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ABSTRACT

Recent efforts on genome wide profiling of muscle invasive bladder cancer 
(MIBC) have led to its classification into distinct genomic and transcriptomic 
molecular subtypes that exhibit variability in prognosis. Evolving evidence from 
recent immunotherapy trials has demonstrated the significance of pre-existing 
tumour immune profiles that could guide treatment decisions. To identify immune 
gene expression patterns associated with the molecular subtypes, we performed 
a comprehensive in silico immune transcriptomic profiling, utilizing transcriptomic 
data from 347 MIBC cases from The Cancer Genome Atlas (TCGA). To investigate 
subtype-associated immune gene expression patterns, we assembled 924 immune 
response genes and specifically those involved in T-cell cytotoxicity and the Type 
I/II interferon pathways. A set of 157 ranked genes was able to distinguish the 
four subtypes in an unsupervised analysis in an original training cohort (n=122) 
and an expanded, validation cohort (n=225). The most common overrepresented 
pathways distinguishing the four molecular subtypes, included JAK/STAT signaling, 
Toll-like receptor signaling, interleukin signaling, and T-cell activation. Some of the 
most enriched biological processes were responses to IFN-γ, antigen processing and 
presentation, cytokine mediated signaling, hemopoeisis, cell proliferation and cellular 
defense response in the TCGA cluster IV. Our novel findings provide further insights 
into the association between genomic subtypes and immune activation in MIBC and 
may open novel opportunities for their exploitation towards precise treatment with 
immunotherapy.

INTRODUCTION

Urothelial bladder cancer (UBC) is the fifth most 
common cancer worldwide [1] and is one of the most 
management intensive cancers in North America [2]. 
Although the majority of incident cases of UBC are 
non-invasive at presentation, muscle invasive bladder 

cancer (MIBC) represents very aggressive disease with 
rapid progression to metastases [3] and poor overall 
survival despite intensive local and systemic therapy. 
Current standards for localized MIBC include radical 
cystectomy with or without perioperative cisplatin-based 
chemotherapy [3]. Unfortunately, many suffer early 
disease recurrence and, despite palliative chemotherapy, 
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median survival rates are generally less than one year [4]. 
The optimal management of patients with higher risk UBC 
is ambiguous with a significant need for better prediction 
tools and enhanced therapeutics [5].

MIBCs are highly heterogeneous tumours. Recent 
investigations based on molecular profiling of specimens 
from large UBC cohorts have led to their classification 
into molecular subtypes that display distinct genomic 
and transcriptomic features, resembling those seen in 
breast cancer [3], [6–8]. Interestingly, these subtypes 
may exhibit distinct associations with treatment response 
and survival [8, 9]. Although different groups have 
classified UBC into two [8], three [3], four [6], or five 
[7] subtypes, there is a consensus that the top separation 
occurs as the basal and luminal subtypes [10]. Basal 
tumours, enriched with EGFR and hypoxia-inducible 
factor 1 expression, are often metastatic at presentation, 
possess squamous and sarcomatoid histological features, 
and have epithelial-to-mesenchymal transition cell 
biomarkers [11]. In comparison, luminal cancers have 
papillary features and commonly FGFR3, ERBB2, and 
ERBB3 activating mutations [11]. The Cancer Genome 
Atlas Network (TCGA) bladder analysis working group 
classified bladder tumours into four clusters named I, 
II, III, and IV [6]. Clusters I and II correspond to the 
luminal subtype, while III and IV represent the basal 
subtype [12]. Tumours in Cluster I are enriched in FGFR3 
overexpression due to mutations and amplification and 
show better overall survival, whereas those in cluster II, 
designated “p53-like” tumours, express active p53 gene 
signatures and are resistant to neoadjuvant cisplatin-
based combination chemotherapy [3]. Cluster IV shares 
features with the claudin-low subtype of breast cancer, 
express immune checkpoint molecules, and were actively 
immunosuppressed, despite having an enriched immune 
gene signature [13]. In particular, Kardos et al. [13] 
demonstrated that immune infiltration was not correlated 
with predicted neoantigen burden, but from unopposed 
NF-kB activity from downregulated PPARγ signaling.

Given the urgent need of alternative approaches 
in MIBC treatment, there has been a growing interest 
in immunotherapies, such as those targeting the 
immune checkpoints: CTLA-4, PD-L1, and PD-1 [14]. 
Atezolizumab, a PD-L1 inhibitor, has been recently 
approved by the FDA for bladder cancer that progressed 
during or following chemotherapy [15]. Evolving 
evidence based on the success of immune checkpoint 
blockade therapies in melanoma and non-small cell lung 
cancer has confirmed the significance of the pre-treatment 
tumour immune state as a strong prognostic and response 
predictive indicator [14, 16]. An important feature, key to 
the success of immunotherapy, is the spatial organization 
of cytotoxic CD8+ tumour infiltrating lymphocytes (TILs) 
in the epithelial and stromal compartments and their 
activation status [17]. Higher density of CD3+ and CD8+ 
TILs have been associated with increased disease-free 
and overall survival in melanoma, head and neck, breast, 

bladder, urothelial, ovarian, colorectal, prostatic, and 
lung cancer; however, their activation status determines 
their prognostic significance in most cancers [18, 19]. 
In particular the expression of interferons (IFNs), which 
play a central role in anti-tumour immune responses, 
are emerging as prognostic and predictive biomarkers 
of both chemotherapy and immunotherapy [20]. Higher 
infiltration with CD4+ and regulatory subsets of TILs 
and higher CD68 to CD3 ratios are associated with poor 
prognosis in bladder cancer [21–23]. In particular PD-L1, 
IDO, FOXP3, TIM3, and LAG3 are expressed in T-cell-
inflamed, and β-catenin, PPAR-γ, and FGFR3 in non-T-
cell-inflamed urothelial tumours [17]. Although the pre-
treatment expression of PD-1/PD-L1 initially showed 
some predictive value, it has recently failed to perform as 
a good biomarker in the recent clinical trials due to their 
transient nature of expression [23–25].

As reported in other cancers sites, it is likely that the 
pre-existing tumour immune landscape in UBC could be 
an additive determinant of response to chemotherapy as 
well as immune-based therapies leading to more precise 
prognostication, patient stratification, and informed 
treatment decisions [26]. To our knowledge there are 
no previous studies in MIBC that have evaluated the 
association between immune transcriptomic alterations, 
specifically those mediated by IFNs and cytotoxic 
pathway genes, and their potential associations with 
their distinct molecular sub-populations. In the current 
study, we performed a comprehensive in silico immune 
transcriptomic profiling of MIBC using the publicly 
available TCGA global transcriptomic datasets in order 
to determine whether the known molecular subtypes 
of MIBC are associated with specific immune gene 
signatures. The findings from our study may not only 
provide insights into the association between genomic 
subtypes and immune activation, but may also open novel 
opportunities for improving the management of MIBC.

RESULTS

We aimed to determine whether the previously 
defined four TCGA MIBC clusters exhibit differences in 
their immune gene expression patterns that could be of 
potential significance in informing treatment decisions 
for immunotherapies and other combinatorial treatment 
approaches.

Clinicopathological features of TCGA MIBC 
cohort

The TCGA cohort as reported earlier, consisted 
of chemotherapy-naïve, muscle-invasive, high-grade 
urothelial tumors (T2-T4a, Nx, Mx) [6]. Inclusion 
criteria reviewed by five expert genitourinary 
pathologists involved: tumour nuclei ≥ 60% of total, 
≤20% tumour necrosis in the specimen, and variant 
histology ≤50% [6].
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Immune gene expression patterns across MIBC 
clusters

First, the 122 samples previously used to identify 
the four clusters by TCGA [6] were treated as a discovery 
group to determine immune gene expression profiles 
across clusters. A total of 377 genes derived from the 
NanoStringTM panel discriminating among the clusters 
were identified using a feature selection technique 
(Supplementary Table 1). The performance of these genes 
to accurately distinguish the four TCGA clusters was 
evaluated by clustering of cohort 1 (Figure 1). This set of 
genes was then used to assign samples in the validation 
set to the four clusters. Similar to cohort 1, the genes 
were able to distinguish the four clusters in cohort 2 by 
supervised and unsupervised analysis (Figure 2A and 
2B). Similar unsupervised analysis was done using the 
top 5% of genes derived from all immune panels (n=157) 
(Supplementary Table 2) on both cohorts (Figure 3A 
and 3B). A recent updated analysis of the current TCGA 
bladder tumour cohort shows that clusters I-IV remained 
stable [28], supporting our classification approach in 
cohorts 1 and 2.

Differential pre-existing expression patterns of 
interferon associated genes

The four cluster patterns were also noted for the top 
20% ranking IFN-γ associated genes upon hierarchical 
clustering analysis in both training and validation cohorts 

(Figure 4A and 4B). A gradient of under-expression of 
IFN-γ associated genes in cluster I to overexpression in 
cluster IV is observed in both. A similar pattern was also 
noted in the top 20% ranking IFN-α (Figure 5A and 5B) 
and cytotoxic genes (Figure 6A and 6B). Most importantly, 
key IFN response genes and downstream T-cell recruiting 
target chemokine genes, CXCL9, CXCL10, and CXCL11, 
and their common receptor CXCR3, showed increased 
expression in clusters III and IV. Similarly, others in the 
list included the key players in IFN response such as 
IFITM2, CCL5, IRF4 and others.

Antigen processing pathways are 
overrepresented in T-cell inflamed MIBC 
clusters

We determined the Gene Ontology functional 
annotations of the differentially expressed genes that 
distinguished the four clusters, using both the 377 and 157 
genes as input gene lists. Using the overrepresentation 
statistic in PANTHER, we calculated the probability of 
highly populated protein classes and gene ontology classes 
among the two gene lists (Table 2a and 2b). The most 
enriched GO biological processes in the 377-gene list were 
response to IFN-γ, antigen processing and presentation, 
cytokine mediated signaling, hemopoeisis, cell proliferation 
and cellular defense response (Supplementary Table 3). 
The top five overrepresented pathways included JAK/STAT 
signaling pathway, Toll-like receptor signaling pathway, 
interleukin signalling pathway, and T-cell activation 

Figure 1: Distinct immune gene expression levels in cohort 1 (n=122) between the four TCGA bladder cancer subtypes based on the top 
20% (377 NanosString panel genes) using the feature selection algorithm. Red indicates high expression, and blue indicates low expression.
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(Figure 7). Interestingly, similar analysis using the top 
ranking 157 genes as input list, revealed only the B-cell 
activation, T-cell activation, and inflammation mediated 
by chemokine and cytokine signaling pathways as the 
only three overrepresented pathways. Response to IFN-γ, 
hemopoiesis, macrophage activation and cell proliferation 
were the most overrepresented GO biological processes in 
the top ranked 157 genes (Supplementary Table 4).

DISCUSSION

Evolving research from correlative studies as well as 
clinical trials, including those for UBC, have emphasized 
the value of the pre-existing tumour immune state as a 
predictor of response to treatment and survival [29, 30]. 
Furthermore, UBC is associated with a comparatively high 
mutational burden [31], which could potentially contribute 

Figure 2: Cohort 2 (n=225) assigned to clusters based on Euclidian distance to the cluster centroids generated from the 
cohort 1 (n=122). Supervised (A) and unsupervised (B) analysis based on the samples and 377 NanoStringTM panel genes.
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to increased immunogenicity making them more 
susceptible to novel immunotherapy-based approaches. 
In order to gain a better understanding of the pre-existing 
tumour immune landscape in UBC, we conducted a 
comprehensive in silico immune transcriptomic profiling 
of the MIBC tumours from the TCGA database.

Four distinct molecular subtypes in MIBC were 
defined recently based on the TCGA MIBC genome 
wide profiling datasets [6]. Indeed, variability in subtype 
nomenclature has been reported [10], which could be 
attributed to heterogeneity in tissue samples in addition to 
several other factors such as inclusion of NMIBC cases in 
classification schemes. However, since the TCGA bladder 
cohort is enriched for MIBC and gene expression based 

clusters have been well defined, we specifically used this 
cohort to address our question on immune gene expression 
patterns associated with genomic alterations. Based on 
the distinct immune signature between clusters in cohort 
1 (n=122), we were able to assign cohort 2 (n=225) into 
the associated TCGA clusters using the top 20% of ranked 
immune genes from the training cohort. Further analysis on 
the IFN-γ, IFN-α, and cytotoxic genes were then compared 
in both cohorts. All of these analyses revealed an increased 
expression of immune-associated genes in Cluster IV and 
underactive immune environment in Cluster I. Given that 
specific genetic alterations associate with these molecular 
subtypes, it seems that anti-tumour immune responses 
could be partly driven by oncogenic drivers.

Figure 3: Unsupervised analysis of both the cohort 1 (A) and cohort 2 (B) using the top 5% (n=157) genes. Unsupervised grouping shows 
gradient of under expression in cluster I to overexpression in cluster IV.
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Cluster I has been previously reported to show 
higher expression of FGFR3 via mutations, amplifications, 
and other mechanisms [3]. Interestingly this cluster 
showed a distinct underactive tumour immune state with 
reduced expression of IFN genes and genes associated 
with T-helper type-1 response. It is indeed intriguing 
that tumours with FGFR3 mutations or overexpression 
as per previous classification [6], show an increased 
overall survival, which contradicts the underactive 
immune state observed here. In contrast, cases in cluster 

IV showed the most dominant immune response amongst 
all four clusters. Tumours in this cluster show decreased 
expression of PPAR-γ and GATA3, and significantly 
increased expression of IFN and antigen presentation 
pathway genes, in addition to MHC class II genes and 
those involved in T-cell cytolytic activity. Previous reports 
have shown that based on broader classifications, cases 
in cluster IV belong to the basal subtype, which shows 
poor overall survival [8], [9]. One potential contributor to 
these associations is the increased expression of immune 

Figure 4: Supervised heat map of top 20% of IFN-γ associated pathway genes in both cohort 1 (A) and cohort 2 (B).
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checkpoint molecules such as CD274 (PD-L1), IDO1 
and the immunosuppressive IL6 in clusters III and IV 
that potentially lead to increased resistance to cytotoxic 
killing and poor response to treatment and ultimately poor 
survival. As previously shown, this cluster also shows 
higher levels of EMT related genes, indicating more 
aggressive tumour phenotype [33]. Our recent report 
demonstrating that higher PD-L1 expression in cancer 
cells leads to increased drug resistance upon activation 

by IFN-γ or PD-1 [32] supports this notion. It could thus 
be speculated that the IFN-γ secreted by activated T-cells, 
reflected by the increased expression of GZMA in these 
clusters, could be inducing PD-L1 on the cancer cells 
with further interaction between these leading to T-cell 
dysfunction. However, the mechanistic basis of these 
significant associations needs to be explored further. In 
other cancers such as melanoma, colorectal, and ovarian, 
higher expression of IFN pathway genes and of those 

Figure 5: Supervised heat map of top 20% of IFN-α associated pathway genes in both discovery (A) and validation (B) groups.
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representing an active immune response is associated 
with a favourable treatment outcome and overall survival. 
Furthermore, it is also possible that factors other than anti-
tumour immune responses contribute to increased survival 
rates in tumours with FGFR3 mutations in MIBC.

Increased expression of MHC class II genes CD74, 
HLA-DMB, and HLA-DQA1 indicate higher tumour 
antigen processing by the antigen presenting cells in 
clusters III and IV. This was also confirmed by gene 

ontology-based analysis, which reflected a dominance of 
response to IFN-γ, antigen processing and presentation, 
cytokine mediated signaling, and cell proliferation, NK cell 
and macrophage activation, and B cell mediated immunity. 
These enrichments not only confirm the increased active 
anti-tumour immune response in clusters IV and some of 
cluster III but also indicate the immunogenic nature of 
these clusters that could be potentially be driven by higher 
mutational burden and recognition of immune cells.

Figure 6: Supervised heat map of top 20% of cytotoxic associated pathway genes in both cohort 1 (A) and cohort 2 (B).
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Overall, our findings based on comprehensive 
immune transcriptomic analysis have significant 
implications in informing treatment decisions based on 
immune gene expression patterns. Specifically, since 
immune checkpoint blockade therapy has shown some 
promise in bladder cancer [15], near future biomarker 
driven clinical trials will benefit from these findings that 
emphasize appropriate patient stratification for treatment. 
Although recent reports have described the presence of 
T-cell inflamed and non-inflamed MIBC tumours [17, 33], 
no previous reports have identified associations between 
immune response and IFN-associated genes with the four 
molecular MIBC subtypes. Our study is limited by the 
fact that the TCGA dataset is enriched for MIBC and thus 
further validations in other cohorts need to be performed; 

however, these associations are timely and complement 
the ongoing and future clinical trials based on immune-
based therapies. Clinical translation of our findings will 
most appropriately be addressed by validation of the 
most significant differentially expressed genes at both 
transcriptional and proteomic levels in retrospective and 
prospective pre-treatment bladder tumour specimens. 
Future investigations by integration of genomic alterations 
determined by exome and transcriptome sequencing 
data are key to identifying the genomic determinants 
of variability in immune response. Finally our study 
provides an improved understanding of the bladder cancer 
molecular subtype associated immune gene expression 
patterns and will significantly impact the design of novel 
immune based therapies.

Figure 7: Bar graph depicting distribution of fold enrichment levels of biological pathways defined by PANTHER 
based analysis in the 377 genes that show differential expression patterns in the four TCGA MIBC clusters. The enriched 
categories were obtained upon analysis using the statistical overrepresentation test defined by PANTHER tool [27].
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Table 1: Custom designed immune gene panel of 924 genes, consisting of IFN-α and IFN-γ pathway genes from 
GSEA and immune response genes defined by the NanoString nCounter PanCancer immune Pathways Panel

Immune gene panel - NanoString nCounter PanCancer immune panel

A2M C1R CCND3 CD44 CLEC5A

ABCB1 C1S CCR1 CD46 CLEC6A

ABL1 C2 CCR2 CD47 CLEC7A

ADA C3 CCR3 CD48 CLU

ADORA2A C3AR1 CCR4 CD5 CMA1

AICDA C4BPA CCR5 CD53 CMKLR1

AIRE C5 CCR6 CD55 COL3A1

AKT3 C6 CCR7 CD58 COLEC12

ALCAM C7 CCR9 CD59 CR1

AMBP C8A CCRL2 CD6 CR2

AMICA1 C8B CD14 CD63 CREB1

ANP32B C8G CD160 CD68 CREB5

ANXA1 C9 CD163 CD7 CREBBP

APOE CAMP CD164 CD70 CRP

APP CARD11 CD180 CD74 CSF1

ARG1 CARD9 CD19 CD79A CSF1R

ARG2 CASP1 CD1A CD79B CSF2

ATF1 CASP10 CD1B CD80 CSF2RB

ATF2 CASP3 CD1C CD81 CSF3

ATG10 CASP8 CD1D CD83 CSF3R

ATG12 CCL1 CD1E CD84 CT45A1

ATG16L1 CCL11 CD2 CD86 CTAG1B

ATG5 CCL13 CD200 CD8A CTAGE1

ATG7 CCL14 CD207 CD8B CTCFL

ATM CCL15 CD209 CD9 CTLA4

AXL CCL16 CD22 CD96 CTSG

BAGE CCL17 CD24 CD97 CTSH

BATF CCL18 CD244 CD99 CTSL1

BAX CCL19 CD247 CDH1 CTSS

BCL10 CCL2 CD27 CDH5 CTSW

BCL2 CCL20 CD274 CDK1 CX3CL1

BCL2L1 CCL21 CD276 CDKN1A CX3CR1

BCL6 CCL22 CD28 CEACAM1 CXCL1

BID CCL23 CD33 CEACAM6 CXCL10

BIRC5 CCL24 CD34 CEACAM8 CXCL11

BLK CCL25 CD36 CEBPB CXCL12

BLNK CCL26 CD37 CFB CXCL13
(Continued )
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BMI1 CCL27 CD38 CFD CXCL14

BST1 CCL28 CD3D CFI CXCL16

BST2 CCL3 CD3E CFP CXCL2

BTK CCL3L1 CD3EAP CHIT1 CXCL3

BTLA CCL4 CD3G CHUK CXCL5

C1QA CCL5 CD4 CKLF CXCL6

C1QB CCL7 CD40 CLEC4A CXCL9

C1QBP CCL8 CD40LG CLEC4C CXCR1

CXCR2 FOS IFI27 IL19 IRAK4

CXCR3 FOXJ1 IFI35 IL1A IRF1

CXCR4 FOXP3 IFIH1 IL1B IRF2

CXCR5 FPR2 IFIT1 IL1R1 IRF3

CXCR6 FUT5 IFIT2 IL1R2 IRF4

CYBB FUT7 IFITM1 IL1RAP IRF5

CYFIP2 FYN IFITM2 IL1RAPL2 IRF7

CYLD GAGE1 IFNA1 IL1RL1 IRF8

DDX43 GATA3 IFNA17 IL1RL2 IRGM

DDX58 GNLY IFNA2 IL1RN ISG15

DEFB1 GPI IFNA7 IL2 ISG20

DMBT1 GPR44 IFNA8 IL21 ITCH

DOCK9 GTF3C1 IFNAR1 IL21R ITGA1

DPP4 GZMA IFNAR2 IL22 ITGA2

DUSP4 GZMB IFNB1 IL22RA1 ITGA2B

DUSP6 GZMH IFNG IL22RA2 ITGA4

EBI3 GZMK IFNGR1 IL23A ITGA5

ECSIT GZMM IGF1R IL23R ITGA6

EGR1 HAMP IGF2R IL24 ITGAE

EGR2 HAVCR2 IGLL1 IL25 ITGAL

ELANE HCK IKBKB IL26 ITGAM

ELK1 HLA-A IKBKE IL27 ITGAX

ENG HLA-B IKBKG IL28A ITGB1

ENTPD1 HLA-C IL10 IL29 ITGB2

EOMES HLA-DMA IL10RA IL2RA ITGB3

EP300 HLA-DMB IL11 IL2RB ITGB4

EPCAM HLA-DOB IL11RA IL2RG ITK

ETS1 HLA-DPA1 IL12A IL3 JAK1

EWSR1 HLA-DPB1 IL12B IL32 JAK2

F12 HLA-DQA1 IL12RB1 IL34 JAK3

F13A1 HLA-DQB1 IL12RB2 IL3RA JAM3

(Continued )
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F2RL1 HLA-DRA IL13 IL4 KIR2DL1

FADD HLA-E IL13RA1 IL4R KIR2DL3

FAS HLA-G IL13RA2 IL5 KIR3DL1

FCER1A HMGB1 IL15 IL5RA KIR3DL2

FCER1G HRAS IL15RA IL6 KIR3DL3

FCER2 HSD11B1 IL16 IL6R KIT

FCGR1A ICAM1 IL17A IL6ST KLRB1

FCGR2A ICAM2 IL17B IL7 KLRC1

FCGR2B ICAM3 IL17F IL7R KLRC2

FCGR3A ICAM4 IL17RA IL9 KLRD1

FEZ1 ICOS IL17RB ILF3 KLRF1

FLT3 ICOSLG IL18 INPP5D KLRG1

FLT3LG IDO1 IL18R1 IRAK1 KLRK1

FN1 IFI16 IL18RAP IRAK2 LAG3

LAIR2 MAPK3 NT5E RELB STAT2

LAMP1 MAPK8 NUP107 REPS1 STAT3

LAMP2 MAPKAPK2 OAS3 RIPK2 STAT4

LAMP3 MARCO OSM ROPN1 STAT5B

LBP MASP1 PASD1 RORA STAT6

LCK MASP2 PAX5 RORC SYCP1

LCN2 MAVS PBK RPS6 SYK

LCP1 MBL2 PDCD1 RRAD SYT17

LGALS3 MCAM PDCD1LG2 RUNX1 TAB1

LIF MEF2C PDGFC RUNX3 TAL1

LILRA1 MEFV PDGFRB S100A12 TANK

LILRA4 MERTK PECAM1 S100A7 TAP1

LILRA5 MFGE8 PIK3CD S100A8 TAP2

LILRB1 MICA PIK3CG S100B TAPBP

LILRB2 MICB PIN1 SAA1 TARP

LILRB3 MIF PLA2G1B SBNO2 TBK1

LRP1 MME PLA2G6 SELE TBX21

LRRN3 MNX1 PLAU SELL TCF7

LTA MPPED1 PLAUR SELPLG TFE3

LTB MR1 PMCH SEMG1 TFEB

LTBR MRC1 PNMA1 SERPINB2 TFRC

LTF MS4A1 POU2AF1 SERPING1 TGFB1

LTK MS4A2 POU2F2 SH2B2 TGFB2

LY86 MSR1 PPARG SH2D1A THBD

LY9 MST1R PPBP SH2D1B THBS1

(Continued )
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LY96 MUC1 PRAME SIGIRR THY1

LYN MX1 PRF1 SIGLEC1 TICAM1

MAF MYD88 PRG2 SLAMF1 TICAM2

MAGEA1 NCAM1 PRKCD SLAMF6 TIGIT

MAGEA12 NCF4 PRKCE SLAMF7 TIRAP

MAGEA3 NCR1 PRM1 SLC11A1 TLR1

MAGEA4 NEFL PSEN1 SMAD2 TLR10

MAGEB2 NFATC1 PSEN2 SMAD3 TLR2

MAGEC1 NFATC2 PSMB10 SMPD3 TLR3

MAGEC2 NFATC3 PSMB7 SOCS1 TLR4

MAP2K1 NFATC4 PSMB8 SPA17 TLR5

MAP2K2 NFKB1 PSMB9 SPACA3 TLR6

MAP2K4 NFKB2 PSMD7 SPINK5 TLR7

MAP3K1 NFKBIA PTGS2 SPN TLR8

MAP3K5 NLRC5 PTPRC SPO11 TLR9

MAP3K7 NLRP3 PVR SPP1 TMEFF2

MAP4K2 NOD1 PYCARD SSX1 TNF

MAPK1 NOD2 RAG1 SSX4 TNFAIP3

MAPK11 NOTCH1 REL ST6GAL1 TNFRSF10B

MAPK14 NRP1 RELA STAT1 TNFRSF10C

TNFRSF11A TNFRSF4 TNFSF18 TREM1 VEGFA

TNFRSF11B TNFRSF8 TNFSF4 TREM2 VEGFC

TNFRSF12A TNFRSF9 TNFSF8 TTK XCL2

TNFRSF13B TNFSF10 TOLLIP TXK XCR1

TNFRSF13C TNFSF11 TP53 TXNIP YTHDF2

TNFRSF14 TNFSF12 TPSAB1 TYK2 ZAP70

TNFRSF17 TNFSF13 TPTE UBC ZNF205

TNFRSF18 TNFSF13B TRAF2 ULBP2

TNFRSF1A TNFSF14 TRAF3 USP9Y

TNFRSF1B TNFSF15 TRAF6 VCAM1

Immune gene panel – IFN-γ associated genes

ADAR CSF2RB IFI44 LGALS3BP PNP

APOL6 CXCL10 IFI44L LY6E PNPT1

ARID5B CXCL11 IFIH1 LYSMD2 PRIC285

ARL4A CXCL9 IFIT1 MAR-01 PSMA2

AUTS2 DDX58 IFIT2 METTL7B PSMA3

B2M DDX60 IFIT3 MT2A PSMB10

BANK1 DHX58 IFITM2 MTHFD2 PSMB2

(Continued )
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BATF2 EIF2AK2 IFITM3 MVP PSMB8

BPGM EIF4E3 IFNAR2 MX1 PSMB9

BST2 EPSTI1 IL10RA MX2 PSME1

BTG1 FAS IL15 MYD88 PSME2

C1R FCGR1A IL15RA NAMPT PTGS2

C1S FGL2 IL18BP NCOA3 PTPN1

CASP1 FPR1 IL2RB NFKB1 PTPN2

CASP3 FTSJD2 IL4R NFKBIA PTPN6

CASP4 GBP4 IL6 NLRC5 RAPGEF6

CASP7 GBP6 IL7 NMI RBCK1

CASP8 GCH1 IRF1 NOD1 RIPK1

CCL2 GPR18 IRF2 NUP93 RIPK2

CCL5 GZMA IRF4 OAS2 RNF213

CCL7 HERC6 IRF5 OAS3 RNF31

CD274 HIF1A IRF7 OASL RSAD2

CD38 HLA-A IRF8 OGFR RTP4

CD40 HLA-B IRF9 P2RY14 SAMD9L

CD69 HLA-DMA ISG15 PARP12 SAMHD1

CD74 HLA-DQA1 ISG20 PARP14 SECTM1

CD86 HLA-DRB1 ISOC1 PDE4B SELP

CDKN1A HLA-G ITGB7 PELI1 SERPING1

CFB ICAM1 JAK2 PFKP SLAMF7

CFH IDO1 KLRK1 PIM1 SLC25A28

CIITA IFI27 LAP3 PLA2G4A SOCS1

CMKLR1 IFI30 LATS2 PLSCR1 SOCS3

CMPK2 IFI35 LCP2 PML SOD2

SP110 STAT2 TNFAIP3 TRIM25 VAMP8

SPPL2A STAT3 TNFAIP6 TRIM26 VCAM1

SRI STAT4 TNFSF10 TXNIP WARS

SSPN TAP1 TOR1B UBE2L6 XAF1

ST3GAL5 TAPBP TRAFD1 UPP1 XCL1

ST8SIA4 TDRD7 TRIM14 USP18 ZBP1

STAT1 TNFAIP2 TRIM21 VAMP5 ZNFX1

Immune gene panel – IFN-α associated genes

ADAR FAM125A IL4R OGFR SLC25A28

B2M FAM46A IL7 PARP12 SP110

BATF2 FTSJD2 IRF1 PARP14 STAT2

BST2 GBP2 IRF2 PARP9 TAP1

C1S GBP4 IRF7 PLSCR1 TDRD7

(Continued )
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CASP1 GMPR IRF9 PNPT1 TMEM140

CASP8 HERC6 ISG15 PRIC285 TRAFD1

CCRL2 HLA-C ISG20 PROCR TRIM14

CD47 IFI27 LAMP3 PSMA3 TRIM21

CD74 IFI30 LAP3 PSMB8 TRIM25

CMPK2 IFI35 LGALS3BP PSMB9 TRIM26

CNP IFI44 LPAR6 PSME1 TRIM5

CSF1 IFI44L LY6E PSME2 TXNIP

CXCL10 IFIH1 MOV10 RIPK2 UBA7

CXCL11 IFIT2 MX1 RNF31 UBE2L6

DDX60 IFIT3 NCOA7 RSAD2 USP18

DHX58 IFITM1 NMI RTP4 WARS

EIF2AK2 IFITM2 NUB1 SAMD9

ELF1 IFITM3 OAS1 SAMD9L

EPSTI1 IL15 OASL SELL

Immune gene panel – cytotoxic associated genes

ABCB1 CCL8 CTLA4 FFAR3 HERC6

ADAM19 CCR5 CXCL10 FUT2 HESX1

ADAM3A CD163L1 CXCL11 GAS6 HS3ST3B1

ADORA3 CD28 CXCL9 GBP6 IDO1

ANKRD22 CD300E DNA2 GIMAP4 IFNB1

APOL3 CD38 DPCD GIMAP5 IFNG

ARNT2 CD5 ENPP2 GIMAP7 IL10

ATF5 CD8A F13A1 GIMAP8 IL12RB2

BATF2 CDC7 F2R GNLY IL15

BCL2 CDK6 FAM20A GPR171 IL15RA

BCL2L14 CH25H FAM26F GZMB IL21

C5orf39 CMKLR1 FAM40B GZMK IL2RA

CASC5 CMPK2 FBXO39 HAMP IL4I1

CCL7 CRABP1 FCGR2B HAPLN3 IRF4

ISG15 MYBL1 PRKCQ SDS TMEM229B

ITGA9 NKG7 PTGER2 SH2D1A TNFSF18

KIAA1199 OR2A5 RGL1 SLA2 TRAT1

KLHDC1 OR5D14 RHBDF2 SLAMF1 TSHZ3

KLRD1 OR6K6 RNASE2 SMOX TXK

LILRB5 P2RX5 RRM2 SOCS1 TYMS

MERTK PLEKHO1 RTP4 SSTR2 USP18

MKI67 PRF1 RUNX3 STAB1

MS4A6E PRKCA SAMD3 STAT4
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Table 2: Gene Ontology classes enriched in the overall 377 genes (a) and 157 top ranked genes (b) GO categories 
defined by PANTHER pathway tool [27, 33]
Table 2a

Analysis Type: PANTHER Overrepresentation Test (release 20160715)

Annotation Version and 
Release Date: PANTHER version 11.1 Released 2016-10-24

Analyzed List: 377genes (Homo sapiens)

Reference List: Homo sapiens (all genes in database)

Bonferroni correction: TRUE

Bonferroni count: 158

PANTHER Pathways
Homo sapiens 

- REFLIST 
(20972)

377genes 
(385)

377genes 
(expected)

377genes (over/
under)

377 genes (fold 
Enrichment)

377genes 
(P-value)

JAK/STAT signaling 
pathway (P00038) 17 6 0.31 + 19.23 1.50E-04

Toll receptor signaling 
pathway (P00054) 60 21 1.1 + 19.07 5.00E-18

Interleukin signaling 
pathway (P00036) 98 23 1.8 + 12.78 4.53E-16

T cell activation 
(P00053) 96 22 1.76 + 12.48 4.03E-15

B cell activation 
(P00010) 72 15 1.32 + 11.35 1.83E-09

p38 MAPK pathway 
(P05918) 42 7 0.77 + 9.08 2.49E-03

Apoptosis signaling 
pathway (P00006) 122 20 2.24 + 8.93 5.24E-11

Inflammation mediated 
by chemokine and 
cytokine signaling 
pathway (P00031)

261 36 4.79 + 7.51 3.53E-18

Blood coagulation 
(P00011) 47 6 0.86 + 6.95 4.23E-02

VEGF signaling pathway 
(P00056) 72 8 1.32 + 6.05 1.08E-02

Ras Pathway (P04393) 76 8 1.4 + 5.73 1.56E-02

CCKR signaling map 
(P06959) 173 17 3.18 + 5.35 6.02E-06

p53 pathway (P00059) 88 8 1.62 + 4.95 4.19E-02

Angiogenesis (P00005) 176 16 3.23 + 4.95 4.23E-05

Integrin signalling 
pathway (P00034) 192 17 3.52 + 4.82 2.59E-05

EGF receptor signaling 
pathway (P00018) 139 11 2.55 + 4.31 1.07E-02

Gonadotropin-releasing 
hormone receptor 
pathway (P06664)

235 15 4.31 + 3.48 6.36E-03

Unclassified 
(UNCLASSIFIED) 18333 232 336.55 - 0.69 0.00E+00
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Table 2b

Analysis Type: PANTHER Overrepresentation Test (release 20160715)

Annotation 
Version and 
Release Date:

PANTHER version 11.1 Released 2016-10-24

Analyzed List: 157 genes (Homo sapiens)

Reference List: Homo sapiens (all genes in database)

Bonferroni 
correction: TRUE

Bonferroni count: 158

PANTHER 
Pathways

Homo sapiens - 
REFLIST (20972)

157 genes 
Input 
(158)

157 genes 
Input 

(expected)

157 genes Input 
(over/under)

157 genes 
Input (fold 

Enrichment)

157 genes Input 
(P-value)

JAK/STAT 
signaling pathway 
(P00038)

17 3 0.13 + 23.42 4.94E-02

Interleukin 
signaling pathway 
(P00036)

98 9 0.74 + 12.19 1.20E-05

B cell activation 
(P00010) 72 6 0.54 + 11.06 3.25E-03

Toll receptor 
signaling pathway 
(P00054)

60 5 0.45 + 11.06 1.62E-02

T cell activation 
(P00053) 96 7 0.72 + 9.68 1.55E-03

Inflammation 
mediated by 
chemokine and 
cytokine signaling 
pathway (P00031)

261 12 1.97 + 6.1 1.34E-04

Integrin signalling 
pathway (P00034) 192 8 1.45 + 5.53 1.86E-02

Unclassified 
(UNCLASSIFIED) 18333 96 138.12 - 0.7 0.00E+00

MATERIALS AND METHODS

Patient tumour samples

The publicly available global transcriptomic 
sequencing (RNA-Seq) data from 412 MIBC cases, with the 
corresponding clinical information was downloaded from 
TCGA data portal (https://gdc-portal.nci.nih.gov/), now part 
of the National Cancer Institute’s Genetic Data Commons. 
The cohort was further divided into two cohorts for 
downstream analysis. For our training cohort (cohort 1) we 
used data from the previously defined 129 cases from TCGA 
that were divided into four clusters based on their integrated 

analysis of mRNA, miRNA, and protein data [6]. Since our 
objective was to define immune gene expression patterns 
in treatment naïve tumours, we excluded patients with any 
previous therapy. Thus a cohort of 122 MIBC cases, divided 
into four molecular clusters, was used for in silico immune 
profiling. The remaining 283 cases constituted the validation 
cohort (cohort 2) of which 225 had no prior therapy.

Design of immune pathway gene panel for in 
silico immune profiling

To investigate the presence of subtype associated 
immune signatures, we assembled a defined set of 924 
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immune related genes. This curated list (Table 1) primarily 
consisted of genes involved in IFN-α (97 genes), IFN-γ 
(200 genes), and cytotoxic (115 genes) pathways as 
defined by Gene Set Enrichment Analysis (GSEA) in 
combination with other immune genes. The nCounter 
PanCancer Immune profiling panel (722 genes), (http://
www.nanostring.com/products/pancancer_immune/) was 
used to derive the immune response related genes.

Bioinformatics analysis of RNA-Seq data

We used the upper quartile-normalized RNA-seq 
data by expectation maximization (RSEM) available for 
all selected cases at the TCGA data portal. No additional 
normalization was performed and the expression data 
were log2 transformed. All downstream data analysis 
was performed in MATLAB (Mathworks, Inc., Natick, 
Massachusetts, USA). Focusing on the first set of 122 
samples, where clustering information is known, we 
performed separate analyses of the genes in each of the 
four immune panels (NanoStringTM, IFN-α, IFN-γ, and T 
cell cytotoxicity associated genes). Using a feature selection 
algorithm, genes were ranked based on their ability to 
discriminate samples belonging to one cluster from the 
remaining. The feature selection algorithm uses an ensemble 
of five different machine-learning techniques (unpublished). 
The analysis resulted in 16 ranking tables, four tables for 
each immune panel, where each table ranked genes on their 
ability to discriminate samples in one cluster from the rest.

In the hierarchical clustering analysis, the top 
20% of genes in each ranking group were assembled 
to represent each immune panel, resulting in 377 genes 
(Nanostring), 44 genes (IFN-α), 91 genes (IFN-γ), and 
62 genes (T cell cytotoxicity). A final feature selection 
ranking was performed where the combined unique set of 
924 genes was used. The top 5% of genes in each of the 
four ranking groups were then merged, resulting in 157 
unique genes.

Gene ontology analysis using PANTHER

We used the Protein Analysis Through Evolutionary 
Relationships (PANTHER), version 11.0, classification 
system (http://www.pantherdb.org/) [27] to determine 
dominant and enriched pathways in the top ranking 377 
genes (NanoString panel) that were ranked based on their 
ability to discriminate samples across the four clusters. We 
then applied the statistical binomial overrepresentation 
test, as previously described in PANTHER [27], to derive 
the most dominant enriched pathways and gene ontology 
(GO) biological processes in our lists compared to the 
reference human genome. We performed these tests 
using both the 377 top ranking NanoStringTM genes and 
157 top ranked genes from all immune panels combined. 
The p-values were corrected for multiple testing using 
Bonferroni correction.

Validation of immune gene signature

The remaining 298 cases, not included in cohort 
1, were treated as a validation group. From this cohort, 
patients with previous BCG therapy were excluded, 
leaving 225 cases. In order to assign samples in this set 
to each of the four clusters, only the top ranked 377 genes 
from the NanoString panel were used. First, for each 
cluster, two cluster centroids were computed using the 
expression data from cohort 1 (n=122; total of 8 cluster 
centroids). The cluster centroids were computed by taking 
the mean expression of samples in a given cluster (main 
cluster) and the mean expression of samples that do not 
belong to that cluster (alternative cluster). Then, for each 
sample in cohort 2, the Euclidean distance was computed 
to each of the 8 cluster centroids. A sample was assigned 
to a cluster with the smallest distance to the main cluster, 
but only if the distance to the main cluster was smaller 
than the distance to the alternative cluster. Alternatively, 
the sample was assigned to the ‘unclassified’ cluster. Using 
the newly assigned clustering information and ranked 
list of genes, unsupervised hierarchical clustering was 
performed.
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