples (conjugate to the rate of conclusive samples).
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via IHC, however, this was contradicted by GE: they 
might have received a hormone therapy but may not have 
benefitted from it (since they are likely to lack receptors, 
according to GE). It might even be the case that adjuvant 
chemotherapy was spared although being mandatory, 
relying on just hormone therapy (which did not work in 
these patients).

Patients in group 4 (violet, upper right and lower 
left) had been assessed hormone receptor negative via 
IHC, however, this was contradicted by GE: They might 
have been deprived of a hormone therapy they could have 
benefitted from.

The above grouping is weakly formulated by 
intention, in the sense that IHC estimates (used as basis 
for therapeutic decision) were questioned if and only if 
GE actually contradicted, not if GE was just within its 
critical domain ([GE+, GE0] for receptor positive, [GE-,  
GE0] for receptor negative). Tightening the definition of 
error-prone groups (not tolerating ‘0’ anymore), might 
even aggravate the contrasts, concomitantly reducing the 
number of patients in each group, however. We decided 
to stick to the broader (and weaker) definition so as not 
to withhold possibly decisive warnings to patients with 
borderline receptor status.

DISCUSSION

Achievements due to responsibility function and 
critical domain

For the majority of patients (89%), the IHC-
assessment of estrogen receptors (ERIHC) and gene 
expression (ERGE, gene ESR1) data yielded compatible 
results and we may consider such an estimate true. This 
percentage was similar to the portion of IHC-estimates in 
the literature suspected to be true [23]. In this work we 
paved the way to consistently deal with missing as well as 
contradicting estimates as follows, see Table 6.

In cases of missing IHC-estimates one cannot 
simply trust GE. Instead, in order to strengthen decision 
performance, we rather have to introduce a critical region 
for GE. It effectively flags those cases where GE alone 
deems untrustworthy – 81, 282 and 88 for ER, PGR and 
HER2, respectively – and thereby provides a ‘quality 
filter’.

Available IHC estimates which are contradicted 
by GE when based on simple cut-points (crisp decision), 
represent a large number of discordant cases:

Figure 4: Responsibility functions r - for receptors ER, PGR and HER2. Critical domains, where no decision is possible, are 
indicated as colored stripes. For PGR, f +is extremely wide (very large σ +) and causes the unexpected shape of r−. Borders of critical 
domains result from the intersections of the respective r− with the 5% and 95% limits (dotted lines).
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(a) For ER, about (11% of patients in our cohort, 
ERIHC and ERGE disagreed, with about equal numbers 
(130/112) being found in each of the two possible modes 
of disagreement see Table 4.

(b) For PGR, discordant cases were similarly 
balanced (197/184), the rate of discordant samples (22%) 
being twice that of ER, however.

(c) For HER2 finally, discordant cases were severely 
imbalanced (14/305), with a rate of 15% of discordant 
samples, cf. Table 4 and Table 6.

We have to consider, however, that samples with 
formerly ‘contradicting’ GE (according to a crisp decision 
based on a simple cut-point for GE) may switch to non-
contradicting, i.e. ‘compliant’, if GE lied just within (and 
not beyond the limits of) its critical domain.

Thus, considering a critical domain for GE, the 
rate of discordant samples decreased while the rate 
of conclusive samples increased, as can be seen by 
comparing Table 4 and Table 6.

Results for patients on top of those for statistics

If the goal were just to build a cohort of patients for 
developing a gene-expression signature statistically, one 
could, of course, retreat to the save side and consider only 
cases in agreement. However, even this might bias the 
results and call for an improvement of receptor estimate 
quality.

However, if the goal are decisions upon therapeutic 
interventions, these have to be made for all patients and 
in utmost quality - even in cases of disagreement between 
IHC and gene expression. We therefore tried to reduce 
the risk of wrong decisions by improving the cut-point-
method by the additional concept of a ‘critical domain’.

Improving receptor security for a newly 
diagnosed patient

For a newly diagnosed patient, we proposed a 
procedure to improve receptor security, see section 

Table 5: Critical domains of gene expression for receptor status determination

Receptor Probeset Xlower Xupper

ER 205225_at 8.517 10.354

PGR 208305_at 3.664 4.407

HER2 216836_s_at 11.783 13.070

The critical domain for expression values x is given by Xlower ≤  x ≤ Xupper, based on the ExMax-algorithm and probe sets 
listed in Table 2. The section ‘Expression lookup plot’ in ‘Material and methods’ describes how to actually apply the 
criterion Xlower ≤  x ≤ Xupper.

Table 6: Number of samples for which IHC and gene expression yield receptor positive/unknown/negative

gene expression

ER PGR HER2

GE – GE 0 GE + GE – GE 0 GE + GE – GE 0 GE +

IHC – 887 100 86 590 357 142 1560 20 7

IHC 0 273 81 257 365 282 473 593 88 74

IHC + 70 157 969 75 143 453 271 119 148

Critical GE 338 782 227

Rate of discordant samples 5% 8% 10%

Rate of conclusive samples 92% 79% 87%

IHC 0: no IHC measurement available.
GE 0: expression value within the critical domain, and no decision can be made. Boundaries of critical domains were 
computed by the ExMax-method. 
Bold print: discordant samples. 
Note that results shown in this table are obtained step by step via the methods explained in ‘Material and Methods’.
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Figure 5: Number of concordant and discordant samples. Left panel: Bars according to IHC receptor estimate. Height of bar 
represents number of samples with gene expression concordant (green), in critical domain (yellow) and discordant (red). Note that samples 
without IHC estimate are not included. Right panel: Bars according to GE receptor estimate. Height of bar represents number of samples 
with IHC concordant (green), missing (yellow) and discordant (red).

Figure 6: Correct and possibly miss-led assignment of systemic therapy influences survival time free of symptoms. 
Kaplan Meier estimate of overall survival and 95% confidence intervals. Blue curves: patients with IHC status in accordance with gene 
expression (correctly assigned therapy). Violet: patients with IHC status contradicted by GE and possibly having received suboptimal 
therapy.
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‘Expression lookup plot’ in ‘Material and methods’. 
The ‘critical domain’ denotes non-decidable cases with 
responsibilities between 0.05 and 0.95.

Note that such a direct procedure is only possible 
due to the nature of RMA-normalization of expression 
data, see section ‘Receptor status obtained from gene 
expression’ in ‘Results’.

This straight forward procedure for the newly 
diagnosed patient is easily applicable (and renders any re-
normalization on the fly, etc., unnecessary).

Note however, that the ‘expression look-up-plot’ 
may critically depend on expression chip processing, 
despite RMA-normalization. We hence recommend 
building the ‘expression look-up-plot’ on the basis of gene 
expression measurements performed in the very same 
environment as data from newly diagnosed patients are 
analysed.

As a consequence and achievement, treatment 
quality of newly diagnosed patients will benefit, thus 
conveying a significant step towards precision medicine.

Balancing the risks of erroneous receptor status

We have shown that additional information from 
GE-data including a critical domain may improve receptor 
security in a considerable portion of cases, see Table 6.

a) ERIHC
−

Out of 1073 patients classified as ERIHC
−  only 92% 

were not contradicted by gene expression. Without our 
proposed re-assessment, the remaining 8% may receive 
chemotherapy although hormone therapy might suffice. 
Thus, applying our proposed method, unnecessarily severe 
side-effects could possibly be saved in approximately 8% 
of that patient cohort.
b) ERIHC

+  

Out of 1196 patients classified as ERIHC
+  only 94% 

were not contradicted by gene expression. Without 
our proposed re-assessment, the remaining 6% may 
erroneously receive non-effective endocrine therapy while 
chemotherapy is withheld, which may be lethal. Thus, 
identifying these patients, may save lives in approximately 
6% of that patient cohort.

c) PGRIHC
−  

Out of 1089 patients classified PGRIHC
−  only 87% 

were not contradicted by gene expression. Without our 
proposed re-assessment, the remaining 13% would 
possibly receive under-treatment (if also ERIHC

− ), since 
endocrine therapy would be falsely withheld from this 
population.

d) PGRIHC
+  

Out of 671 patients classified PGRIHC
+  only 89% 

were not contradicted by gene expression. Without our 
proposed re-assessment, the remaining 11% would be 
falsely misclassified into endocrine sensitive and would 

thus be exposed to the side effects of endocrine therapy 
without a therapeutic benefit.

e) HER2IHC
−  

Out of 1587 patients classified HER2IHC
− , 99.6% were 

not contradicted by gene expression. Without our proposed 
re-assessment, the remaining 0.4% would be exposed to 
Herceptin-associated side effects without deriving a benefit 
from this expensive and side-effect-related therapy.

f) HER2IHC
+  

Out of 538 patients classified HER2IHC
+  only 50% 

were not contradicted by gene expression. Without our 
proposed re-assessment, the remaining 50% would not 
be able to receive HER2-targeted treatment such as 
Herceptin, and would be under-treated.

Balancing the consequences of above listed 
decisions in therapy allocation we adhere to the general 
consensus that withholding endocrine therapy when 
it should be delivered is more harmful than applying 
endocrine therapy when not needed. Hence,

• the therapy allocation error in c) is more serious 
than it is in d).

• the therapy allocation error in f) is more serious 
than it is in e).

• the most serious allocation error is listed in b), 
concerning patients falsely diagnosed as receptor positive.

Characteristics of selected procedures

This section critically enumerates assumptions 
underlying the results presented here.

Dependence of procedures on IHC - measurements

Expectation maximization (ExMax) does not 
draw on IHC-measurements at all, i.e. all 5 parameters 
of the two normal distributions (π µ σ µ σ+ + + − −, , , , )1 
are estimated simultaneously from expression data, see 
Table 3. On the contrary, for methods Youden, ParEst, 
LogReg and MaxLike, λ+ has to be computed from IHC-
values in advance (i.e. these methods depend on IHC-
measurements).

Dichotomous IHC-estimates

IHC assays initially produce raw values which are 
normally dichotomized into ERIHC

+  and ERIHC
−  according to 

some thresholds. Using more than one threshold yields 
results such as ‘low’, ‘moderate’, ‘high’, etc.

A straight forward improvement of the current 
methodology could draw on raw values of IHC-assays 

1 λ+ and λ− are normalized to unity, hence only λ+ is 
free to be adjusted.
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Figure 8: Expression look-up-plot: expression versus rank for the estrogen receptor. Probes (Nprobes = 22.215) are ranked 
according to expression on the x-axis. Arrows indicate the proposed procedure for the newly diagnosed patient: The rank of a receptor gene 
is embedded within the ranks of all other genes for the very same sample, projected against the curve and the normalized expression value 
read off the y-axis. This yields a processed value ready for decision making. Values are given for Affymetrix U133A+2.0. Projections for 
three different ranks are shown: 18.515 → 8.05 (red), 4.319 → 4.75 (blue), 21.917 → 11.19 (green).

Table 7: Distribution parameters of gene expression and their 95% confidence-intervals

Receptor μ− μ+ σ− σ+

ER 6.557 ± 0.047 11.472 ± 0.031 1.534 ± 0.043 1.013 ± 0.027

PGR 3.619 ± 0.007 5.722 ± 0.050 0.241 ± 0.006 1.486 ± 0.031

HER2 9.492 ± 0.047 13.209 ± 0.008 1.251 ± 0.036 0.538 ± 0.008

Parameters have been obtained by the ExMax-method applied to 2880 samples. 95% Confidence intervals have been 
obtained via expected Fisher information (see ‘Material and methods’, section ‘Obtaining confidence intervals for 
expression distribution parameters’) and verified by bootstrapping (see chapter 8 in [35]).

Figure 7: Responsibility functions for estrogen receptor-negative. Each of the four computational concepts (see legend) yields 
a separate responsibility function, r−, showing the probability that the sample from a given patient is estrogen receptor-negative, based on 
the gene expression value. A responsibility = 0.5 determines the cut-point in terms of gene expression. Note that the methods MaxLike 
and ExMax yield coinciding curves (blue and red, appearing as violet). It becomes quite obvious: the steeper the responsibility function 
declines, the more accurate the limits X Xlower upper,   can be determined. In any case r x− ( ) is monotonously declining from 1 to 0.
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and file them into the analysis as real values similar to 
gene expression values. Such an approach could even 
outperform the one presented here and may be the scope 
of future investigations.

A drawback of this proposal is, however, that in 
most cases we only have dichotomized IHC-estimates 
at hand. No large datasets are available on the net to 
pursue the issue if gradual IHC estimates could improve 
precision.

Goals achieved and clinical impact

Receptor status estimated via IHC is a key ingredient 
of precision medicine for breast cancer patients. However, 
significant doubts have been raised regarding reliability, 
when comparing disparate receptor estimates of different 
readers evaluating the same data [5].

On the other hand, receptor estimates from gene 
expression, which are usually not used in clinical settings, 
have been given even more credit than IHC estimates [24].

Taking GE in account in addition to IHC clearly 
boosts credibility of concordant cases but, at first glance, 
reduced the number of decidable cases, since contradicting 
cases also emerged. However, in a second step, concordance 
could be re-improved by considering a critical domain of 
GE, thereby again reducing the number of contradictory 
cases.

In this work we scrutinized possible mathematical 
ways to enrich receptor information from IHC by gene 
expression data and thus put decisions on therapies 
on more solid grounds. To these ends we developed a 
procedure to incorporate both, IHC estimates and gene 
expression data.

This work used Affymetrix data together with 
clinical parameters downloaded from GEO in search for 
an improved receptor status determination. Translated into 
clinical reality, the expression status of those few genes 
involved will most probably be determined via RT-qPCR. 
Gene expression for single, newly diagnosed patients can 
be made interpretable and meaningful by our proposed 
‘expression-lookup-table’ and lends itself as a valuable 
tool for improved receptor status assessment.

MATERIALS AND METHODS

Data for gene expression and receptor status

Scanning the gene expression omnibus, GEO 
[25–27], for studies on breast cancer, using Affymetrix 
U133A+2.0 arrays and also containing receptor data 
resulted in 28 studies, two of which are redundant. 
The 26 non-redundant studies comprise a total number 
of Nsample = 2880 individual breast cancer samples, 
after excluding samples completely lacking clinical 
information, control samples as well as duplicate samples.

Affymetrix-probe sets for receptors are given in 
Table 2.

Normalization

RMA-normalization was performed on all 54675 
probe sets on the Affymetrix U133A+2.0 expression chip 
using the rma-function from the Bioconductor’s affy- 
package [28–30].

For the analyses we restricted ourselves to the subset 
of the 22215 probe sets U133A+2.0 has in common with 
U133A, in order to be downwards compatible.

Methods and models for expression of receptor 
genes

To exploit information from the expression of 
receptor genes we considered five methods: MaxLike, 
ParEst, LogReg, Youden and ExMax.

Method 1: Youden point

The conventional, most straight forward approach 
is to compute the Youden point [31] along the ROC-curve 
by maximizing

J sensitivity specificity= + −1  (1)

see the label ‘Youden’ in Figure 1, Figure 2 and Figure 3, 
lower panels. The expanded formula reads:

J =

+

true positives
true positives+false positives

true negatives
trrue negatives+false positives  

(2)

Method 2: logistic regression (LogReg)

Another simple approach is logistic regression 
[32] of receptor status versus expression values, xi.  
The cut-point is set at equal probabilities (0.5, 0.5) for 
receptor positive and negative, respectively, see the label 
‘LogReg’ in Figure 1, Figure 2 and Figure 3, lower panels. 
Parameters of distributions (N ( , )µ σ+ +  and N ( , )µ σ− − ) 
are not considered.
Method 3: parameter estimation from bimodal 
distribution (ParEst)

Normal distributions are evaluated classically by 
computing mean and standard deviation µ σ+ +( ),  from N + 
receptor positive patients and µ σ− −( ),  from N − receptor 
negative patients, see the dashed green curves in Figure 
1, Figure 2 and Figure 3. Weights (λ+ + + −= +N N N( ),  
λ− − + −= +N N N( )) are preset from relative abundances 
of IHC-measurements (not fitted). This yields the overall 
probability-density functions (PDF, solid green line).

f x f x f x( ) = ( ) + ( )+ + + + − − − −λ µ σ λ µ σ, | , |  (3)
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The threshold is set at equal Bayesian probabilities 
Pr | Pr | .+( ) = −( ) =x x 0 5  [33], where the Bayesian 
probability is given by:

Pr |A x
f x
f x

A A

A A

A

( ) = ( ) ⋅
( ) ⋅

( ) ( )

( ) ( )∑
λ

λ
 

(4)

Here f A( ) represents the probability density for receptor-
status A∈ − +{ },  and x is the measured expression value 
of the respective gene.

Equating Pr | Pr |+( ) = −( )x x  yields the following 
solution for the cut-point x:
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Method 4: maximum likelihood estimator of bimodal 
distribution (MaxLike)

Weights of both normal distributions are preset (not 
fitted), according to relative abundance N N+ −, as in 
‘ParEst’. Distribution parameters µ σ+ +( ),  and µ σ− −( ),  
are then computed as the maximum likelihood estimator 
[34] via a 4 parameter fit (gradient descent method), 
directly from the bimodal gene-expression histogram. This 
fit has to act upon a very flat target function, and therefore 
we implemented the Newton-gradient algorithm to draw 
on analytical derivatives.

L x
f x

f x

j
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(7)

Computing the cut-point is achieved again via eq. (4) and 
eq. (5).
Method 5: expectation maximization (ExMax)

The ExMax-algorithm is a general and very 
potent mathematical concept, see p. 275 in [35], which 
can fruitfully be broken down and applied to receptor 
estimation, as follows.

ExMax not only estimates the parameters of both 
normal distributions, µ σ+ +( ),  and µ σ− −( ), , but also 
their relative weight as an additional parameter, π +,  
yielding π π− += −( )1  due to normalization. Hence, 
ExMax is able to work without any IHC-estimates.

In short the process is as follows: We start from an 
initial guess for parameters of the two normal distributions 
((μ̂1, σ̂1), (μ̂2, σ̂2) and π̂ + ∆ ( )π + + + −= +N N N . It is only this 

initial guess – not the data used later for the actual 
estimation – which may be obtained from IHC-data.

Instead of maximizing the likelihood straight away 
(as in method 4), it is expanded by additional Nsample latent 
parameters

γ̂i, i N=1.... sample  (8)

γ̂i represents a guess (probability) for sample i to be 
receptor-positive.

a) These guesses are computed (via a special 
formula) from the guesses for the ‘real’ parameters 
of the two normal distributions (μ̂1, σ̂1), (μ̂2, σ̂2) and  
π̂ + ∆ ( )π + + + −= +N N N .

b) From this expanded maximum likelihood 
function, new estimates for the ‘real’ parameters are 
obtained via maximization.

Steps a) and b) are repeated in a loop until 
convergence. Probability density functions based on these 
fitted parameters are shown as blue lines in Figure 1, 
Figure 2 and Figure 3.

Cut-points are obtained via eq. (4) and eq. (5), but 
λ’s are replaced by calculated π’s.

Note that IHC-results need to be known in advance 
and individually for each patient to apply methods 
Youden, LogReg and ParEst (i.e. supervised methods). 
As opposed, MaxLike draws on the relative abundances 
λ+ + + −= +N N N( )  only (semi-supervised method). 
ExMax does not need IHC data at all (unsupervised 
method), and hence lends itself for analyzing cohorts 
totally lacking IHC information.

Why to adopt ExMax

Screening the five methods resulted in the following 
valuation:

• LogReg draws on IHC estimates which may 
partly be wrong, possibly blurring the decision.

• Youden yields only a cut-point without a 
confidence interval.

• MaxLike and ExMax yield almost identical 
results. However, according to our tests, MaxLike seems 
to perform well only if the abundances of false positive 
and false negative estimates are about equal, which is 
incidentally the case in our data. As opposed, ExMax 
works unaffected by relative abundances. Hence, we 
preferred ExMax over MaxLike.

• ParEst yields larger confidence intervals than 
ExMax, see section ‘Obtaining confidence intervals for 
expression distribution parameters’.

• LogReg and Youden do not draw on normal 
distributions. Finally, each method yields a specific cut-
point for classifying the expression value, xi, see the marks 
on the ROC-curve (Figure 2), corresponding to the vertical 
lines in Figure 1 and Figure 3, lower panels.
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All proposed methods were found to yield 
compatible cut-points, see Table 3, and ExMax was finally 
selected. It yields a PDF ( f −) for receptor negative and a 
PDF ( f +) for receptor positive.

Obtaining confidence intervals for expression 
distribution parameters

For the methods ParEst, MaxLike and ExMax, 
outlined to model receptor gene expression, the accuracy 
of parameters can be estimated by several methods, such 
as bootstrap, Leave-One-Out (LOO), cross-validation 
(CV, via training and validation set) or else by Fisher’s 
information criterion, FIC, [35]. We will stick to FIC, and 
it works as follows:

We start from the likelihood function, plug in all 
parameters (means and standard deviations) as a ‘vector 
of parameters’, 



θ , and get:

L x L xµ σ µ σ θ+ + − −( ) = ( ), , , | |





 
(9)

The so-called Fisher Information matrix is obtained as 
second partial derivative:

I
L xi

T
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N
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log |


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θ θ
= −
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∑
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1
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(10)

Next, we would like to evaluate the expectation value of 
I ( )


θ  by integrating over all measured values:

i I x f x dxi i( ) | |
 





 θ θ θ= ( ) ⋅ ( )∫  
(11)

For a bimodal normal distribution this is not feasible. 
As an approximation, we instead evaluate I ( )



θ  for the 
maximum likelihood estimate of the parameters, θ

→ˆ, as 
arguments: I (θ

 x→). It can be shown mathematically [35] ׀ ˆ→
that this converges towards the expectation value.

From statistics one knows that the parameter 
estimates are normally distributed

θ
→ˆ ≈ N (θ

→ˆ, i (θ
→ˆ)-1) (12)

We take the main diagonal of this matrix and therefrom 
construct 95% confidence limits through multiplication by 
1.96

 

θ θj jj
i± ⋅ ( )−1 96 1. ( )

 
(13)

For results see Table 7.

Responsibility functions define lower and upper 
bounds for gene expression

Each of the four estimation methods (LogReg, 
ParEst, MaxLike, ExMax) lends itself to construct a 
‘responsibility function’, r x− ( ), for the respective sample 
being receptor-negative (likewise, r x+ ( ) can be constructed 
for a sample being receptor positive). Each method yields a 
separate responsibility function, see Figure 7.

For the methods ParEst, MaxLike and in particular 
for ExMax, which we finally adopted, responsibility 
functions are constructed as follows:

Given the two PDFs f − and f + (see Figure 1 and 
Figure 3), two ‘responsibility functions’ are constructed

r f
f f

−
−

− +=
+  and r

f
f f

+
+

− +=
+  (14)

and may be directly expressed in terms of the distribution 
parameters:
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(15)

The Bayesian concept enters via interpreting π + as an 
a priori probability of positive (and 1− +π  of negative) 
receptor status for a given patient. In other words, 
responsibility functions indicate if the positive or the 
negative mode ( r x+ ( )  or r x− ( ) ) is better suited to 
explain a measured expression value, x. Boundaries of the 
critical region X Xlower upper,   are obtained by putting

r X r X− +( ) = ( ) = −lower upper 1 α  (16)

The ‘critical domain’ denotes non-decidable cases with 
responsibilities between 0.05 and 0.95.

Expression lookup plot

As a prearrangement take a gene expression 
database of a similar patient cohort and some expression 
platform, e.g. like the one we have used in this work, as 
a basis. Perform RMA-normalization as described and 
generate an ‘expression look-up-plot’ similar to Figure 8. 
It serves as a reference in the following procedure for the 
newly diagnosed patient:

a) Take the raw expression values of all probe sets, 
order them by size and obtain ranks 1 – 22.215 (This 
number depends on the platform used, here a subset 
of Affymetrix U133A+2.0 as mentioned in section 
‘Normalization’).

b) Locate the rank r of the receptor probe set (e.g. 
ESR1) among the others e.g. rank 18.515 (within that 
sample), see Figure 8.

c) Within the ‘expression look-up-plot’ locate the 
rank of the receptor gene on the rank-axis (x-axis), project 
it onto the curve and read off the value from the expression 
axis (y-axis). In math terms, one computes the x = r / Nprobes 
- quantile.

d) This value, x, comes already in correct 
dimensions and may directly be compared with the limits 
of the ‘critical domain’ X Xlower upper,  .

ˆ ˆ
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Thus the expression lookup plot yields information 
directly relevant for improving decision quality based on 
receptor status.
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