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ABSTRACT
Lung cancer, with 80–85% being non-small cell lung cancer (NSCLC), is the 

leading cause of cancer-related death in both men and women. Long non-coding 
RNAs (lncRNAs), always defined as non-protein-coding RNA molecules longer than 
200 nucleotides, are now thought as a new frontier in the study of human malignant 
diseases including NSCLC. As researches continue, increasing number of roles that 
lncRNAs play in NSCLC has been found, and more and more evidences show lncRNAs 
have a close relationship with patients’ response to radiochemotherapy or molecular 
therapy. The aim of this review is to disclose the roles that lncRNAs play in NSCLC 
and how lncRANs influence the treatment of NSCLC.

INTRODUCTION

Lung and bronchus cancer leads to most cancer-
related death, with an estimation about 85,920 and 
72,160 death in men and women respectively in America, 
and it was also reported that there were totally 224,390 
American people being diagnosed with lung and bronchus 
cancer in 2016 [1]. Looking around the world, greater than 
one-third of all newly diagnosed lung cancers occurred in 
China, resulting in a large social and economic burden. 
According to the annual report on the status of cancer in 
China, in total, 651,053 patients were newly diagnosed 
with lung cancer in 2011, including 441,364 men and 
209,689 women [2]. Lung and bronchus cancer is usually 
classified into NSCLC and small cell lung cancer (SCLC) 
accounting for approximately 80% and 20% respectively, 
the former of which is traditionally treated with surgery 
combined with or without radiochemotherapy [3].

Long non-coding RNAs (lncRNAs), always defined 
as non-protein-coding RNA molecules longer than 200 
nucleotides, are not thought as transcriptional “noise” 
any more, and have been regarded as a new frontier in the 
study of human malignant diseases such as brain, breast, 
prostate, liver, ovary, esophagus tumors and other kinds 
of diseases like Fragile X syndrome, Alzheimer’s disease 
and etc [4, 5]. LncRNAs, on the one hand, can regulate 
the expression of nearby protein-coding genes, and on the 
other hand, they themselves can serve key regulatory roles. 
In Jeremy’s review, there are basically eight models for 

lncRNAs to influence the gene expressions, and eventually 
play the biological roles [6]. As researches continue, it 
has been increasingly recognized that its dysregulations 
contribute to the development and progression of lung 
and bronchus cancer [7]. We conduct a comprehensive 
review of the published literatures focusing on the roles 
that lncRNAs play in the presence and development of 
NSCLC, retrospect the relationship between lncRNAs and 
radiochemotherapy as well as molecular targeted therapy 
of NSCLC, and discuss future directions about lncRNAs 
in the researches of NSCLC.

Roles of LncRNAs in NSCLC 

It has been proved that the abnormal expression of 
lncRNAs has a close relationship to NSCLC.  Here is a 
quick review of some popular and well-studied lncRNAs 
related to NSCLC. 

MALAT1 and NSCLC

The metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1), also known as nuclear-enriched 
abundant transcript 2 (NEAT2), was firstly identified in 
2003 by subtractive hybridization as prognostic parameters 
for patient survival in stage I of NSCLC. MALAT1, more 
than 8000 nt expressed from chromosome 11q13, was 
detected not only in NSCLC, but also in some normal 
tissues such as pancreas, lung, prostate, ovary, colon, 
placenta, spleen, small intestine, kidney, heart, liver, testis 
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and brain [8]. It was believed that MALAT1 expression 
levels were associated with patient survival by affecting 
genes involved in cancer like cellular growth, movement, 
proliferation, signaling, and immunoregulation [9]. 
Q-PCR was performed to confirm that the MALAT1 were 
upregulated in cancerous tissues than that in adjacent 
normal tissues [10]. And in vitro studies, migration 
and clonogenic growth could be suppressed by RNA-
interference-mediated suppression of MALAT1 in A549 
cells, while forced expression of MALAT1 in NIH 3T3 
cells significantly increased migration [9]. What’s more, 
the level of MALAT1 was higher in brain metastasis and it 
was increased in highly invasive subline of brain metastasis 
lung cancer cells, which was speculated on account for 
epithelial-mesenchymal transition (EMT) [11]. For the 
mechanism, there is no final conclusion until now. Some 
scholars thought it was regulated by DNA methylation [12] 
and some suspected MALAT1 of contributing to NSCLC 
by upregulating the expression of Bcl-2 and its interacting 
proteins [13]. Besides, it is reported that MALAT1 regulates 
alternative splicing (AS) of pre-mRNAs, which is a key step 
in the regulation and diversification of gene function, by 
controlling the levels of active serine/arginine (SR) proteins 
and the distributions to nuclear speckles [14]. Above all 
were recognized as modes of action for MALAT1: regulation 
of gene expression or alternative splicing [15].
HOTAIR and NSCLC

HOX antisense intergenic RNA (HOTAIR), a 2.2 
kilobase noncoding RNA residing in the HOXC locus, was 
firstly identified in 2007. Rinn et al. proved in that paper that 
it might regulate gene expression in HOX loci in cis or trans; 
alternatively, it might be the act of antisense transcription 
in the HOXC locus [16]. And it was widely accepted that 
HOTAIR regulated gene expression by EZH2 (a subunit of 
PRC2), which led to histone H3 lysine 27 trimethylation of 
the HOXD locus, and it also could mediate chromosomal 
remodeling [17, 18]. In addition, it was confirmed that 
HOTAIR was highly expressed in both NSCLC samples and 
cell lines compared with adjacent tissues and it indicated 
a poor prognosis [19]. In the mechanism of how HOTAIR 
contributed to NSCLC, it was thought that HOTAIR might 
facilitate the tumor development but not the carcinogenesis 
of NSCLC [20]. In the meantime, some scholars found 
that HOTAIR modified the promoter of p53 and enhanced 
histone H3 lysine 27 trimethylation, which showed a 
negative relationship between HOTAIR and p53 in NSCLC 
cells [21]. What’s more, it was reported that HOTAIR can 
activate Wnt/β-catenin signaling pathway in esophageal 
squamous cell carcinoma [22]. In addition, HOTAIR 
could involve in EMT, and also worked as competitive 
endogenous RNAs (ceRNAs) [23].
HOTTIP and NSCLC

HOXA distal transcript antisense RNA (HOTTIP) 
is an antisense non-coding transcript located at the 

distal end of HOXA gene cluster. It was regarded as key 
intermediates to transmit information from higher order 
chromosomal looping into chromatin modifications, and 
thus coordinated long range gene activation, which was 
associated with the WDR5/MLL complex to drive the H3 
lysine 4 trimethylation and gene transcription [24, 25]. 
And it was identified as the most significantly up-regulated 
lncRNAs in human primary hepatocellular carcinoma 
even in early stage [26]. In NSCLC, HOTTIP expression 
was higher than corresponding adjacent normal tissues and 
contributed to cell proliferation and migration, which was 
by regulating HOXA13 and functioning as oncogene [27].

Besides these relatively common and popular 
lncRNAs mentioned above, there were still some other 
lncRNAs proved having close relationship to NSCLC 
which will be presented in Table 1 and Table 2.

LncRNAs associated with radiochemotherapy of 
NSCLC

LncRNAs and chemotherapy

As is well-known, DNA damage repair (DDR) 
mechanisms, such as single-strand break, double-
strand break, bulky adducts, base mismatches and base 
alkylation, are playing important roles to maintain 
genomic stability. Thanks to these precise modulations, 
cells could maintain genomic integrity confronted with 
numerous physical or chemical or even deadly strikes 
[50–52]. Platinum, a kind of chemical elements, could also 
cause DNA damage, especially in tumor cells, where the 
DDR is not complete.

Since found by Rosenbery in 1969, platinum 
was widely used in clinical practice including 
chemotherapeutics of NSCLC, which benefited a lot 
of incipient or advanced patients [53, 54]. Tumor cells, 
which proliferated more rapidly than normal ones, could 
be influenced directly by anticarcinogen, thus stopping 
equal division of DNA to next generation [55]. Binding of 
platinum and genomic DNAs in cell nucleus was thought 
to play important roles in cancer therapy, which influenced 
transcription and DNA replication and finally led to death 
of tumor cells [56]. However, the use of platinum was 
limited due to its toxicity, drug resistance, and some other 
side effects, which was demonstrated closely to lncRNAs 
[57, 58]. The polymorphisms of lncRNAs such as HOTTIP, 
CCAT2, H19, HOTAIR, MALATI, ANRIL and CASC8 were 
proved significantly associated with lung cancer risk or 
platinum-based chemotherapy response [58, 59]. It was 
reported that HOTAIR was significantly upregulated in 
cisplatin-resistant NSCLC cells both in vitro and in vivo, 
and it could enhance tumor cell proliferation, influence  
G0/G1 cell-cycle arrest, and decrease tumor cell apoptosis. 
Further studies showed that overexpression of HOTAIR 
could promote tumor sphere formation, which upregulated 
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expression of the tumor stem cell-related biomarkers 
such as Nanog, Oct3/4, Sox2, c-Myc, β-catenin, and 
Klf4 [60, 61]. It was found inverse correlation between 
HOTAIR and p21 [62], the latter of which was proved as 
a negative regulator of the cell cycle [63]. What’s more, 
lncRNA H19 had a negative relationship with cisplatin-
based chemotherapy response, the enhancement of which 
associated with metastasis, induction of G0/G1 cell-
cycle arrest, cell proliferation, and increased apoptosis 
[64]. Other lncRNAs were reported to relate to response 
to chemotherapy such as HOTTIP in osteosarcoma [65], 

MALAT1 in laryngeal squamous cell carcinoma [66], and 
ANRIL in nasopharyngeal carcinoma [67].

LncRNAs and radiotherapy

Radiotherapy is essential in most patients especially 
with advanced stage NSCLC, usually sequentially or 
simultaneously combined with surgery, chemotherapy and 
molecular therapy [68, 69]. Radioactive rays could cause 
a series of physical, chemical and biological damages to 
both tumor cells and normal cells, of which doctors make 
use, to cure cancer by reducing radiological dose of normal 

Table 1: Overexpressed or upregulated lncRNAs in NSCLC tissues or cell lines and their functions 
and probable mechanism
LncRNA Function in NSCLC probable mechanism cition

AGAP2-AS1 negatively correlated with poor prognostic 
outcomes

repressed tumor-suppressor LATS2 and 
KLF2 transcription [28]

ATB presented a lower survival probability [29]

TCF7
promoted invasion and self-renewal

TCF7 upregulated EpCAM expression 
through functioning as a competitive 
endogenous RNA (ceRNA)

[30]

SBF2-AS1 increased the proliferation of NSCLC cells negatively regulated P21 [31]

FOXD2-AS1 promoted NSCLC cell growth and NSCLC tumor 
progression Wnt/β-catenin signaling [32]

HOXA11-AS
promoted development and progression of NSCLC

regulated the expression of various 
pathways and genes, especially DOCK8 
and TGF-beta pathway.

[33]

PCAT-1 played an oncogenic role in NSCLC progression [34]

BCAR4 associated with poorer 5-year overall survival rate 
of NSCLC patients [35]

CCAT2 promoted tumorigenesis over-expression of Pokemon [36]

00511 functioned as an oncogene acted as a modular scaffold of EZH2/
PRC2 complexes [37]

XIST associated with shorter survival and poorer 
prognosis

by epigenetically repressing KLF2 
expression [38]

NEAT1 correlated with poor prognosis inhibition of miR-377-3p/ E2F3 axis. [39]

ANRIL correlated with advanced tumor–node–metastasis 
stage and greater tumor diameter [40]

ZFAS1 an independent prognostic factor for poor survival 
of NSCLC patients [41]

SNHG1 associated with a poor overall survival inhibited miR-101-3p and activated of 
Wnt/β-catenin signaling pathway [42]

RGMB-AS1 correlated with differentiation, TNM stage, and 
lymph node metastasis

by regulating RGMB expression though 
exon2 of RGMB [43]
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tissues and increasing that of tumor cells [70]. LncRNAs 
were proved to involve in the DNA damage response 
after radioactive rays, which might lead to the failure of 
radiotherapy [71]. However, the detailed mechanisms 
about lncRNA and resistance to radioterapy haven’t been 
found, but it is certain that miRNAs do involve in the 
radioresistance of head and neck cancer [72]. And it is 
deserved to investigate whether there are some relationship 
between lncRNAs and radioresistance in NSCLC.

LncRNAs associated with molecular targeted 
therapy of NSCLC

Basically speaking, there are three kinds of targeted 
therapies for NSCLC so far, namely EGFR tyrosine 
kinase inhibitors (EGFR-TKIs), antiangiogenic agents and 
Programmed cell death protein 1 inhibitors, which brings 
hopes and prospects to patients suffering NSCLC.

EGFR and LncRNAs

Epidermal growth factor receptor (EGFR) super-
family has been regarded as a therapeutic target to NSCLC. 
It was firstly reported in 2004 that the mutations of patients 
who were sensitive to gefitinib were around the ATP-
binding pocket of the tyrosine kinase domain, which were 
small, in-frame deletions or amino acid substitutions [73]. 
Adenocarcinomas from never smokers were easier to 
acquire this kind of gene mutation, which meant they were 
more sensible to gefitinib or erlotinib [74]. According to 
statistics from Ohashi K, patients whose metastatic tumors 
identified EGFR mutations were expected to live longer than 
2 years [75]. Following the use of these drugs, most patients 
who were initially sensitive to EGFR TKIs eventually 
acquired inevitable resistance after long-term therapy. And 
the EGFR T790M secondary mutation, which substituted 
methionine for threonine at residue 790, was firstly reported 

only a year later after the discovery of EGFR-TKIs [76]. 
The EGFR T790M secondary mutation was identified 
from patients who were not sensitive to EGFR-TKIs up to 
68%. Besides, there were some other rare mutation such as 
D761Y, L747S, and T854A discovered in 2006, 2007, 2008 
respectively [77–79]. In addition, mechanisms such as MET 
amplification, PTEN downregulation, CRKL amplification, 
High-level expression of HGF, FAS–NFƙB activation, 
EMT, and transformation to small cell lung cancer, were 
also working in the EGFR-TKIs resistance [80]. 

Few papers mentioned the relationship between 
lncRNAs and EGFR mutations in NSCLC. Urothelial 
cancer-associated 1 (UCA1), a long non-coding RNA 
highly specific to Bladder transitional cell carcinoma 
(TCC), was proved to have a close relationship to 
colorectal, gastric, ovarian cancer and NSCLC [81, 82]. 
UCA1 acted as an oncogenic role in NSCLC and it was 
proved that the expression of UCA1 in NSCLC samples 
was significantly higher compared with adjacent tissues 
partly through competitively ‘sponging’ miR-506-3p [83]. 
UCA1 was also highly expressed in patients with acquired 
resistance to EGFR-TKIs, and further studies showed that 
it was related to non-T790M by activating AKT/mTOR 
pathway and EMT [84].

LncRNA BC087858 could stimulate acquired 
resistance to EGFR-TKIs in NSCLC and might contribute 
to a shorter progression-free survival (PFS) [85]. Further 
study showed that lncRNA BC087858 could induce non-
T790M mutation acquired resistance to EGFR-TKIs by 
activating PI3K/AKT and MEK/ERK pathways and EMT 
via upregulating ZEB1 and Snail and eventually promoted 
cell invasion [86].

Not only single lncRNA could influence EGFR-
TKIs resistance, but also lncRNAs could interact each 
other to affect the sensitivity to targeted therapy. The 
over and lower expression of CASC9 and lncRNA 00277 

Table 2: Lower expressed or downregulated lncRNAs in NSCLC tissues or cell lines and their 
functions and probable mechanism
LncRNA Function in NSCLC probable mechanism cition

TUSC7 associated with worse overall 
survival

[44]

CASC2 independent predictor for overall 
survival of NSCLC

[45]

GAS5 indicated a poor prognosis and 
regulated cell proliferation

[46]

TUG1 related to the proliferation of 
NSCLC cells

TUG1 RNA could bind to PRC2 in the promotor region 
of CELF1 and negatively regulated CELF1 expressions

[47]

AK126698 inhibited the proliferation and 
migration

inhibited the activation of Wnt/β-catenin pathway [48]

GAS5-AS1 regulated NSCLC cell migration 
and invasion

through regulation of EMT [49]



Oncotarget69178www.impactjournals.com/oncotarget

were respectively negative to sensitivity to gefitinib in 
PC9G2 cells, and taken together, it was reported that they 
contributed to NSCLC cells EGFR-TKI resistance through 
interacting with their co-expressed gene, namely PcGs, 
and affected different biological pathways [87] (Figure 1).
PD-1, PDL-1 and LncRNAs

The microenvironment of malignant cells were 
gaining highlight to the treatment of tumors and many labs 
were concentrating on finding ways to make immune cells 
kill cancer cells. T cells were the major cells to fight or 
kill malignant cells, and the activation of T cells was partly 
depending on immune checkpoints [88, 89]. Programmed 
cell death protein 1 (PD-1) and programmed cell death 
protein ligand 1 (PDL-1) are two of key components of 
immune checkpoints. It was widely accepted that the 
engagement of PD-1 by PDL-1 could suppress immune 
responses and consequently led to immune evasion [90, 91]. 
Therefore the study of PD-1 and PDL-1 is now offering 
new important opportunities for the therapy of cancer. 

PDL-1 expression of tumor was significantly 
associated with a shorter PFS [92], and for the researches 

of its receptor, namely PD-1, showed that cumulative 
response rates to anti-PD-1 antibody were 18% among 
NSCLC patients according to a clinical trial in America 
(14 of 76 patients), which provided a kind of new method 
to NSCLC treatment [93]. Some scholars suggested the 
combination of EGFR-TKIs and immune checkpoints 
inhibitors, but due to the toxicity of this kind of 
combination, it aroused a lot of controversy [94, 95].

Although many evidences showed that PD-1/
PDL-1 had a promising future to treat with NSCLC, 
we knew little about the regulation about expression of 
PD-1/PDL-1. Previous studies demonstrated that PD-1.5 
C/T significantly increased advanced NSCLC risk and 
potentially related to NSCLC susceptibility in Chinese 
Han population [96]. However, to our knowledge, there 
was no report about the relationship between PD-1/PDL-1 
and lncRNAs in NSCLC, and only one paper was found 
to reveal that the co-expression of lncRNA AFAP1-AS1 
and PD-1 predicted poor prognosis of nasopharyngeal 
carcinoma (NPC) [97]. At present, it was found that p53 
regulated PDL-1 via miR-34, which directly binded to the 

Figure 1: LncRNAs associated non-T790M mutation of NSCLC. UCA1 activated AKT/mTOR pathway and related to non-
T790M mutation. LncRNA BC087858 induced non-T790M mutation by activating PI3K/AKT and MEK/ERK pathways.
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PDL-1 3′untranslated region in models of NSCLC [98]. 
What’s more, it was also reported that miR-34 enhanced 
T cell activation via targeting diacylglycerol kinase ζ [99] 
(Figure 2A). Because the expression of miRNAs was quite 
specific to distinct tumors, and they could affect early 
regulation of immune responses, they were regarded as 
suitable molecules for cancer therapy [100]. In addition, 
lncRNAs could be precursors of miRNAs and act as 
ceRNAs to alter the distribution of miRNA molecules 
on their targets [6, 101] (Figure 2B), for example, it was 
found that lncRNA ARSR acted as a ceRNA for miR-34 
and miR-449 and finally promoted Sunitinib resistance 
in renal cancer [102]. Thereby we can speculate that 
lncRNAs probably influence the patients’ response to anti-
PD-1 or anti-PDL-1 treatment.
Antiangiogenic agents and LncRNAs

Researches showed that tumor growth and metastatic 
potential partly related to tumor angiogenesis. Vascular 
endothelial growth factor (VEGF), inducing angiogenesis 
in vivo, was expressed in most solid cancers including 
NSCLC [103]. Bevacizumab, a humanized monoclonal 
antibody, could block the binding of VEGF-A isoforms to 
VEGF receptors and therefore against tumors [104]. The 
Food and Drug Administration approved bevacizumab for 
the treatment in first-line metastatic setting of colorectal 
cancer, non-small cell lung cancer and breast cancer, 
and randomized controlled trials (RCTs) showed that 
bevacizumab-based regimens revealed significantly 
increased overall survival (OS) [105, 106].

For the relationship between VEGF and lncRNAs, 
it was proved that MALAT1 could promote angiogenesis 
and immunosuppressive properties of mesenchymal stem 
cells by inducing VEFG in preeclampsia [107]. More 

direct evidence is that when lincRNA p21 was inhibited, 
the expressions of angiogenesis-related genes were 
downregulated and lincRNA-p21-inhibited cells were 
observed to secrete less VEGFA than controls did [108].

CONCLUSIONS AND FUTURE DIRECTIONS

With the deep research, lncRNAs are not regarded 
as transcriptional “noise” any more, and they are thought 
to be a new frontier for many diseases including malignant 
tumors. Based on existing evidences, lncRNAs are playing 
important roles in the presence and development of 
NSCLC, which leads to most cancer-related death. What’s 
more, over or lower expression of lncRNAs could alter 
the ability of cellular growth, movement, proliferation, 
signaling, immunoregulation and invasion, consequently 
to influence the prognostication of cancer. Besides, it has 
a close relationship between lncRNAs and the response 
to radiochemotherapy or molecular targeted therapy, by 
which ulteriorly affect the prognostication of NSCLC. 
Following the development of body fluid detection, 
lncRNAs test will not only be applied into operative 
tissues, but also in blood, urine and other body fluid and 
will have a better predictive and diagnostic function [109].

In the future, further studies would be concentrated 
on the following aspects: (1) identifying new lncRNAs 
(2) discovering more functions of lncRNAs (3) detecting 
more relationships with miRNAs and other non-coding 
RNAs (4) seeking more probable pathways that lncRNAs 
influence the gene transcript or protein expression (5) 
looking for possibility of lncRNAs as therapeutic targets 
(6) developing more precise and reliable ways to detect 
lncRNAs in body floods.

Figure 2: Hypothesis: LncRNAs associated the patients’ response to anti-PD-1 or anti-PDL-1 treatment. (A) LncRNAs 
could be precursors of miRNAs. P53 regulated PDL-1 via miR-34, and miR-34 enhanced T cell activation via targeting diacylglycerol 
kinase ζ. (B) LncRNAs could act as ceRNAs to alter the distribution of miRNA molecules on their targets.
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