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ABSTRACT
Amyloidogenic processing of APP by β- and γ-secretases leads to the 

generation of amyloid-β peptide (Aβ), and the accumulation of Aβ in senile 
plaques is a hallmark of Alzheimer’s disease (AD). Understanding the 
mechanisms of APP processing is therefore paramount. Increasing evidence 
suggests that APP intracellular domain (AICD) interacting proteins influence 
APP processing. In this study, we characterized the overexpression of AICD 
interactor GULP1 in a Drosophila AD model expressing human BACE and APP695. 
Transgenic GULP1 significantly lowered the levels of both Aβ1-40 and Aβ1-42 without 
decreasing the BACE and APP695 levels. Overexpression of GULP1 also reduced 
APP/BACE-mediated retinal degeneration, rescued motor dysfunction and extended 
longevity of the flies. Our results indicate that GULP1 regulate APP processing and 
reduce neurotoxicity in a Drosophila AD model.

INTRODUCTION

Human GULP1 (engulfment adaptor PTB-domain-
containing 1), the homologue of Caenorhabditis elegans 
CED-6, is an adaptor protein with multiple protein 
interaction domains/regions including an N-terminal 
phosphotyrosine-binding (PTB) domain, a centrally 
located leucine zipper and a carboxyl terminal proline/
serine rich region [1-3]. GULP1/CED-6 has been 
implicated in phagocytosis as it interacts with several 
engulfment receptors including CED-1, stabilin-1 and 
stabilin-2 [3-6]. Recently, we and others have shown 
that GULP1 PTB domain binds to Alzheimer’s disease 
amyloid precursor protein (APP) [7, 8]. 

APP is a large type I transmembrane protein 
contains a large ectodomain and a small intracellular 
domain, namely AICD. Amyloidogenic processing of 
APP by β- and γ-secretases leads to the generation of 
amyloid-β peptide (Aβ), and accumulation of Aβ to form 
senile plaques is a hallmark of Alzheimer’s disease (AD). 
Although the mechanisms by which APP processing 
is regulated are still not fully understood, increasing 
evidence suggests that AICD interacting proteins can 

influence APP metabolism and Aβ generation (see reviews 
[9, 10]). In fact, GULP1 is found to alter APP processing 
and Aβ generation in transfected cells [7, 8]. However, the 
effect of GULP1 on Aβ production in vivo remains to be 
determined. 

To understand the effect of GULP1 in vivo, we 
utilized the fruit fly, Drosophila melanogaster. Drosophila 
is a popular model for studying neurodegenerative 
diseases, as approximately 75% of all known human 
disease-associated genes are conserved in flies, including 
those implicated in AD [11]. In addition, AD phenotypes 
such as learning disabilities and plaque deposition can 
also be observed in Drosophila [12, 13]. In this study, we 
established transgenic flies to overexpress GULP1 in an 
existing Drosophila AD model which expresses human 
APP695 wildtype and BACE genes. This Drosophila 
model is a powerful tool for AD research as the files 
exhibit a number of clinical AD neuropathology and 
symptomology for both familial/sporadic AD including 
Aβ aggregation and memory defects [14]. In this study, 
we observed that GULP1 reduces Aβ production, reduces 
retinal degeneration, rescues motor dysfunction and 
improves the life expectancy of the flies. Our data suggest 
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that GULP1 is a potential modifier of neurotoxicity in AD 
by lowering Aβ levels. 

RESULTS

Characterization of GULP1 transgene expression 
in Drosophila

To determine the effect of GULP1 in vivo, we created 
UAS-GULP1 transgenic flies, and crossed them to gmr-
GAL4 to overexpress GULP1 in the fly eyes. Expression of 
GULP1 in gmr-GAL4/+; UAS-GULP1/+ animals (gmr > 
GULP1) was confirmed by Western blot analysis (data not 
shown), and there was no significant change in the number 

of rhabdomeres per ommatidium between gmr > GULP1 
heterozygous and control gmr driver flies (Figure 1A). To 
investigate the effect of GULP1 on AD-like symptoms 
in flies, we utilized an existing Drosophila AD model 
which expresses human APP695 and BACE transgenes 
using gmr-GAL4 (gmr > APP, BACE) [14]. We crossed 
the UAS-GULP1 flies to the gmr > APP, BACE flies to 
produce gmr-GAL4/+; UAS-APP695, UAS-BACE/UAS-
GULP1 heterozygous flies (gmr > GULP1, APP, BACE). 
Western blot analysis revealed the expression of GULP1, 
APP and BACE transgenes in several independent lines 
(Figure 1B). There was no noticeable difference in GULP1 
expression in different lines. The expression of a third 
transgene (GULP1) in the AD model did not result in a 
lower expression of APP or BACE due to the dilution of 
available GAL4. In contrary, the expression level of APP 

Figure 1: Characterization of GULP1 transgene in Drosophila. A. Overexpression of GULP1 using gmr-GAL4 does not change 
the overall retinal structure. Flies were from three independent experiments. The flies were raised at 19 oC and assayed at 5 dpe. B. 
Overexpression of human APP695, BACE and GULP1 proteins in Drosophila. Immunoblot analysis of fly head homogenates for APP, 
BACE, GULP1. 1M - 5M were independent transgenic flies of GULP1 under the UAS promoter, which were crossed into the fly disease 
model of APP and BACE expression driven by gmr-GAL4. Actin was used as loading control. Flies were raised at 28 oC and assayed at 6 
dpe.
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holoprotein was surprisingly increased by approximately 
58% in gmr > GULP1, APP, BACE flies as compared to 
gmr > APP; BACE to flies (Figure 1B). 

Overexpression of GULP1 rescues motor 
dysfunction and extends life span in a Drosophila 
AD model

Progressive decline in locomotor ability is one 
of the surrogate markers of neurotoxicity in a number 
of AD models [14-16]. To investigate if GULP1 can 
ameliorate APP/BACE-induced motor dysfunction, pan-
neuronal elav-GAL4 driver was used to overexpress 
two independent UAS-GULP1 fly lines (3M and 5M) 
together with UAS-APP695 and UAS-BACE. Similar to 
the previous report, we observed that elav > APP, BACE 
heterozygous flies have reduced climbing activities, 
indicating that APP and BACE compromised CNS 
functions [14] (Figure 2A). Remarkably, overexpression 
of GULP1 significantly improved the APP/BACE-induced 
motor impairment (Figure 2B).

In addition, consistent with the previous report, 
the median survival time of elav > APP, BACE flies 
was markedly shorter than the heterozygous elav-GAL4 
control flies (30 days vs 80 days) (Figure 3A and 3D). On 

the other hand, overexpression of GULP1 increased the 
lifespan of the AD model to a median survival time to 54 
days (Figure 3B-3D).

GULP1 protects against APP/BACE-induced 
neurodegeneration in a Drosophila AD model

The Drosophila compound eye has been widely used 
for monitoring neurotoxicity and neurodegeneration [17, 
18]. To investigate the hypothesis that GULP1 reduces 
degeneration in the Drosophila AD model, we examined 
the ommatidial organization of gmr > GULP1, APP, 
BACE fly by pseudopupil assay. As shown in Figure 1B, 
overexpression of GULP1 did not show noticeable effect 
on the overall Drosophila retinal structure. Yet, GULP1 
overexpression reduced the effect of APP/BACE-mediated 
degeneration as gmr > GULP1, APP, BACE flies showed 
significant higher average number of rhabdomeres per 
ommatidium than gmr > APP, BACE flies (Figure 4A-4C).

Overexpression of GULP1 reduces Aβ generation 
in a Drosophila AD model

It is known that the overexpression of human APP 
and BACE increases amyloidogenic processing of APP 

Figure 2: GULP1 ameliorates APP and BACE-induced locomotor dysfunction in a Drosophila AD model. A. Compared 
with control elav-GAL4 driver flies, overexpression of APP and BACE showed significant motor impairment; B. AD models expressing 
GULP1 delayed the impairment of locomotor function. The average climbing indices of elav driver control, elav > APP, BACE, elav > 
APP, BACE, GULP1 (3M) and elav > APP, BACE, GULP1 (5M) were 91%, 74%, 90% and 89% respectively. N = 80, *p < 0.05; error bars 
represent SD from at least 80 flies from three independent experiments. The flies were raised at 19 oC and assayed at 20 dpe. 
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and generation of Aβ in Drosophila [14, 19], and Aβ has 
been reported to shorten Drosophila lifespan and cause 
photoreceptor abnormality in the compound eye [20, 21]. 
Thus, it is possible that the mitigation of neurotoxicity by 
GULP1 is due to an overall reduction of Aβ production. 
To test this hypothesis, we overexpressed GULP1, APP 
and BACE using gmr-GAL4 and examined GULP1’s 
effect on Aβ production. Indeed, we observed a significant 
reduction of Aβ1-40 and Aβ1-42 in gmr > GULP1, APP, 
BACE flies as compared to gmr > APP, BACE flies (Figure 
5A), indicating that GULP1 rescues structural, behavioral 
and longevity phenotypes in the Drosophila AD model by 
lowering Aβ production levels. 

Active ARF6 has been shown to lower Aβ 
generation by altering endosomal sorting of BACE1 in 
various mammalian cell types including primary neurons 
[22]. Moreover, GULP1 has been shown to alter the 
generation of APP C-terminal fragment β, a product of 
BACE1 cleavage of APP, in mammalian cells [7]. It is 
possible that GULP1 regulates APP processing via ARF6 
in some fashion as the PTB domain of GULP1 interacts 
with ARF6, and the knockdown of GULP1 reduces ARF6 
activation in mouse embryo fibroblast MEF 1 [23]. To 
test the hypothesis, we transfected cells with GULP1, and 
examined the levels of active ARF6 (ARF6-GTP). While 
the total ARF6 level did not change, more active ARF6 
was observed in cells overexpressing GULP1 (Figure 5B). 
This suggests that GULP1 possibly reduces Aβ production 
and neurotoxicity via the activation of ARF6.

DISCUSSION

Several lines of evidence from cell models suggest 
GULP1 modulates APP processing [7, 8]. However, the 
biological roles of GULP1 on Aβ productions in vivo and 
the subsequent physiological effects remain unknown. The 
current study provides first evidence that GULP1 affects 
human APP metabolism in vivo and improve structural, 
behavioral and longevity phenotypes in a Drosophila AD 
model.

The mechanism(s) by which GULP1 alters 
APP processing is largely unknown. GULP1 has been 
shown to interact with ARF6 [23], a member of the Ras 
superfamily of small GTPases functions in trafficking the 
membrane components between the plasma membrane 
and endosomal compartments (see review [24]). Several 
studies have shown that endosomes contain high level 
of BACE, and are a major subcellular compartment for 
Aβ production (see review [25]. In fact, active ARF6 has 
been shown to regulate endosomal sorting of BACE1 
and lead to reduction in Aβ generation [22]. Here, we 
showed that overexpression of GULP1 could induce 
ARF6 activation. Hence, the effect of GULP1 on APP 
processing in Drosophila may be via activation of dARF6, 
the fly homolog of ARF6. Alternatively, dCED-6, the fly 
homologue of GULP1, has been reported to function 
as an in vivo clathrin adaptor for clathrin-mediated 
Yolkless uptake in Drosophila oocytes [26-28]. As APP 
internalization is also clathrin-mediated [29], it is possible 

Figure 3: GULP1 extends life span in a Drosophila AD model. A. Compared with control flies, overexpression of APP and 
BACE showed significantly shorter life span; B.-C. AD models expressing GULP1 demonstrated significantly longer survival time. D. 
Quantification of life span. N = 70. Log-rank (Mantel-Cox) test was performed. **** p < 0.0001, ** p = 0.0013, ** p = 0.0039 for A., B. 
and C. respectively. At least 70 flies from three independent experiments were assayed. The flies were raised at 19 oC.
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Figure 4: GULP1 reduces retinal degeneration in a Drosophila AD model. A. Representative photomicrographs of fly retina in 
AD models with or without GULP1 expression from one of the three independent experiments. Scale bar is 7 µm. B. Distribution pattern 
of number of visible rhabdomeres per ommatidium in AD models with or without GULP1 expression from one experiment. Similar trend 
was observed in the other two independent experiments. C. Quantification of visible rhabdomeres. On average, 3.29 rhabdomeres per 
ommatidium were observed in flies expressing APP695 and BACE. Overexpression of GULP1 significantly suppressed the degeneration 
induced by APP and BACE expression, and increased the rhabdomere score to an average of 3.95 and 4.43 respectively. N = 300, ***p < 
0.01. Flies were from three independent experiments. The flies were raised at 19 oC and assayed at 5 dpe. 
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that GULP1 regulates APP endocytosis processing in flies. 
It is also suggested that GULP1 may reduce maturation 
of APP along the secretory pathway and impair APP 
trafficking to the plasma membrane. Such retention of 
APP proteins in the secretory pathway consequently traps 
more of them inside the cells, limiting their processing 
by secretases at the plasma membrane, and ultimately 
reduced Aβ generation [8]. This is consistent with our 
observation that the level of APP appeared to be increased 
when GULP1 was overexpressed (Figure 1B). 

In Drosophila, dCED-6 is a key molecule in the 
Draper pathway mediating the glial engulfment of dying/
injured neurons as well as presynaptic debris at the larval 
neuromuscular junction [26, 30, 31]. Since elav-GAL4’s 
expression includes both neuronal and glial cells [32], 
it is possible that the overexpression of GULP1 in glia 
activated the Draper pathway, and facilitate the engulfment 
of extracellular Aβ. In fact, many previous studies have 
demonstrated the role of glial cells in Aβ clearance and 
degradation [33-38]. Additionally, the suppressive effect of 
GULP1 on Aβ level and reduced structural and behavioral 
abnormalities could be a result of potential neuroprotective 
effect of GULP1 on Aβ clearance as GULP1 is reported 
to stimulate the signaling of transforming growth factor-β 
(TGF-β) [39], a neurotrophic cytokine against Aβ toxicity 
[40]. 

On the other hand, conflicting effect of GULP1 on 
APP processing are reported [7, 8]. Similar controversies 
are reported for other AICD interacting proteins including 

FE65s and X11s [9, 41-49]. Noteworthy, GULP1, FE65s 
and X11s are adaptor proteins that functions in recruiting 
interactors for various biological pathways. One possible 
reason for such conflicting observations is that the cell 
types or models employed in the studies expressing 
different types and amounts of their interactors. Thus, 
in addition to ARF6, other GULP1 interactors may also 
participate in regulating APP processing. Moreover, a 
number of studies have revealed that the phosphorylation 
status of APP interactors would influence their effects on 
APP processing [50, 51]. Noteworthy, phosphoproteomic 
and mass spectrometric analyses from various laboratories 
have shown that GULP1 is a phosphoprotein [52-55]. 
Hence, the discrepancy in the effect of GULP1 on APP 
processing may also be a result of phosphorylation status 
of GULP1. Therefore, identification of the full spectrum of 
GULP1 interacting proteins and investigation of the role of 
GULP1 phosphorylation will provide further mechanistic 
insights into how GULP1 modulates APP processing. 

Although lowering Aβ by the enhancement of 
Aβ clearance using recombinant Aβ antibodies have 
shown promises in mouse model [56], Eli Lilly recently 
announced that their Aβ antibody drug Solanezumab 
failed to demonstrate efficacy in an 18-month phase 
III clinical trial with over 2,100 participants. The 
exact reasons for the failure of the trial remain to be 
determined [57]. Solanezumab is thought to be function 
by sequestering Aβ to promote Aβ clearance. However, 
the drug could not lower Aβ generation. Therefore, 

Figure 5: Overexpression of GULP1 decreases Aβ1-40 and Aβ1-42 levels in a Drosophila AD model. A. Aβ1-40 and Aβ1-
42 levels were measured by human Aβ ELISA. Both Aβ1-40 and Aβ1-42 decreased significantly in flies expressing GULP1. **p < 0.01, *p 
< 0.05; Error bars are SD from at least 120 flies from three independent experiments. The flies were raised at 28 oC and assayed at 6dpe. B. 
Total ARF6 levels and ARF6-GTP levels were examined in CHO cells overexpressing GULP1 by immunoblotting (Top panel). Bar chart 
shows relative ARF6-GTP amount. Data were obtained from three independent experiments. N = 3, *p < 0.001. Error bars are SD.
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combination therapy that increases Aβ clearance and 
suppresses Aβ production may be an alternative approach 
for AD. However, current strategies for reducing Aβ 
production remain unsatisfactory such as the use of 
γ-secretase inhibitors. Our finding that GULP1 reduces 
Aβ production in an AD Drosophila model does not only 
improve our understanding of the function of GULP1 in 
APP processing in vivo, but also opens a novel avenue 
for investigating the possibility of targeting GULP1-APP 
interaction to alter Aβ production. 

MATERIALS AND METHODS

Generation of UAS-GULP1 lines in Drosophila

The full length human GULP1 cDNA was amplified 
by PCR and subcloned into GAL4-responsive pUAST 
expression vector, and microinjected into Drosophila 
embryos (BestGene Inc, USA). The expressions of 
GULP1 in 5 independent lines (1M, 2M, 3M 4M and 5M) 
were determined by Western blotting. 

Drosophila stocks

Fly stocks and crosses were raised on standard 
cornmeal medium with 1.25% agar; 10.5% dextrose; 
10.5% cornmeal and 2.1% yeast. Flies were kept in 
incubators (LMS Ltd., UK) maintained at 18 oC, 19oC, 
25oC or 28oC as specified. elav-GAL4 (458), gmr-GAL4 
(1104), UAS-APP695, UAS-BACE (33797) were obtained 
from Bloomington Drosophila Stock Center, USA. Virgin 
females for crosses were collected within 8 hours at 25oC 
or 16 hours at 18oC.

Western blot analysis

Fifteen fly heads were collected and homogenized 
in 75 µl 2X SDS sample buffer containing 100mM Tris, 
4% SDS, 0.2% Bromophenol blue, 20% Glycerol and 15 
μl/ml β-mercaptoethanol. Lysates were then boiled for 10 
minutes and separated by SDS/PAGE gels. Protein on the 
gels was transferred to nitrocellulose blotting membrane 
(PALL) using a wet blotting system (Bio-Rad). Blots 
were probed with the following antibodies: Anti-GULP1 
[7]; Anti-APP [48]; Anti-BACE [49]; Anti-actin A2103 
(Sigma).

Aβ ELISA

Human Aβ1-40 and Aβ1-42 in the fly heads were 
determined by using the human β40 and β42 ELISA kits 
(Millipore). In brief, 15 fly heads were homogenized in 
50 µl ice-cold 1X RIPA buffer containing 50 mM Tris, 

150 mM NaCl, 1% SDS, 1% NP-40, 0.5% sodium 
deoxycholate, pH 8.0 and Complete™ protease inhibitor 
(Roche). The homogenates were diluted 10-fold with 450 
µl sample diluent and then cleared by centrifugation at 
15,000 rpm for 5 minutes at 4oC. 200 µl of supernatant 
of each sample was added to ELISA plate with primary 
antibody. After overnight incubation at 4oC, the ELISA 
plate was washed with wash buffer. Streptavidin-
peroxidase-conjugate was then added for colorimetric 
signal development at room temperature. The colorimetric 
reaction was stopped by adding stop solution, and signals 
were measured at 450 nm by using a microplate reader 
(Bio-Rad).

Pseudopupil assay

Pseudopupil assay was performed essentially as 
described previously [58, 59]. In brief, 5 days post-
eclosion (dpe) fly eyes were examined under a light 
microscope (Olympus CX31) with a 60X oil objective. At 
least 200 ommatidia from at least 15 adult flies obtained 
from three independent crosses were used to calculate the 
average number of rhabdomeres per ommatidium.

Locomotor activity assay

Locomotor activity of the flies were determined 
at 20 dpe. In brief, group of 10 flies were placed at the 
bottom of a 15mL falcon tube. The number of flies that 
successfully climbed up a vertical distance of 8 cm or 
more was recorded. At least 80 flies of each genotype were 
analyzed in an experiment. Three independent experiment 
were performed.

Longevity assay

Groups of 15 flies were placed in a food vial. Dead 
flies were counted every 3 days. At least 70 flies were 
assayed for each genotype from three independent crosses.

ARF6 activation assay

ARF6 activation assay was performed as described 
previously [60] by an active ARF6 pull-down kit (Cell 
Biolabs). ARF6 was detected by a mouse anti-ARF6 
supplied from the kit.

Statistical analysis

The Mann-Whitney rank sum test was performed to 
compare mean differences between the average numbers 
of rhabdomeres per ommatidium in pseudopupil assay. 
One-way ANOVA test with Tukey post-hoc analysis was 
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performed for ELISA analysis and climbing assay. Log-
rank (Mantel-Cox) Test was performed for survival assay. 
A P-value of less than 0.05 was considered statistically 
significant. Significance is indicated as *p < 0.05, **p < 
0.01.
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