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ABSTRACT

There is no consensus on specific prognostic biomarkers potentially improving 
survival of nasopharyngeal carcinoma (NPC), especially in advanced-stage disease. 
The prognostic value of MRI-based radiomics signature is unclear. A total of 970 
quantitative features were extracted from the tumor of 100 untreated NPC patients 
(stage III-IVb) (discovery set: n = 70, validation set: n = 30). We then applied least 
absolute shrinkage and selection operator (lasso) regression to select features that 
were most associated with progression-free survival (PFS). Candidate prognostic 
biomarkers included age, gender, overall stage, hemoglobin, platelet counts and 
radiomics signature. We developed model 1 (without radiomics signature) and model 
2 (with radiomics signature) in the discovery set and then tested in the validation 
set. Multivariable Cox regression analysis was used to yield hazard ratio (HR) of 
each potential biomarker. We found the radiomics signature stratified patients in 
the discovery set into a low or high risk group for PFS (HR = 5.14, p < 0.001) and 
was successfully validated for patients in the validation set (HR = 7.28, p = 0.015). 
However, the other risk factors showed no significantly prognostic value (all p-values 
for HR, > 0.05). Accordingly, pretreatment MRI-based radiomics signature is a non-
invasive and cost-effective prognostic biomarker in advanced NPC patients, which 
would improve decision-support in cancer care.

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a unique 
cancer with specific patterns of racial and geographical 
distribution [1]. It is especially prevalent in southern 
China. The annual incidence rate of NPC reaches 
approximately 50 per 100,000 in prevalent regions and 
this value is 50-fold higher than that in western countries 
[2]. Although NPC is radio-sensitive, about 70-80% 
patients have locoregionally advanced disease at diagnosis 

and 20-30% of NPC patients experience treatment 
failure [3, 4]. The main causes of treatment failure are 
locoregional recurrences and distant metastasis [5].

While concurrent chemoradiotherapy with or 
without adjuvant chemotherapy has led to gains in 
overall survival of advanced NPC patients, there is also 
wider recognition that the outcome of these patients are 
clinically heterogeneous [6]. When they are stratified 
by clinical stage, differences in long-term survival are 
evident within the individual stages. If poor survival 
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can be identified pre-treatment, then this can attribute to 
determine whether more aggressive treatments should 
be administered, for example by increasing cycles, or by 
using of adjuvant chemotherapy. To date, plasma cell-free 
EBV DNA titre remains the only biomarker with clinical 
utility in NPC [7, 8]. There is, thus, a critical need for 
additional biomarkers for prognostication and precise 
treatment stratification in advanced NPC patients.

Recent advances in imaging analysis have 
allowed noninvasive, three dimensional and quantitative 
characterization of tumor with a great potential for therapy 
guidance by providing a comprehensive view of the whole 
tumor, accounting for intratumoral heterogeneity, and 
unrestricted repeatability during the course of the disease 
[9]. This approach is known as radiomics. The emergence of 
radiomics has broaden the scope of routine medical imaging 
in clinical oncology. Some previous studies have shown that 
biomarkers based on quantitative radiomics is associated with 
clinical prognosis across a range of cancer types [10–13].

To our best of knowledge, the potential role of 
radiomics signature as a prognostic biomarker for 
advanced NPC has not been explored. In the present study, 
we performed multivariate analyses to determine whether 
the radiomics signature is an independent predictor of the 
progression-free survival of NPC patients.

RESULTS

Patient and tumor characteristics

Patient and tumor characteristics in the discovery 
and validation sets are listed in Table 1. No differences 
were found between the training and validation cohorts in 
terms of age, gender, overall stage, histology, or follow-up 
time (p = 0.129-0.935). The median follow up time was 
39.5 months (range, 3-89 months).

Construction of the rad-score based radiomics 
signature

A total of 970 radiomics features were extracted 
from MR images (485 features from T2-w images and the 
remaining 485 from CET1-w images). The five textural 
features with a non-zero coefficient in the lasso-Cox 
regression model were as follows: CET1-w_5_GLCM_
correlation, T2-w_1_GLRLM_SRLGLE, CET1-w_6_
GLCM_ IMC1, T2-w_1_GLCM_inverse_variance, and 
T2-w_3_GLCM_homogeneity 1. The radiomics signature 
was constructed, with a Rad-score calculated by using the 
following formula:

Rad-score = 2.495 * T2-w_3_ GLCM_homogeneity 1
  + 1.474 * CET1-w_6_ GLCM _ IMC1
  - 1.203 * CET1-w_5_GLCM _correlation
  - 0.809 * T2-w_1_GLCM_inverse _variance
  - 3.839 * T2-w_1_GLRLM_SRLGLE
  - 7.995

The contribution of the selected parameters with 
their absolute value of regression coefficients is presented 
in the form of a histogram in Figure 1. We could observe 
that the absolute value of coefficient of feature T2-w_1_
GLRLM_SRLGLE was the highest.

The optimum cutoff was the median of Rad-score. 
Accordingly, patients were divided into a high-risk group 
(Rad-score ≥ - 6.863) and a low-risk group (Rad-score <- 
6.863).

The correlation of radiomics features with tumor 
volume

The strength of the correlation coefficient was 
categorized as follows: 0-0.25 = little if any correlation, 
0.26-0.49 = low correlation, 0.50-0.69 = moderate 
correlation, 0.70-0.89 = high correlation, and 0.90 to 1.0 
= very high correlation. As a result, 69, 9, 18, 89, and 300 
CET1WI-based features respectively show very high, high, 
moderate, low and little correlation with tumor volume. A 
total of 69, 9, 29, 111, and 267 T2WI-based features show 
very high, high, moderate, low and little correlation with 
tumor volume. The detailed information was provided in 
the Supplementary material.

Multivariate analyses assessing the prognostic 
value of radiomics signature

Candidate prognostic factors including age, gender, 
overall stage, hemoglobin, platelet counts and radiomics 
signature were included in the multivariate Cox proportional 
hazards model. We developed model 1 (without radiomics 
signature) and model 2 (with radiomics signature) in the 
discovery set and then tested in the validation set. The 
results demonstrated that radiomics signature was a 
significant, independent predictor of PFS in the discovery 
set (HR = 5.14, 95% CI= 4.80-5.48, p < 0.001) and the 
validation set (HR = 7.28, 95% CI = 6.46-8.09, p = 0.015) 
(Table 2). However, the other clinical risk factors showed 
no significantly prognostic value in both model 1 and model 
2 (all p-value for HR, > 0.05) (Table 2).

Representative cases show heterogeneity is more 
important than tumor extent or T staging

A 39-year-old male patient, with stage of T2N2M0 
and Rad-score of -6.599, who experienced disease 
progress at 3 months after treatment. Another 35-year-old 
male patient, with a more advanced stage of T3N2M0 but 
a smaller Rad-score of -7.156, no disease progress was 
observed after a follow-up of 39 months.

A 47-year-old male patient, with stage of T4N2M0 and 
Rad-score of -6.400, who experienced disease progress at 20 
months after treatment. Another 43-year-old male patient, with 
a same stage of T4N2M0 but a smaller Rad-score of -7.157, no 
disease progress was observed after a follow-up of 60 months.
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A 37-year-old male patient, with stage of T3N2M0 
and Rad-score of -6.413, who experienced disease 
progress at 27 months after treatment. Another 40-year-old 
male patient, with same stage of T3N2M0 but a smaller 
Rad-score of -7.146, no disease progress was observed 
after a follow-up of 51 months.

Stratified Kaplan-Meier analyses

When patients were stratified by age (≤ 40 
years, 40-50 years, or >50 years), gender (female or 

male), overall stage (III or IV), hemoglobin (≤ 156 
g/L or >156 g/L), and platelet counts (≤ 158 × 109/L 
or >158 ×109/L), no differences were observed in 
patients’ PFS (p = 0.071-0.867) (Figure 2A-2E). 
However, when these patients were further stratified 
by Rad-score, differences in PFS were evident (for 
all, p < 0.003) (Figure 3A-3E). In particular, when 
patients were stratified by Rad-score alone, we could 
find that the PFS was significantly lower in low risk 
patients than high risk patients (log rank test, p < 
0.0001) (Figure 3F).

Table 1: Patient and tumor characteristics in the discovery and validation sets

Discovery set
(N = 70)

Validation cohort
(N = 30)

p-value

Sex

 Male 50 (71.4%) 26 (86.7%)
0.129

 Female 20 (28.6%) 4 (13.3%)

Age (years)

 Median (IQR) 42 (36.5-51.00) 44 (36.0-51)

0.935 ≤40 33 (47.0%) 13 (43.4%)

 40-50 19 (27.0%) 9 (30%)s

 >50 18 (26.0%) 8 (26.6%)

Overall stage

 III 45 (64.3%) 22 (73.4%)
0.488

 IV 25 (35.7%) 8 (26.6%)

Histology

 WHO type I 0 0

0.361 WHO type II 3 (4.3%) 3 (10%)

 WHO type III 67 (95.7%) 27 (90%)

Pretreatment hemoglobin (g/L)

 Median (IQR) 174 (142-234) 142 (134-153)

< 0.001 ≤156 26 (37%) 24 (80%)

 >156 44 (63%) 6 (20%)

Pretreatment platelet counts 
(109/L)

 Median (IQR) 137(123-169) 234 (180-297)

< 0.001 ≤158 49 (70%) 5 (17%)

 >158 21 (30%) 25 (83%)

Follow-up time (mo)

 Median (IQR) 39.5 (24-58) 39.5 (29-50) 0.722

Data are n (%) unless otherwise indicated. *Histology was categorized according to the WHO Classification. 
IQR: inter-quartile range; type I: keratinizing; type II: non-keratinizing differentiated; type III: non-keratinizing 
undifferentiated.
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DISCUSSION

Radiomics applies advanced computational 
methods to convert medical images into a large number 
of quantitative descriptors of tumors [14]. In the present 
study, we used a high-throughput radiomic approach to 
automatically extract 970 quantitative MRI features and 
analyze their potential value for evaluating progression-
free survival of 100 patients with advanced NPC. About 
38% CET1WI-based and 45% T2WI-based features show 
low to very high correlation with tumor volume. Our 
results reveal that pre-treatment MRI-based radiomics 
signature is a nonivasive and cost-effective prognostic 
marker in advanced NPC patients. Our radiomic approach 
is based on comprehensive quantitative information 
derived from two different MRI sequences which comprise 
a multiparametric three-dimensional characterization of 
the entire tumor.

In radiomics the number of features greatly exceeds 
the number of patients and conventional regression 
techniques may produce unsatisfactory results [15]. 
Therefore, we used lasso, which was shown to be an 
effective machine-learning algorithm to avoid over-fitting 
and select features that most significantly associated with 
the outcome. The radiomics features obtained from lasso 

are generally accurate, and the regression coefficients 
of most features are shrunk towards zero during model 
fitting, making the model easier to interpret [16, 17]. In 
this present study, to develop the best radiomics signature, 
a total of 970 candidate features were reduced to a set 
of only five potential predictors by using a lasso logistic 
regression model. We selected five textural features as 
potential predictors, which were divided into two typical 
matrices: the Gray-level co-occurrence matrix (GLCM) 
and the Gray-level run-length texture matrix (GLRLM). 
GLCM is the matrix function that describes the distance 
and angle of each pixel. By calculating the correlation 
between two gray levels with certain directions and 
distances, GLCM can reflect integrated information 
about the direction, interval, amplitude, and frequency 
of images. GLRLM can quantify gray level runs in an 
image. A gray level run is defined as the length (number 
of consecutive pixels) that have the same gray-level value. 
In this study, texture analysis, consisting of a variety of 
mathematical techniques that can describe the grey-level 
patterns of an image, plays an important role in assessing 
the spatial organization of NPC tumors [18].

Our multivariate Cox proportional hazards model 
1 and 2 suggested that radiomics signature was the only 
prognostic biomarker and other clinical data including 

Table 2: Multivariate cox proportional hazards models in the discovery and validation sets

Variable Model 1 Model 2

HR (95%CI) p-value HR (95%CI) p-value

Sex

 discovery set 3.76 (3.01-4.50) 0.08 1.38 (0.58-2.18) 0.69

 validation set 3.85 (3.07-4.63) 0.08 1.98 (1.37-2.9) 0.27

Age

 discovery set 0.99 (0.97-1.01) 0.52 1.01 (0.98-1.03) 0.80

 validation set 0.99 (0.97-1.02) 0.82 0.99 (0.97-1.01) 0.62

Overall stage

 discovery set 1.35 (1.02-1.69) 0.36 1.04 (0.55-1.54) 0.93

 validation set 0.80 (0.24-1.37) 0.70 1.62 (1.14-2.10) 0.31

Hemoglobin

 discovery set 1.00 (0.99-1.00) 0.34 0.99 (0.99-1.00) 0.19

 validation set 1.01 (1.00-1.01) 0.39 0.99 (0.99-1.00) 0.25

Platelet counts

 discovery set 0.99 (0.99-1.00) 0.08 1.00 (0.99-1.00) 0.83

 validation set 1.00 (0.99-1.00) 0.41 1.00 (0.99-1.00) 0.93

Rad-score

 discovery set --- --- 5.14 (4.80-5.48) < 0.001

 validation set --- --- 7.28 (6.46-8.09) 0.02
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Figure 2: Histogram shows the role of individual textural features that contribute to the developed radiomics signature. 
The features that contribute to the radiomics signature are plotted on the y-axis, with their absolute value of coefficients in the 
lasso Cox analysis plotted on the x-axis 

Figure 1: The image post-processing workflow. Image segmentation is performed on contrast-enhanced T1-w and T2-w 
MRI images. Experienced radiologists contour the tumor areas on all MRI slices. Radiomics features are extracted from 
within the defined tumor contours on the MRI images, quantifying tumor intensity, shape, texture, and wavelet filter. Least 
absolute shrinkage and selection operator (lasso) regression was used to select features that were most associated with PFS. 
For the radiomic analysis, multivariate Cox proportional hazards models and stratified Kaplan-Meier analyses were performed 
to assess the prognostic value of radiomics signature.  
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age, gender, overall AJCC stage, pre-treatment 
hemoglobin, and platelet counts showed no prognostic 
value. Stratified Kaplan-Meier analyses demonstrated 
when the patients were stratified on the basis of clinical 
risk factors, no significant difference was observed 

in any subgroup. However, when these patients were 
further stratified by median Rad-score, shorter PFS was 
found in high-risk patients than in low-risk patients. 
Currently, the TNM staging system is used for risk 
stratification and treatment decision making. However, 

Figure 3: Stratified Kaplan-Meier analyses were performed to estimate progression-free survival in clinical subgroups. 
(A) Green, blue and pink curves describe PFS of patients with age ≤ 40 years, 40-50 years, and > 50 years, respectively. (B) 
Green and pink curves of female and male patients, respectively. (C) Green and pink curves of patients with pretreatment 
hemoglobin ≤156 g/L and > 156 g/L, respectively. (D) Green and pink curves of patients with pretreatment platelet counts ≤ 
158 × 109/L and > 158 × 109/L, respectively. (E) Green and pink curves of III and IV patients, respectively.  
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when patients were stratified by clinical disease stage, 
differences in PFS were evident within the individual 
stages, which suggests that heterogeneity was present in 
the survival outcomes. Thus, the TNM staging system 

may not be precise enough and its prognostic value was 
limited. As for the tumor staging, radiomic analysis 
has recently been demonstrated to be discriminative 
in esophageal cancer, colorectal cancer, and non-small 

Figure 4: The image post-processing workflow. Stratified Kaplan-Meier analyses were performed to estimate progression-free 
survival in various subgroups, (A-F) comparing high-risk patients and low-risk patients according to median Rad-score. Blue and pink 
curves describes PFS of low and high-risk patients.
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cell lung cancer (NSCLC). In contrast to traditional 
clinical staging, which barely reflect the intra-tumor 
heterogeneity, our radiomic approach extracts textural 
features from the imaging characteristics of the entire 
tumor on medical images, thus provide a robust way 
to characterize the intra-tumor heterogeneity non-
invasively. Currently, the intra-tumor heterogeneity has 
been reported to have pronounced effects on prognosis, 
and thus it is considered to be a potential prognosis 
factor [19]. This view fits our knowledge of cancer, 
in which malignant lesions consist of heterogeneous 
cell populations with distinct molecular and micro-
environmental differences.

The clinical relevance of our study lies in 
the advancement of the noninvasive analysis and 
characterization of NPC, and in the extension of existing 
knowledge by novel putative imaging biomarkers 
that currently do not exist in clinical routine. Recent 
efforts focused on finding potential biomarkers for 
the prediction of survival of NPC patients, such as 
body mass index, hemoglobin, lactate dehydrogenase, 
neutrophil-to-lymphocyte ratio, and platelet counts, 
high sensitivity C-reactive protein [20, 21], but the 
clinical utility of these factors was limited and unclear. 
To date, the plasma cell-free EBV DNA titre remains 
the only biomarker with clinical utility in NPC [22]. 
However, the proportion of NPC patients whose tumors 
are associated with EBV DNA vary with geographic 
location, and there are a variety of assays for plasma 
EBV DNA [23].

Limitations of this study should be acknowledged. 
Firstly, we used a validation set that derived from the same 
institution as the discovery set, which prevented us from 
investigating the generalizability of the findings to other 
institutions and settings. Furthermore, all patients were 
in clinical stage III-IVb, which will limit the application 
of our method to low stage patients. Lastly, we did not 
consider interaction on an additive scale between two 
radiomic features on a certain outcome.. If interactions 
between individual texture features had been identified, 
the interaction terms that were most strongly associated 
with the outcome interactions would have been selected 
when we constructed the radiomics signature, and this 
could have improved prognostic performance.

Taken together, radiomic profiling provides a 
complementary perspective by unraveling previously 
hidden information from MRI, which is the imaging 
modality of choice in NPC and routinely performed 
throughout the disease, allowing noninvasive, 
comprehensive assessment of the complete three 
dimensional tumor volume and, by leveraging the 
results from the current study, emphasizes assessment 
of radiomic data for predicting survival outcomes of 
advanced NPC patients. Our MRI-based radiomics 
signature emerges as a putative imaging biomarker for 
the identification of patients who may at high risk for 

shorter PFS, advances the knowledge in the noninvasive 
characterization of NPC, and stresses the role of 
radiomics as a novel tool for improving decision support 
in cancer care at low cost [24].

MATERIALS AND METHODS

Patients

Retrospective data evaluation was approved by 
the local ethics committee and informed consent was 
waived. In all, 100 patients with diagnosed with NPC 
(III-IVb) were included in this study. All patients met the 
following criteria: (i). All patients were without evidence 
of recurrences at diagnosis. (ii). Patients underwent a 
pretreatment MRI scan. (iii). The minimum follow-up 
time to ascertain the progression-free survival (PFS) 
was 36 months. All patients were followed up every 1-3 
months during the first 2 years, every 6 months in years 
2-5, and annually thereafter. (iiii). All local recurrences 
were identified by flexible nasopharyngoscopy and biopsy 
and/or MRI imaging of the nasopharynx and skull base 
that showed progressive bone erosion and/or soft tissue 
swelling. Regional recurrences were confirmed by fine-
needle aspiration or MRI scans of the neck. Distant 
metastases were diagnosed based on imaging methods 
including chest X-ray, whole-body bone scan, MRI, CT, 
PET/CT, and ultrasonography.

The identified patients were randomly allocated 
to a discovery and validation set (discovery set: n = 70; 
validation set: n = 30). Patient and tumor characteristics 
in the discovery set and validation set were compared in 
terms of age, gender, histology, pre-treatment hemoglobin, 
pre-treatment platelet counts, overall stage and follow-up 
time. Tumor staging was performed on the basis of the 
American Joint Committee on Cancer TNM Staging 
System Manual (7th Edition). The PFS was calculated 
from the diagnosis until tumor progression.

MRI imaging

Images were acquired in the routine clinical workup 
using a 1.5 T MR system (Signa EXCITE HD, TwinSpeed, 
GE Healthcare, Milwaukee, WI, USA). The acquisition 
parameters were as follows: axial T2-weighted spin-echo 
images (TR/TE: 5000/85 msec, FOV = 23 × 23 cm, NEX 
= 2.0, Slice thickness = 4 mm, Spacing = 1.0 mm) and 
axial contrast- enhanced T1-weighted spin-echo images 
(TR/TE: 410/Min Full msec, FOV = 23 × 23 cm, NEX = 
2.0, Slice thickness = 4 mm, Spacing = 1.0 mm).

Image post-processing pipeline

Before image processing, we excluded images with 
artifacts, and then we performed image filtering: a process 
was applied to selectively extract features of diverse sizes 
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and intensity variations. A Laplacian of Gaussian spatial 
band-pass filter was used, by turning the filter parameter 
between 1.0 and 1.5. The filter values of 0 indicated no 
filtration, 1.0 indicated degrees of fine texture, 1.5 and 
2.0 indicated medium textures, while 2.5 indicated coarse 
texture. The Laplacian of Gaussian filter distribution is 
given by

G x y(X,Y) 1 (1
2

)e
x y

2
4

2 2

2

(
2

)
2 2

2

ππσ σ
= − − + σ

− +

x, y denote the spatial coordinates of the pixel and σ 
is the value of filter parameter.

Figure 4 depicts the image post-processing workflow. 
Axial T2-weighted (T2-w) and contrast-enhanced T1-
weighted (CET1-w) Digital Imaging and Communications 
in Medicine (DICOM) images (512 by 512 pixels) for three-
dimensional segmentation using algorithms implemented 
in an open source software ITK-SNAP (http://www.itk-
snap.org). All manual segmentations of the tumor were 
performed by a radiologist who had 10-year of experience, 
and each segmentation was validated by a senior radiologist, 
who had 20-year of experience in NPC diagnosis. The 
region of interest (ROI) covered the whole tumor and was 
delineated on both the axial T2-w and CET1-w images on 
each slice (Supplementary Figure).

Quantitative features included first-order features, 
volume and shape features, textural features, and wavelet 
features. For each image volume, eight decompositions 
were calculated using discrete wavelet transformations 
which effectively decouple textural information by 
decomposing the original image in three directions (x, 
y, z). The size of each decomposition is equal to the 
original image and each decomposition is shift invariant. 
All feature extraction methods were implemented using 
Matlab 2014a (MathWorks, Natick, MA, USA). The least 
absolute shrinkage and selection operator (lasso) logistic 
regression was used to select the most strong radiomics 
features associated with the patients’ PFS. Radiomics 
signature were built using Rad-score. The Rad-score 
was calculated for each patient as a linear fitting of 
selected features that were weighted by their respective 
coefficients.

Statistical analysis

Subsequent analysis was performed using R 
version 3.2.3 (R Foundation for Statistical Computing). 
All radiomic features (n = 970) were normalized by 
transforming the data into new scores with a mean of 0 
and a standard deviation of 1 (z-score transformation). The 
package ‘glmnet’ was used for Lasso logistic regression 
model. The correlation of Radiomics features with tumor 
volume was calculated using spearman correlation 
analysis. A multivariate Cox proportional hazards model 
(backward step-down selection; the Akaike information 

criterion) were used to evaluate the performance of the 
clinical and radiomic predictors for stratifying PFS 
(separately assessed for both the discovery and validation 
set). Stratified Kaplan-Meier analyses were performed 
to explore the potential association of the radiomics 
signature with the PFS using subgroups within clinical-
pathologic risk factors from the whole data set. The 
subgroups included age (≤ 40 years, 40-50 years, or >50 
years), gender (female or male), overall stage (III or IV), 
hemoglobin (≤ 156 g/L or >156 g/L), and platelet counts 
(≤ 158 × 109/L or >158 ×109/L). The survival differences 
were compared using log-rank tests. The differences in 
age, gender, overall stage, histology, hemoglobin, platelet 
counts, and follow-up time between discovery set and 
validation set were assessed by using an independent 
samples t test, Chi-square test, or Mann-Whitney U test, 
where appropriate. All statistical tests were two-sided, and 
p-values of < 0.05 were considered significant.

Abbreviations

NPC nasopharyngeal carcinoma
PFS progression-free survival
MRI magnetic resonance imaging
PACS picture archiving and communication system
AJCC american joint committee on cancer
 Lasso least absolute shrinkage and selection 
operator
CI confidence interval
HR hazard ratio
FOV field of view
NEX number of excitations
TR repetition time
TE echo time
CET1WI contrast-enhanced T1-weighted imaging
T2WI T2-weighted imaging
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run-length texture matrix
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