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Microarray analyses reveal genes related to progression and 
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ABSTRACT

Esophageal squamous cell carcinoma is a high morbidity and mortality cancer 
in China. Here are few biomarkers and therapeutic targets. Our study was aimed to 
identify candidate genes correlated to ESCC. Oncomine, The Cancer Genome Atlas, 
Gene Expression Omnibus were retrieved for eligible ESCC data. Deregulated genes 
were identified by meta-analysis and validated by an independent dataset. Survival 
analyses and bioinformatics analyses were used to explore potential mechanisms. 
Copy number variant analyses identified upstream mechanisms of candidate genes. In 
our study, top 200 up/down-regulated genes were identified across two microarrays. 
A total of 139 different expression genes were validated in GSE53625. Survival 
analysis found that nine genes were closely related to prognosis. Furthermore, 
Gene Ontology analyses and Kyoto Encyclopedia of Genes and Genomes analyses 
showed that different expression genes were mainly enriched in cell division, cell 
cycle and cell-cell adhesion pathways. Copy number variant analyses indicated that 
overexpression of ECT2 and other five genes were correlated with copy number 
amplification. The current study demonstrated that ECT2 and other eight candidate 
genes were correlated to progression and prognosis of esophageal squamous cell 
carcinoma, which might provide novel insights to the mechanisms.

INTRODUCTION

Esophageal squamous cell carcinoma (ESCC), one 
main subtype of esophageal cancer, accounts for more 
than 90% of esophageal cancer cases in China [1, 2]. 
Based on the National Central Cancer Registry of China 
(NCCR), esophageal cancer is 4th lethal cancer in China 
[3]. Over the past decades major progress has been made 
in diagnosis and treatment, the morbidity and mortality of 
ESCC present declining tendency [2, 4]. However, 5-year 
survival of ESCC is still less than 25%, which is dismal 

[5]. Thus, further understanding the potential biological 
mechanisms and exploring novel biomarkers are urgently 
needed.

Microarray technology provides a high-throughput 
and powerful tool to create large amounts of data including 
mRNA expression, DNA methylation, and microRNA 
expression [6, 7]. Published studies have identified many 
novel tumor biomarkers and potential therapeutic targets 
by microarray data [8–10]. The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) are two 
common public platforms archiving these data [11]. The 
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wide range of microarrays in public archives provided 
an opportunity to reuse several microarrays to identify 
several novel targets [7, 12]. Oncomine currently includes 
gene expression and sample data from 500 cancer types 
[13]. There are more than 490 datasets and nearly 40,000 
measured samples [14]. The data are normalized and 
analyzed using standard protocols. Based on the large 
amount data, Oncomine provides several analysis tools 
including differential expression analysis, co-expression 
analysis and comparing analysis [15]. For example, 
Clermont reported oncogenic role for CBX2 in pan-cancer 
[16]. Barfeld’s investigation revealed a novel signature 
for prostate cancer [17]. However, to our knowledge, 
few such studies have been conducted in ESCC. To fill in 
this gap, we conducted a study using Oncomine analysis 
tool to identify novel differential expression genes and 
potential pathways, which might provide new therapeutic 
targets for ESCC.

RESULTS

Meta analysis of significantly deregulated genes 
in ESCC

There were two eligible independent ESCC 
microarray datasets in oncomine, which were Hu’s 
ESCC cohort with 34 cases and Su’s ESCC cohort 
covering 106 cases [18, 19]. A meta-analysis was 
performed across two microarray datasets. Two 
microarray datasets showed highly consistent 
trend of mRNA expression in top ranked genes  
(Figure 1). We selected 200 of the top ranked genes 
with the smallest P-values from the in over/under 
expression patterns (p<7.23E-07 and p<8.04E-12, 
fold change>2, respectively) (Supplementary Tables 
1&2). In addition, different expression genes with fold 
change>2 were identified from GSE53625 dataset for 
validation. Overlap between results of Oncomine with 
outcome of GSE53625 showed that 139 genes were 
consistently and stably expression in ESCC (Figure 2). 
The flow chart of this study was showed in Figure 3.

Candidate genes correlated with survival

Combining with survival information of GSE53625, 
we next accessed the prognostic effect of candidate genes 
in ESCC. Log rank test indicated that nine genes were 
significant correlated with survival. Among them, we 
observed that up regulated of six genes (ECT2, TFRC, 
TOPBP1, NETO2, PTDSS1, ITGA6) were correlated with 
poor survival, while down regulated of three other genes 
(MGLL, TP53I3, TRIP10) were correlated with shorter 
survival (Figure 4). A comprehension literature search 
showed that ECT2, TFRC and ITGA6 were reported to be 
prognostic biomarkers by previous ESCC investigations. 

Additionally, knockdown of ECT2 and ITGA6 
expression suppressed esophageal cancer cell growth 
and proliferation (Table 1). However, few investigations 
reported the other six genes in carcinogenesis and 
development of ESCC.

The interrelationship between these candidate genes 
was further explored by GeneMANIA tool. GeneMANIA 
tool provided with network relationship of candidate 
genes by co-expression, shared protein domains and co-
localization relationships based on published papers. The 
network, constructed of 27 nodes and 133 edges, showed 
a tightly correlation between candidate genes with other 
18 key functional molecules. The network indicated 
potential mechanisms of ESCC (Supplementary Figure 1 
& Supplementary Table 3).

Potential roles of candidate genes

In order to explore the unique roles of each 
candidate genes, we performed Gene Ontology (GO) 
and KyotoEncyclopedia of Genes and Genomes 
(KEGG) pathway analysis by DAVID tool. We found 
that cell division, mitotic nuclear division, DNA 
replication and G1/S transition of mitotic cell cycle 
were enriched by a high p-value in ECT2 analysis, 
implying a potential role of ECT2 in cell division and 
cell cycles (Figure 5A). Additionally, we observed that 
NETO2, ITGA6 and TOPBP1 shared the same critical 
pathways like cell division, DNA repaired, cell cycles 
and cell proliferation (Figure 5B, 5C&5E). It indicated 
that ECT2, NETO2, ITGA6 and TOPBP1 might 
function as oncogenes to promote the progression of 
ESCC by regulating these pathways. Notably, NETO2 
and ITGA6 also took part in the p53 class mediator 
signal transduction that was a critical carcinogenic 
pathway. GO analysis unveiled that MGLL and TRIP10 
participated in cell-cell adhesion, regulation of Rho 
protein signal transduction and positive regulation of 
GTPase activity, indicating that MGLL and TRIP10 
might regulate the invasion and adhesion ability 
of ESCC (Figure 5D&5F). Moreover, TRIP10 was 
significantly correlated with fatty acid beta-oxidation 
using acyl-CoA oxidase pathway, while MGLL play 
a role in oxidation-reduction process, which were 
significantly correlated with carcinogenesis of ESCC. 
To investigate the potential altered pathways in the 
samples, Gene Set Enrichment Analysis (GSEA) was 
implemented between live/death groups. According to 
the result of ECT2, genes were mainly enriched in cell 
cycle process and mitotic nuclear division (Figure 6A). 
Moreover, we noticed that regulation of growth and 
DNA replication pathways were significantly enriched 
in TOPBP1 (Figure 6B). As to TFRC, co-expression 
genes were enriched in cytoskeletal protein binding and 
spliceosomal complex pathways (Figure 6C).
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Figure 1: The top 80 genes that were significantly deregulated in ESCC across two independent microarrays retrieved 
from the Oncomine database. (A) The top 40 genes were significantly up regulated. (B) The top 40 genes were significantly down 
regulated. The two microarrays were Su’s ESCC Statistics (52 ESCC tissues and 53 normal tissues) and Hu’s ESCC Statistics (17 ESCC 
tissues and 17 normal tissues). The genes labeled in red and in blue represent up/down-regulated in each microarray.
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Protein–protein interaction (PPI) networks of 
candidate genes were based on Biogrid and String 
database (Supplementary Figure 2). A total of 160 
proteins might combine with ECT2 protein, which 
were detected by high-throughput analysis (Figure 7A). 
Among them, we found several molecules like cyclin-
dependent kinase 5 (CDK5), tumor protein P53 (TP53) 
and E-cadherin (CDH1), were important proteins in 
cancer signal transduction pathway. Additionally, 
TRIP10 might interact with 57 proteins including 
Rho GTPase activating protein 17 (ARHGAP17), 
cell division cycle 42 (CDC42) and signal transducer 

and activator of transcription 3 (STAT3) in ESCC 
(Figure 7B). As to TOPBP1, E2F transcription factor1 
(E2F1), mediator of DNA-damage checkpoint1 (MDC1) 
and BRCA1 associated RING domain 1 (BRAD1) was 
found in the interaction network (Figure 7C).

Coremine Medical mining was performed 
to identify the potential roles of the 9 candidate 
genes in ESCC. As shown in Figure 8, there were 
significant connections between gene expression, 
phosphorylation, cell proliferation and signal 
transduction of ESCC with candidate genes. For 
instance, TRIP10, TP53I3, ECT2, ITGA6, TFRC, 

Figure 2: The heatmap revealed the overlapped differentially expressed genes between tumor and normal samples.
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Figure 3: Flowchart for comprehensive analysis of the expression profiles and identification of the candidate genes 
correlated with progression and prognosis.

Figure 4:  Survival analysis of candidate genes: (A) ECT2, (B) TFRC, (C) TOPBP1, (D) NEOT2, (F) PTDSS1, (E) ITGA6, (G) 
MGLL, (H) TP53I3 and (I) TRIP10.
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NETO2, TOPBP1 and PTDSS1 were correlated with 
cell proliferation in this network.

All genes had at least 4 connections with factors 
related to ESCC.

Correlation of CNV and expression of the 
candidate genes

To investigate the correlations between copy number 
variation and the expression of candidate genes, TCGA 
CNV and expression profiles were downloaded. We 
explored the up/down-regulated genes and amplified/

deletion in copy number. By bivariate analysis, 6 up-
regulated genes, ECT2, ITGA6, TFRC, NETO2, TOPBP1 
and PTDSS1 (Figure 9) revealed positive correlation with 
amplified in copy number. It indicated that up regulated 
of 6 genes might be resulted from DNA copy number 
amplification.

DISCUSSION

ESCC presents high prevalence and mortality in 
China [3]. Distant metastasis and recurrence are two 

Table 1: Fold changes and correlations between ESCC and nine candidate genes

Gene Microarray data Correlations with ESCC

Up/down-
regulated

Su’s ESCC Hu’s ESCC

ECT2 Up 4.346 5.87 Cancer progression and poor prognosis

TFRC Up 2.544 3.652 Prognostic biomarker

TOPBP1 Up 2.34 2.11 -

NETO2 Up 2.689 2.566 -

PTDSS1 Up 2.083 2.214 -

ITGA6 Up 2.738 3.032 Proliferation of ESCC

MGLL Down -9.531 -3.109 -

TP53I3 Down -6.323 -2.676 -

TRIP10 Down -4.285 -2.408 -

Figure 5: Enrichment analyses of candidate genes in Gene Ontology pathway. “*” represented significant carcinogenic 
pathway. (A) ECT2 GO biological pathway analysis; (B) NETO2 GO biological pathway analysis; (C) ITGA6 GO biological pathway 
analysis; (D) MGLL GO biological pathway analysis; (E) TOPBP1 GO biological pathway analysis; (F) TRIP10 GO biological pathway 
analysis.
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major lethal issues [2]. The main objective for this study 
was to discover more powerful and useful biomarkers or 
therapeutic targets that involved in the pathogenesis of 
ESCC by utilizing public datasets.

In the present study, we identified 200 deregulated 
genes between cancer and normal tissues of ESCC by 
meta-analysis across two independent microarrays with 
140 cases. By validating in another ESCC microarray 
with 179 paired samples, we screened 139 consistently 
and stably deregulated genes. In addition, survival 

analysis identified nine candidate genes related to 
prognosis of ESCC. Furthermore, by conducting a series 
of bioinformatics analysis, we revealed that nine candidate 
genes mainly regulated cell cycle and cell-cell adhesion 
pathways that were closely related with progression of 
ESCC. Finally, we found that up-regulated of ECT2 and 
other five genes were correlated with amplification of 
copy number. Together, our data clarified nine candidate 
genes related to progression and prognosis of ESCC and 
corresponding potential mechanisms.

Figure 6: GSEA enrichment analysis of the co-expressed genes. (A) ECT2 GSEA enrichment analysis; (B) TOPBP1 GSEA 
enrichment analysis; (C) TFRC GSEA enrichment analysis.
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Among nine candidate genes, ECT2, TFRC and 
ITGA6 have been explored in ESCC [20]. ECT2 encodes 
a guanine nucleotide exchange factor and transforming 
protein related to Rho-specific exchange factors. Hirata 
reported to identify ECT2 as a candidate prognostic 
biomarker and regulate cancer cell growth [21]. TFRC is 
a cell surface receptor that is necessary for cellular iron 
uptake by the process of receptor-mediated endocytosis. 
TFRC was identified as a prognostic factor in patients 
with ESCC and correlated with amplification of the 
chromosome 3q [22]. ITGA6 belongs to integrin alpha 
chain family, which activates with other extracellular 
matrix proteins. Kwon’s study found that ITGA6 promoted 
the proliferation and invasion of ESCC (24042193). 
These results were consistent with our findings. To further 
explore the possible molecular mechanisms, we performed 
GO term analysis and KEGG pathway analysis. We found 
that the three genes mainly enriched in cell division, 
cell cycle and cell-cell adhesion pathways. In addition, 
protein-protein network analyses indicated that ECT2 
might interact with other 160 proteins including CDK5, 
TP53 and E-cadherin. CDK5 is a serine/threonine kinase 
that controls the cell cycle and proliferation. TP53 encodes 

a tumor suppressor transcription factor that regulates 
cell cycle arrest, apoptosis. E-cadherin is a important 
bio-marker in EMT progression. These results indicated 
that ECT2 might activate cell cycle, apoptosis and cell 
invasion by these proteins. Previous studies demonstrated 
that ECT2 could promote the growth and invasion of 
esophageal cancer, which were consisted with our results.

Besides above-mentioned genes, we also 
identified novel candidate genes related to progression 
of ESCC. TOPBP1 has been reported to accelerate 
tumor development in multi-cancers [23]. However, 
little is known to its functions in ESCC. Previous 
studies reported that TOPBP1 played conserved roles in 
the initiation of DNA replication and activation of DNA 
damage checkpoint signaling by serving as scaffolding 
protein [24]. In our study, TOPBP1 was found to be 
up regulated in cancer tissues and related to survival. 
Pathway analysis showed up-regulated TOPBP1 
could regulate the mRNA splicing, DNA replication 
and DNA repair pathways. Protein-protein network 
showed that TOPBP1 could activate or inhibit with 
other 50 proteins including E2F1, MDC1 and BARD1. 
These proteins mainly served in DNA replication and 

Figure 7: Protein-protein network predicting highly potential interactions with candidate genes based on BioGrid and 
SRTING databases. (A) PPI network of ECT2; (B) PPI network of TRIP10; (C) PPI network of TOPBP1; (D) PPI network 
of NETO2.
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DNA repair pathways, indicating that TOPBP1 might 
function as an oncogene through these mechanisms. 
NETO2 is a single-pass transmembrane protein with 
two extracellular CUB domains. Increasing evidence 
showed that NETO2 was an oncogene in colorectal 
carcinoma and hepatocellular carcinoma [25, 26]. One 
report found that NETO2 was related to rapidly growing 
hepatocellular carcinoma [26]. Another study pointed 
out that up-regulation of NETO2 expression correlated 
with tumor progression and poor prognosis in colorectal 
carcinoma [25]. NETO2 was a prognostic biomarker 
and participated in cell division and cell proliferation 
pathways by our analysis. This notion is in line with 
published studies. Among the down-regulated genes, 
TRIP10, MGLL and TP53I3 were well investigated 
in previous studies. TRIP10, also named CIP4, was 
related to lung cancer and chronic lymphocytic 
leukemia [27, 28]. It was defined as functional 
interactions during biogenesis of epithelial junctions. 

By our analysis, TRIP10 was correlated with cell-cell 
adhesion, regulation of Rho protein signal transduction 
and positive regulation of GTPase activity pathways, 
suggesting potential roles in cell invasion and migration 
of ESCC. TP53I3 was correlated with melanoma and 
glioblastoma [29, 30]. Intriguingly, TP53I3 was up 
regulated in these cancers. It functioned as oncogenes 
in glioblastoma and papillary thyroid cancer [31]. 
However, TP53I3 was down regulated in our analysis, 
indicating a unique role in ESCC. MGLL is a serine 
hydrolase of the AB hydrolase superfamily. Published 
studies demonstrated that MGLL was correlated with 
colorectal cancer and gastric cancer [32, 33]. In current 
analyses, we identified that MGLL was correlated with 
survival and participated multi-pathways in ESCC.

The present study facilitated access and 
interpretation of candidate genes related to progression 
and prognosis of ESCC. However, some limitations should 
be mentioned. Our data were analyzed by bioinformatics. 

Figure 8: Inter-relationship of candidate genes with ESCC was determined by text mining using Coremine Medical.
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Experiment data are needed to support our analyses. In 
addition, only two studies were included in the analysis. 
The sample size was too small. Studies with large 
samples were needed to further validate. Furthermore, 
several studies built sub-network for cancer prognosis 
by systematically analyzing multi-dimensional cancer 
genomics data [34, 35]. However, there was lack of 
epigenetic and DNA mutations in our analyses. Integrated 

analyses of genetic, epigenetic and proteomic could be 
included in further study.

In summary, the current study demonstrated nine genes 
related to progression and prognosis of ESCC using the public 
portals and bioinformatics, which provided novel prognostic 
biomarkers and contributed to a better understanding of 
cancer molecular mechanisms. This will ultimately accelerate 
the translation of bench work into bedside.

Figure 9: The correlation between copy number segment and the corresponding mRNA expression in TCGA.
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MATERIALS AND METHODS

Meta-analysis & data source

We searched eligible ESCC microarray datasets 
from Oncomine platform by adding filters like mRNA 
data, clinical specimens and cancer vs normal. To identify 
candidate genes, meta-analysis of gene expression 
profiles was performed across ESCC datasets in 
ONCOMINE 4.5 (https://www.oncomine.org/resource/). 
The deregulated genes were ranked by median ranks 
across the selected analyses and displayed corresponding 
p-values. GSE53625 and corresponding survival 
information were downloaded from GEO profiles 
databases for validation (http://www.ncbi.nlm.nih.gov/
geoprofiles/)[36]. The limma R package was also utilized 
to identify the deregulated gene expression between 
cancer and normal. The level 3 TCGA data TCGA_
ESCA_GSNP6noCNV-2015-02-24 (delete germline 
CNV) and TCGA_ESCA_exp_HiSeq-2015-02-24 were 
downloaded from Cancer Browser (http://www.genome-
cancer.ucsc.edu).

Survival analysis

Kaplan-Meier method was performed to identify 
genes correlated with survival. Log rank test was used 
to evaluate the significant differences. The cutoff of 
expression value was defined as median expression 
level in each gene expression profile. Survival curves 
were constructed using GraphPad Prism v6.0 (GraphPad 
Software, San Diego, CA, USA). Hazard ratio and 95% 
confidence interval were also calculated.

Bioinformatics analysis

Co-expression analysis was performed based on 
the functions of Oncomine. By selected a co-expression 
analysis in the datasets tab, the system displayed a 
co-expression heat map. Typed the target gene into 
search bar, co-expression genes were displayed by 
their correlations to target gene. A correlation value 
closer to 1.0 indicates genes that are more highly 
correlated with the selected gene of interest. The list 
of co-expression genes were submitted to a functional 
annotation tool named DAVID Bioinformatics 
Resources 6.8 for KEGG pathway and GO biological 
process enrichment analysis (https://david.ncifcrf.gov). 
Protein-protein interaction was conducted in Cytoscape 
public databases and GeneMANIA plug-in (http://
www.genemania.org/). Text mining was used to display 
potential roles in ESCC by the Coremine Medical 
online database (http://www.coremine.com/ medical/). 
Gene Set Enrichment Analysis (GSEA) was performed 
to determine whether a priori defined set of genes shows 
statistically significant, consistent differences between 
two biological states [37].

Expression and CNV analysis

There were 184 esophageal cancer samples in DNA 
copy number variant (CNV) of TCGA and 198 esophageal 
cancer samples in expression profile of TCGA. Among 
them, a total of 183 samples were matched between 
expression and CNV. The correlation between the CNVs 
and expression of genes were evaluated by bivariate 
correlations. Pearson correlation was used. Significant 
differences were defined as p<0.05.
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