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ABSTRACT

Acute myocardial infarction (AMI) is a major cause of morbidity and mortality
worldwide. The early diagnosis of AMI is crucial for deciding the course of treatment
and saving lives. Long non-coding RNAs (IncRNAs) are recently discovered ncRNA class
and their dysregulated expression has been implicated in cardiovascular diseases. In
this study, we analyzed IncRNA expression pattern by using two microarray datasets of
AMI and healthy samples from the Gene Expression Omnibus (GEO) database and tried
to identify novel AMI-related IncRNAs and investigate the predictive roles of IncRNAs
in the early diagnosis of AMI. From the discovery cohort, 11 differentially expressed
IncRNAs were identified as candidate biomarkers that were validated in the discovery
cohort, internal cohort and an independent cohort, respectively. Hierarchical clustering
analysis suggested that the expression pattern of these 11 candidate IncRNA biomarkers
was closely associated with disease status of samples. Then a IncRNA risk classifier was
developed by integrating expression value of 11 differentially expressed IncRNAs using
support vector machine (SVM) algorithm. The results of leaving one out cross-validation
(LOOCV) suggested that the IncRNA risk classifier has a good discrimination between
AMI patients and healthy samples with the area under ROC curve (AUC) of 0.955, 0.92
and 0.701 in three cohorts, respectively. Functional enrichment analysis suggested
that these 11 candidate IncRNA biomarkers might be involved in inflammation- and
immune-related biological processes. Our study indicates the potential roles in the early
diagnosis of AMI and will improve our understanding of the molecular mechanism of
the occurrence and recurrence of AMI.

on physical examination together with electrocardiogram
and the measurement of gold standard cardiac biomarkers
[3], but they suffer from a lack of high specificity and
sensitivity. Therefore, the identification of new biomarkers

INTRODUCTION

Acute myocardial infarction(AMI), commonly known
as aheart attack, is a major cause of morbidity and mortality

worldwide. It is estimated that there was about 15.9 million
MI occurred in 2015 [1]. The early diagnosis of AMI is
crucial for deciding the course of treatment and saving lives,
because the highest risk of fatality occurs within the initial
hours of onset of AMI [2]. The conventional method is based

in early diagnosis of AMI remains to be needed.

Recent advances in the sequencing and analysis
of the human genome have led to the discovery of
thousands of previously unannotated non-coding
transcripts, including small non-coding RNAs and
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long non-coding RNAs (IncRNAs) [4]. IncRNAs, a
recently discovered ncRNA class, are defined as non-
protein coding transcripts longer than 200 nucleotides
which arbitrarily distinguish from small non-coding
RNAs [5]. Increasing evidence suggested that IncRNAs
play various biological roles including epigenetic
gene regulation, transcriptional gene regulation,
posttranscriptional gene regulation by function as
signals, decoys, scaffolds and guides [6]. IncRNAs are
emerging as important regulators of tissue physiology
and disease processes, and the dysregulation of IncRNAs
has been implicated in many human complex diseases
[7-9]. Moreover, IncRNA expression can be measured
in urine and blood, making them attractive biomarkers
of diagnosis and prognosis for diseases [10]. Recent
studies have reported the link between cardiovascular
diseases and IncRNAs, including AMI. Some IncRNAs
were identified to be significantly and differentially
expressed between AMI and healthy samples in different
studies [11-13]. However, the utility of IncRNAs as
biomarkers for early diagnosis of AMI needed to be
further investigated.

In this study, we aimed at exploring the potential of
IncRNAs as biomarkers for early diagnosis of AMI and
tried to identify IncRNA biomarkers associated with AMI
by analyzing genome-wide IncRNA expression profiles
in the discovery cohort and confirming the diagnostic
value of the identified IncRNA biomarkers in the internal
validation cohort and an independent cohort from Gene
Expression Omnibus (GEO) database. Besides, we further
examined whether there dysregulated IncRNA expression
is pervasive in AMI recurrence, and investigated the
functional implication of identified IncRNA biomarkers
in AMI.

RESULTS

Identification of differentially expressed
IncRNAs between AMI patients and healthy
samples

We first compared the IncRNA expression profiles
between 21 AMI patients and 22 healthy samples in the
discovery cohort and performed significant analysis of
microarray (SAM). Finally, a total of 11 IncRNAs with
an adjusted P-value <0.05 after Benjamini & Hochberg
correction and fold change > 2.0 (<0.5) was found to have
significant differential expression pattern in AMI patients
as compared to healthy samples (Supplementary Table
1). Of these, 8 IncRNAs were over-expressed including
LOCI145474, LOCI100129518, BRE-ASI, MIR22HG,
MIR3945HG, ATP2B1-AS1, CATIP-AS1 and LINC00528,
and 3 IncRNAs were down-regulated, including WDR&6-
AS1, A2M-AS1 and LINC00612. The distribution of
expression levels of 11 differentially expressed IncRNAs
was shown in Figure 1A.

Diagnostic value of differentially expressed
IncRNAs for AMI

To test the predictive value of these 11 differentially
expressed IncRNAs or the early diagnosis of AMI, we first
performed hierarchical clustering analysis for all samples
in the discovery cohort according to the 11 differentially
expressed IncRNAs. As shown in Figure 1B, two
distinctive sample groups were obtained by hierarchical
clustering analysis: the first sample group contained 25
samples (21 healthy samples and 1 AMI patients) and
the second sample group contained 18 samples (1 AMI
patients and 17 healthy samples) achieving a prediction
accuracy of 95.4%. The disease status of the two sample
groups was significantly different (p<<0.001, chi-square
test). Then we further examined the diagnostic value of
these 11 differentially expressed IncRNAs in AMI using
support vector machine (SVM) with the sigmoid kernel
method and leave one out cross-validation (LOOCYV)
strategy. A IncRNA risk classifier was developed by
integrating expression value of 11 differentially expressed
IncRNAs using SVM method. The results of LOOCV
suggested that the IncRNA risk classifier has a good
discrimination between AMI patients and healthy samples
with the area under ROC curve (AUC) of 0.955 (Figure
1C), the sensitivity of 71.4% and specificity of 90.9%. The
DOR was 25. These results showed that 11 differentially
expressed IncRNAs had a diagnostic value in AMI patient
and may be used as candidate biomarkers for the early
diagnosis of AMI.

Validation of candidate IncRNA biomarkers in
the internal validation cohort

We validated the predictive value of these 11
candidate IncRNA biomarkers in the internal validation
cohort. Hierarchical clustering analysis of all samples in
the internal validation cohort also reveals two distinctive
sample groups: the first sample group contained 16 AMI
samples and the second sample group contained all healthy
samples (n=28) and 12 of 28 AMI patients achieving a
prediction accuracy of 78.6% (Figure 2A). The disease
status of the two sample groups was significantly different
(p<0.001, chi-square test). Then SVM-based IncRNA
risk classifier was tested in the internal validation cohort
using LOOCYV strategy. The ROC curves of IncRNA risk
classifier reflected separation between AMI and healthy
samples, with an AUC of 0.92, the sensitivity of 78.6%
and specificity of 89.3% (Figure 2B). The DOR was 30.6.

Further validation of candidate IncRNA
biomarkers in the independent validation cohort

Further validation of the predictive value of
candidate IncRNA biomarkers in early diagnosis of AMI
was conducted using another independent validation
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Figure 1: Identification of differentially expressed IncRNAs between AMI patients and healthy samples in the discovery
cohort. (A) Expression distribution of 11 differentially expressed IncRNAs in AMI patients and healthy samples in the discovery cohort
measured by microarray. (B) The heatmap of hierarchical clustering of differentially expressed IncRNAs for all samples in the discovery
cohort. (C) Receiver operating characteristic curves of SVM-based IncRNA risk classifier in the discovery cohort.
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cohort. Hierarchical clustering of all samples (n=52)
also revealed clear distinctions between AMI patients
and healthy samples: the first sample group contained 32
samples (16 AMI patients and 16 healthy samples) and
the second sample group contained 20 samples (15 AMI
patients and 5 healthy samples) achieving a prediction
accuracy of 61.5% (Figure 3A). The disease status of the
two sample groups was marginally significantly different
(p=0.08, chi-square test). When the SVM-based IncRNA
risk classifier was applied to evaluate the risk of AMI
and healthy samples, it performed remarkably well. The
discriminatory power measured by the AUC and DOR
was 0.701 and 7 (Figure 3B), respectively. Sensitivity and
specificity were 90.3% and 42.9%, respectively.

Identification of recurrence-related IncRNAs
in AMI

To identify potential IncRNAs involved in disease
recurrence in AMI, we also performed SAM analysis
and identified 46 IncRNAs which were significantly

A

differentially expressed (p-value <0.05 after Benjamini
& Hochberg correction) in AMI patients with recurrent
events (n=5) versus AMI patients without any recurrent
events (n=26). All the 46 IncRNAs were unregulated in
AMI patients with recurrent events (Supplementary Table
2). Figure 4 illustrates the results of hierarchical clustering
of all samples (n=31) representing two distinctive sample
groups: the first sample group contained all samples with
recurrent events and 2 of 26 AMI patients without any
recurrent events and the second sample group contained 23
patients without any recurrent events achieving a prediction
accuracy of 90.3%. The recurrence status of the two patient
groups was significantly different (p<0.001, chi-square test).

Functional analysis of candidate IncRNA
biomarkers

To understand the functional roles of candidate
IncRNA biomarkers, we first examined the expression
correlation by Pearson correlation coefficients between
protein-coding genes (PCGs) expression and IncRNA
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Figure 2: Validation of candidate IncRNA biomarkers in distinguishing between AMI patients and healthy samples in
the internal validation cohort. (A) The heatmap of hierarchical clustering of candidate IncRNA biomarkers for all samples in the internal
validation cohort. (B) Receiver operating characteristic curves of SVM-based IncRNA risk classifier in the internal validation cohort.
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expression in the discovery cohort and identified 1969
PCGs that are co-expressed with at least one of 11
candidate IncRNA biomarkers as previously described.
Then we used DAVID for functional enrichment analysis
for PCGs co-expressed with candidate IncRNA biomarkers
to infer the functional roles of candidate IncRNA
biomarkers. Functional classification of these 1969 PCGs
co-expressed with candidate IncRNA biomarkers and a
statistical cut-off criterion of FDR-adjusted p-value of
0.05 indicated significant enrichment of these genes in 11
GO-BP terms (Table 1) and 9 KEGG pathways (Table 2).
From these tables, it can be observed that the majority of
enriched GO and KEGG functional categories were found
to be associated with immune-related biological processes
involved in AMI.

DISCUSSION

Myocardial infarction remains a leading cause
of death and disability worldwide despite substantial
improvements in diagnosis over the past decade. Early
detection of AMI is extremely important for the effective

management of patients and selects appropriate treatment.
Although traditionally available biomarkers, such as
Troponin (cTnl/T) cardiac troponins (cTns) and creatine
kinase-MB (CK-MB) have greatly enabled the clinicians
in the rapid diagnosis, they suffer from a lack of high
specificity. Recent genetic studies have demonstrated the
molecular heterogeneity of AMI suggesting the genetic
component has an important role in the development of
AMI.

During past years, IncRNAs have been found to
be an important genetic component involved in genome
regulatory network and play important roles in disease
processes [6]. Transcriptome research shows that IncRNAs
have high tissue- and cell type-specific expression
patterns, implying their importance as biomarkers in
diagnosis and prognosis in diseases [4]. Increasing
efforts have been made for identifying diagnostic and
prognostic IncRNA biomarkers in various human cancers
[14-19], there is a lack of the investigation into the
utility of IncRNAs as biomarkers for early diagnosis
of AMI. Several profile-based studies have identified
altered IncRNA expression involved in the initiation and
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Figure 3: Further evaluation of candidate IncRNA biomarkers for early diagnosis of AMI in the independent validation
cohort. (A) The heatmap of hierarchical clustering of candidate IncRNA biomarkers for all samples in the independent validation cohort.
(B) Receiver operating characteristic curves of SVM-based IncRNA risk classifier in the independent validation cohort.
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progression of MI. Zangrando et al. used microarray
analysis of 4 MI and 4 sham-operated mice sacrificed 24
hours after surgery to investigate the role of IncRNAs in
left ventricular remodeling and identified 30 differentially
expressed IncRNAs [11]. Another study performed by
Qu and colleagues identified 545 deregulated IncRNAs
involved in cardiac fibrogenesis induced by MI using
microarray analysis [20]. Recently two studies constructed
dysregulated IncRNA-mRNA co-expressed network to
investigate the functional roles of IncRNAs in MI and
identified some candidate key IncRNAs in MI [21, 22],
emphasizing the potential of IncRNAs as biomarkers for
carly diagnosis of AMI.

To meet this need, in the present study, we obtained
IncRNA expression profiles on two cohorts of 151 samples
from the Gene Expression Omnibus (GEO) by repurposing
microarray data and compared IncRNA expression profiles
between AMI patients and healthy samples. By comparing
the expression levels of IncRNAs between AMI patients
and healthy samples, we found that 11 IncRNAs are
differentially expressed in AMI compared with healthy

samples, indicating that IncRNAs may have critical roles
in the occurrence of AMI. Such differentiation signified
their diagnostic roles as biomarkers to distinguish between
AMI patients and healthy samples. By using hierarchical
clustering analysis and an SVM algorithm, the predictive
power of these 11 differential IncRNA biomarkers in
distinguishing between AMI patients and healthy samples
was validated in the discovery cohort and two independent
patient cohorts. Although some of differential IncRNA
biomarkers have been reported to be aberrantly expressed
in cancers, diagnostic roles of these differential IncRNA
biomarkers have not been studied in AMI. For example,
BRE-ASI has been reported to be differentially regulated
in NSCLC tumors [23]. Long ncRNA MIR22HG could
repressed hepatocellular carcinoma cell invasion by
deriving miR-22 and targeting HMGBI1 [24]. Long
ncRNA MIR3945HG has been identified as novel
candidate diagnostic markers for tuberculosis [25]. The
functional roles of remaining 8 out of 11 differential
IncRNA biomarkers are still unknown.
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Figure 4: Unsupervised hierarchical clustering of AMI patients with and without recurrent events based on expression
levels of 46 significantly differentially expressed IncRNAs.
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Table 1: Significantly enriched gene ontology (GO) terms

Total number of

GO Term genes Fold enrichment FDR
G0:0006954~inflammatory response 72 3.149 8.19E-15
GO:0071222~cellular response to lipopolysaccharide 26 3.814 2.06E-05
GO:0006955~immune response 56 2.205 8.84E-05
I(;? h (V)V(zfy 1663~lipopolysaccharide-mediated signaling 13 6.734 2 91E-04
GO0:0045087~innate immune response 55 2.120 4.31E-04
G0:0030593~neutrophil chemotaxis 18 4.521 4.47E-04
G0:0006935~chemotaxis 23 3.125 6.22E-03
G0:0050900~leukocyte migration 23 3.125 6.22 E-03
ga?r; ?I?a3§r702d9u~crg)osriltive regulation of interferon- 13 4685 0.023
ansription ot sty 1 8736 003
GO:0007166~cell surface receptor signaling pathway 36 2.178 0.039
Table 2: Significantly enriched KEGG pathways
Pathway name Total gnel:::sber of Fold enrichment FDR
hsa04380:Osteoclast differentiation 35 3.996 3.01E-09
hsa05150:Staphylococcus aureus infection 19 5.263 6.66E-06
hsa05323:Rheumatoid arthritis 23 3.909 5.29E-05
hsa05152:Tuberculosis 34 2.873 6.10E-05
hsa05140:Leishmaniasis 20 4.213 1.40E-04
hsa04145:Phagosome 28 2.737 0.003
hsa04064:NF-kappa B signaling pathway 20 3.438 0.004
hsa04060:Cytokine-cytokine receptor interaction 35 2.276 0.01
hsa04668: TNF signaling pathway 21 2.963 0.024

Previous studies have found that IncRNAs and their
co-expressed PCGs tended to be involved in the same
biological process. Therefore, it is possible to infer IncRNA
function by associating specific IncRNAs with biological
processes of their co-expressed PCGs [10, 26]. Here, in order
to predict the putative function of 11 differential IncRNA
biomarkers in AMI, we performed co-expressed analysis
for IncRNAs with protein-coding genes and identified
some PCGs that have a common expression pattern of
11 differential IncRNA biomarkers. Then GO and KEGG
enrichment analysis was used to associate specific IncRNAs
with biological processes. The results of enrichment analysis
suggested that these 11 differential IncRNA biomarkers were
enriched in important biological processes involved in AMI.

For example, inflammation- and immune-related biological
processes have been reported to play an essential role in
cardiac injury and repair, and together with the activation
of innate and adaptive immune responses have been proven
to be the hallmark of MI [27, 28]. Genetic variations in the
receptor for lipopolysaccharides have been found to be a
risk factor for MI and Lipopolysaccharide pretreatment
attenuates myocardial infarct size [29, 30]. NFkB is an
important transcription factor involved in many cell survival
pathways and Santos found that polymorphism in NFkB
is associated with heart function in patients with heart
failure [31].

Some limitations of our study should be
acknowledged. Firstly, IncRNA number included in this

www.impactjournals.com/oncotarget

88619

Oncotarget



study was relatively less compared to known IncRNAs in
some databases because IncRNA expression profiles were
obtained based on HG-U133 Plus 2.0 arrays. Secondly,
recurrence-related IncRNAs identified in this study was
not validated in the independent patient cohort due to the
limitation of the available patient dataset with the recurrent
event. Finally, further experimental verification should be
carried out to study the functional roles of these candidate
IncRNA biomarkers in AMI which will improve our
understanding of molecular mechanism of the occurrence
and recurrence of AMI.

MATERIALS AND METHODS

Datasets

The following two independent cohorts of AMI
patient and their gene expression data were obtained from
the publicly available Gene Expression Omnibus (GEO)
database (www.ncbi.nlm.nih.gov/geo/) and were included
in our study: GSE66360 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE66360) contained 49 AMI
patients and 50 healthy samples. GSE48060 (https:/www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48060)
contained 31 AMI patients and 21 healthy samples as
well as 5 AMI patients with recurrent events and 26 AMI
patients without any recurrent events over an 18-month
follow-up. Among two data patient cohorts, the dataset
GSE66360 was divided into the discovery cohort
composing of 21 AMI patients and 22 healthy samples and
internal validation cohort composing of 28 AMI patients
and 28 healthy samples according to the classification
information in the original experiment. The GSE48060
was used as an independent validation cohort.

Acquisition and processing of IncRNA expression
profiles

The raw CEL files were downloaded from
GEO database and background correction, quantile
normalization and log2-transformation using Robust
Multichip Average (RMA) method. The IncRNA
expression data in two patient cohorts were obtained by re-
annotating probes strategy according to previous studies
[17, 32]. Briefly, based on NetAffx Annotation Files (HG-
U133 Plus 2.0 Annotations), probe sets were mapped to
RefSeq transcript ID and/ or Ensembl gene ID. Only probe
sets mapping to IncRNA annotation from GENCODE
were retained which resulting in 2466 annotated IncRNA
genes.

Statistical analysis

Significance analysis of microarrays SAM method
was used to identify differentially expressed IncRNAs
between AMI patients and healthy samples with an
adjusted P-value <0.05 after Benjamini & Hochberg

correction and fold change > 2.0 (<0.5). Hierarchical
clustering of the expression values of differentially
expressed IncRNAs was performed with R software using
the metric of euclidean distance and complete linkage. The
chi-square test was used to evaluate the significance of
the association between IncRNA expression pattern and
disease status. The support vector machine (SVM) with
the sigmoid kernel method was used to develop a IncRNA
risk classifier and the performance was estimated using
the leave one out cross-validation (LOOCV). After that,
a receiver operating characteristic (ROC) curve analysis
was carried out with IncRNA risk classifier distinguishing
between AMI patients and healthy samples, and the area
under ROC curve (AUC) was computed to estimate
the diagnostic accuracy of IncRNA risk classifier. The
diagnostic odds ratio (DOR) was calculated to evaluate
the diagnostic value of IncRNA risk classifier.

Function enrichment analysis

The Database for Annotation, Visualization and
Integrated Discovery (DAVID, v6.8, https://david.ncifcrf.
gov/home.jsp) was used for functional enrichment analysis
for PCGs. The functional enrichment analysis was limited
in GO-biological processes and KEGG-PATHWAY. Only
those terms or pathways that reported an FDR-adjusted
p-value of 0.05 were selected as significantly enriched
functional annotations.
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