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ABSTRACT

To demonstrate the mutational profiles in solid tumors, we profiled 165 solid 
tumor samples, including 9 cancer types and 4 sample types, by using amplicon-based 
next-generation sequencing panel covering 48 highly mutated tumorigenesis-related 
genes that were deep sequenced at an average coverage of 2000×. Both tumor and 
sample types had significant effect on tumor genetic mutational profiles. Concurrent 
driver mutations were frequently detected in solid tumor, concentrating on both 
modes of action driver genes (activating or loss of function). Furthermore, in non-
small cell lung cancer (NSCLC), concurrent driver mutations were also significantly 
correlated with the lymph node metastasis status and pathological types. Higher 
frequency of lymph node metastasis was observed in patients with NSCLC with 
concurrent mutations on at least two driver genes. In addition, patients with lung 
adenocarcinoma were more likely to harbor concurrent driver mutations than patients 
with lung squamous and large cell carcinoma. Multiple mutations in the epidermal 
growth factor receptor gene were more frequently detected in patients with refractory 
NSCLC compared to untreated naive ones. Therefore, concurrent multiple driver 
mutations, rather than a single genetic mutation, should be investigated extensively 
to probe novel genetic biomarkers with clinical benefits.

INTRODUCTION

Cancer treatment has made paradigm shift 
advance-ments in the past decade with the development 
of therapies targeting specific genetic alterations. A 

number of target therapies have shown great antitumor 
efficiency in the clinic, such as the epidermal growth 
factor receptor–tyrosine kinase inhibitors (EGFR-TKI) 
gefitinib and erlotinib for patients with non-small cell 
lung cancer (NSCLC) harboring sensitizing EGFR 
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mutations [1], crizotinib for patients with NSCLC 
bearing ALK and ROS1 fusion [1, 2], and Gleevec 
for patients with gastrointestinal stromal tumor with 
mutated KIT [3]. Tumor genotyping makes it possible 
to categorize patients into different subgroups and 
to treat them with the optimal regimens to achieve 
more satisfactory therapeutic effects. Therefore, 
in the newly released National Comprehensive 
Cancer Network Guidelines of 2017, broad genetic 
diagnostic tests have been recommended for primary 
patients with NSCLC to determine the best first-line 
therapeutic regimen [4].

DNA next-generation sequencing (NGS) is a 
large-scale parallel sequencing technology and has been 
proven as an accurate tool to detect various forms of 
genetic abnormalities, including mutations, fusions, and 
amplifications, across a large number of genes in a high-
speed and high-efficiency pattern [5].

Compared with whole genome NGS, targeted NGS 
focuses on the specific regions containing cancer-relevant 
genes, has lower cost, and generates more reliable and 
usable data due to high coverage of targeted regions. 
Tumor always shows strong heterogeneity, some low-
frequency driver mutations can exclusively be detected 
by deep sequencing because patients carrying these low-
frequency mutations are also sensitive to targeted therapy. 
Targeted NGS is efficient and accurate in screening drug 
targets and provides more treatment options for patients 
with cancer, especially patients with advanced stage cancer 
who cannot tolerate the side effects of chemotherapy.

Development of targeted NGS technology resulted 
in more attention to be given in identifying cancer-
related driver gene pathways, which precisely illustrate 
how different driver genes collaborate simultaneously 
to induce carcinogenesis and progression [6, 7]. 
Specific combinatorial patterns of genetic mutations 
are significantly correlated with certain tissue type and 
patient prognosis [8]. However, combinatorial patterns in 
most solid tumors are not yet identified. Therefore, in this 
study, we focused on the mutational profiling of 48 highly 
mutated genes in 165 solid tumor tissue samples across 9 
common solid tumor types using TruSeq Amplicon Cancer 
Panel (TSACP). We also investigated the distribution of 
concurrent mutations among different genes to define 
accurate cancer molecular subtypes, which will help 
oncologists to prescribe optimal therapeutic regimens and 
precisely predict clinical outcome after the treatment.

We found that tumor and sample types had significant 
effect on tumor genetic mutation profiling. Concurrent 
somatic driver mutations were frequently detected in 
solid tumor tissues, and most of the concurrent mutations 
concentrated on both modes of action driver genes (activating 
and loss of function), which significantly correlated with the 
lymph node metastasis status, pathological types, and clinical 
response to therapies in NSCLC. Therefore, NGS is a reliable 
method to detect concurrent multiple driver mutations, which 
rather than a single genetic mutation, should be investigated 

more extensively to probe novel genetic biomarkers with 
clinical predictive benefits.

RESULTS

TSACP assay is a reliable method to detect 
multiplex mutations in tumors

Profiling of 165 solid tumor tissue samples was 
performed via amplicon-based target sequencing using 
Illumina TSACP assay. Basic quality control of raw data 
was conducted, and the following findings were observed: 
the average sequencing depth reached 2000×; all samples 
had Q30 percentage higher than 80%; the average ratio of 
reads mapped to target regions was 96%; and the average 
percentage of sequencing uniformity (the proportions 
of sequences that have greater than 0.2 times the mean 
coverage [9]) reached 91%. The sequencing data were 
qualified and sufficient for further bioinformatics analysis. 
A total of 8526 variants were identified in 165 solid tumor 
samples, among which 6174 variants were located in 
noncoding regions and 1194 variants were synonymous 
variants. Afterward, 1158 missense/nonsense SNVs and 
InDels were kept. Considering the lowest detectable 
threshold of TSACP assay, another 392 variants with allele 
frequency lower than 3% were discarded for uncertain 
positive evidence. Finally, 766 variants, which were 
important for the following analysis, were determined. 
Figure 1 shows the distribution of 766 variants. The 
number of genetic variants detected in each sample varied 
among different tumor and sample types, which ranged 
from 1 to 21 variants per sample with an average of 
5.6 variants per sample. Furthermore, various types of 
mutations, including both SNVs and InDels, occurred in 
39 genes covering 81.25% (39/48) of the known highly 
mutated genes in cancer. The most frequently mutated 
genes were TP53 (88.48%), KDR (72.73%), EGFR 
(30.1%), KRAS (20.0%), and MET (18.97%).

Mutations were distributed variously among 
different tumor types

Nine kinds of tumor types were included in this 
study. Different tumor types displayed distinct genetic 
mutation profilings (Figure 2). In NSCLC, the most 
frequently mutated genes were TP53 (87.38%), KDR 
(78.64%), EGFR (44.66%), STK11 (17.48%), MET 
(16.5%), and KRAS (15.53%). In colorectal cancer (CRC), 
the most frequently mutated genes were TP53 (95.65%), 
APC (60.87%), KDR (56.52%), KRAS (56.52%), and 
PIK3CA (30.43%). In prostate cancer (PsC), the most 
frequently mutated genes were TP53 (93.33%), KDR 
(53.33%), MET (33.33%), HRAS (13.33%), APC 
(13.33%), and ATM (13.33%) (Supplementary Table 1 ). 
Our result in NSCLC was in accordance with the published 
Asian data, such as the EGFR mutation frequency around 
50% [10]. Additionally, our CRC mutation frequency was 
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slightly higher than the reported TCGA data in common 
[11].

The mutation loads varied among different tumor 
types. We compared the amount of mutations among the 
three major tumor types, including NSCLC, CRC, and 
PsC. Statistically, the amount of mutations per sample 
of CRC (median, 5; range, 2–13) was comparably higher 
than that of PsC (median, 3; range, 1–10) with a p value 
of 0.004 by nonparametric test. Although the amount of 
mutations per NSCLC sample (median, 4; range, 1–15) 
was lower than that of CRC sample, no statistically 
significant difference was determined. In addition, among 
the different tumor types of the digestive system, the 
amount of mutations per CRC sample was relatively 
higher than the others (median, 3; range, 1–12), including 
hepatic cancer (HC), pancreatic cancer (PcC), and gastric 
cancer (GC), with a p value of 0.022 by nonparametric test. 
We determined that fewer mutations exist in mesenchymal 
tissue-derived tumors than in epithelial-derived cancers, in 
which the amount of mutations per sarcoma sample was 
less than 3; this result hence suggested that the histological 
origin had a significant effect on tumor mutation profiling 
based on TSACP assay. Besides, TSACP is a small-
scale panel, the mutation frequency of 48 detected genes 
may underestimate the mutation abundance of PsC and 

mesenchymal/sarcoma mutations, which show the unique 
profile of cancer mutations [12–15].

Mutations were distributed variously among 
different sample types

In this study, four types of tumor samples were 
collected, including surgically resected tumor tissues, 
puncture biopsy tumor tissues, tumor pleural effusion, 
and formalin-fixed paraffin-embedded (FFPE) tumor 
tissues. Different sample types displayed distinct mutation 
profiling. No statistically significant difference exists on 
the amounts of mutations per sample among the three 
fresh tumor tissue samples, namely, surgically resected 
tumor tissues (median, 3; range, 2–8), puncture biopsy 
tumor tissues (median, 4; range, 0–8), and tumor pleural 
effusion (median, 3; range 2–6). However, the number 
of genetic variants per FFPE tissue sample (median, 7; 
range, 2–18) was nearly twofold higher than the others 
by nonparametric test (p = 0.006, Figure 3A). Different 
from the mutations in fresh tumor samples, many variants 
detected in FFPE tumor tissues were at relatively lower 
coverage and minor allele frequency (MAF), including 
more C > T/G > A mutations (Figure 3B), and were 
not included in the Catalogue of Somatic Mutations 

Figure 1: Distribution of 766 passed filtering variants. The top of the figure shows the tissue type, sample type, gender, and age 
for 165 samples. The body of the figure shows 766 variants distributed based on the sample ID and gene name.
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in Cancer (COSMIC) database (Figure 3C, 3D). Most 
of non-COSMIC, low-frequency, and C > T mutations 
detected in FFPE tumor tissues were not verified as 
real using polymerase chain reaction (PCR) assay or 
Sanger sequencing method. Therefore, disparity in DNA 
integrity between fresh and formalin-fixed tumor tissues 
significantly affected tumor mutation profiling.

Concurrent somatic mutations in multiple driver 
genes were frequently detected in solid tumor 
tissues

We further filtered the 766 variants by IntOGen 
cancer drivers database, and then data were filtered by the 
commonly reported germline mutation dbSNP (release 147) 
and ClinVar database. In the end, we obtained 196 somatic 
driver mutations for subsequent analysis (Figure 4).

Among the 196 somatic driver mutations in 165 
samples, 15 driver genes were included, such as TP53, 
EGFR, KRAS, PIK3CA, APC, PTEN, CTNNB1, FGFR3, 
FBXW7, NRAS, SMAD4, RB1, BRAF, SMO, and MET 
(Figure 5A). These driver genes can be divided into 

two parts, as follows: activating mode of action driver 
(A-driver) genes and loss-of-function mode of action 
driver (LF-driver) genes. Those somatic mutations were 
mainly concentrated on certain A-driver genes, such 
as EGFR (27.88%, 46/165), KRAS (19.39%, 32/165), 
PIK3CA (6.67%, 11/165), and CTNNB1 (2.42%, 4/165), 
and on some LF-driver genes, such as TP53 (38.79%, 
64/165), APC (6.06%, 10/165), and PTEN (3.03%, 
5/165) (Supplementary Table 2). Of these samples, 74.5% 
(123/165) displayed at least one type of somatic mutation 
in one gene, either missense SNV, nonsense SNV, or 
InDels. Given that some tumor types had fewer samples 
for the lower incidence, the concurrent somatic driver 
mutations were focused on the top two tumors NSCLC 
and CRC.

As shown in Figure 5A, 77.7% (80/103) of NSCLC 
samples carried somatic mutations on driver genes, and 
a total of 120 driver gene mutations were distributed 
among various driver genes with different modes of 
action. Additionally, most of the somatic mutations 
were distributed among A-driver genes. Nearly 65% 
of NSCLC samples possessed somatic mutations on 

Figure 2: Distribution of variant numbers in different cancer types. The variant numbers of each sample from nine different 
cancer types were marked with different colors. The black lines were the median number for variant number of the corresponding cancer 
types.
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A-driver genes, which were mainly focused on EGFR 
(42.72%, 38/103), KRAS (14.56%, 15/103), PIK3CA 
(3.88%, 4/103), and FGFR3 (2.91%, 3/103). Somatic 
mutations on LF-driver genes were also detected, which 
were mainly concentrated on TP53 (36.89%, 38/103). 
Similarly, in CRC, 95.65% (22/23) of the samples were 
carrying 47 somatic mutations on multiple driver genes 
(Figure 5A), which mainly focused on the A-driver 
genes, KRAS (56.52%, 13/23) and PIK3CA (26.09%, 
6/23), and on the LF-driver genes, TP53 (56.52%, 13/23), 
APC (39.13%, 9/23), and PTEN (8.7%, 2/23).

However, 74.5% (123/165) of the solid tumors had 
more than one somatic mutation in either one or multiple 
genes. The concurrent somatic mutations (Co-SM) in 
multiple driver genes were frequently detected in solid 
tumor tissues, among which 39% (48/123) of the samples 
were bearing Co-SM in multiple driver genes. As shown 
in Figure 5B, 28.16% (29/103) of NSCLC samples have 
Co-SM, among which 79.31% (23/29) were distributed 
on both A-driver genes and LF-driver genes. By contrast, 

only 17.24% (5/29) of NSCLC samples had Co-SM 
exclusively in A-driver genes, whereas 3.45% (1/29) of 
NSCLC samples had Co-SM exclusively in LF-driver 
genes. Therefore, Co-SM of A-driver genes and LF-driver 
genes were the most common type. Similarly, in CRC, 
65.22% (15/23) of samples had more than one driver gene 
mutation, and 79.31% (12/15) possessed Co-SM in both 
A-driver and LF-driver genes. By contrast, only 13.33% 
(2/15) of CRC samples had Co-SM exclusively in A-driver 
genes, whereas 6.67% (1/15) of CRC samples had Co-SM 
exclusively in LF-driver genes (Supplementary Table 3). 
Moreover, we compared the distribution of Co-SM in 
three main tumor types, namely, NSCLC, CRC, and PsC, 
which were significantly different by nonparametric test 
(p = 0.000). The combinations of EGFR + TP53 (37.5%, 
18/48), KRAS + TP53 (10.4%, 5/48), and KRAS + APC 
(8.3%, 4/48) were the most frequently detected Co-SM 
in solid tumor tissues. Furthermore, 8% (10/123) of the 
samples had Co-SM solely in one driver gene, such as 
EGFR.

Figure 3: Distribution of variant numbers in different sample types and the distribution of variations in FFPE tumor 
samples.  (A) Distribution of variant numbers in different sample types. The black lines are the median number for the variant number of 
the corresponding sample types. The amounts of genetic variants per sample of FFPE samples were nearly twofold higher than those of the 
other fresh samples. (B) FFPE tumor samples included more C > T/G > A and fewer A > G/T >C mutations. (C) Most of SNVs. detected in 
the FFPE tumor samples were concentrated at the lowest MAF (less than 0.1) and were not included in the COSMIC database. (D) MAF 
of SNVs detected in the non-FFPE tumor samples demonstrates a similarly bi-modal distribution owing to less mutations with low allele 
frequency.
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Co-SM in driver genes were correlated with 
lymph node metastasis and pathological types in 
NSCLC

The association between Co-SM in driver genes and 
clinical–pathological features was analyzed in NSCLC. A 
total of 103 cases of patients with NSCLC were followed 
for 2 years, among which 12 patients were lost during 
follow-up. The clinical and pathological features of 91 
patients with NSCLC were compared and analyzed (Table 
1). Based on the NGS results, 91 patients with NSCLC 
were divided into two groups: mutation-positive (M+, 71 
cases) patients and mutation-negative (M−, 20 patients) 
patients. No significant difference was identified among 
gender, age, tumor location, clinical stage, pathology 
typing, and lymph node and/or distant metastasis status 
between M+ and M− patients. We further divided the 

71 patients into two subgroups: patients harboring Co-
SM (Co-SM+, 45 patients) and patients harboring single 
mutation (Co-SM−, 26 patients). We found that a higher 
frequency of lymph node metastasis occurred in Co-SM+ 
patients compared with Co-SM− patients, with marginal 
significance (p = 0.119, chi-squared test). Particularly, 
43% of Co-SM+ patients had lymph node metastasis in 
contrast to 23% of Co-SM− patients. Co-SM+ patients 
displayed different pathological features compared with 
Co-SM− patients. More adenocarcinoma rather than 
squamous carcinoma occurred in Co-SM+ patients than 
in Co-SM− patients (45.45% vs. 6.25%) with p value 
of 0.014 by Fisher’s exact test. Furthermore, Co-SM 
in EGFR gene, especially both sensitive and resistant 
mutations, such as L858R + T790M or Exon19 deletion 
+ T790M, was common in Co-SM+ adenocarcinoma. The 
distribution was significantly different between untreated 

Figure 4: The data analysis processing.
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naive patients with NSCLC and patients with refractory 
cancer after multiple treatments, including chemotherapy 
and target therapy by Fisher’s exact test (0% vs. 26.32%, 
p = 0.02).

The correlation between Co-SM and lymph node 
status was validated with TCGA database. We studied 
data from 478 patients with lung adenocarcinoma from the 
publication by TCGA database. To ensure that the TCGA 
data were consistent with our results, the TCGA mutation 
data were focused on the 48 genes listed in our study 
and filtered using IntOGen, dbSNP (release 147), and 
ClinVar databases accordingly to obtain the final list of 
somatic driver mutations. Finally, 367 patients were kept 
with a total of 637 mutations with at least one mutation 
per person. Even though patients in the TCGA database 
are mostly Caucasians rather than Mongolians, a higher 
frequency of Co-SM+ occurred in patients with lymph 
node metastasis in comparison with patients without 
lymph node metastasis (p = 0.012 by chi-squared test). 
In particular, 39% (50/127) of patients with lymph node 
metastasis had Co-SM+ in comparison with 26% (63/240) 
of patients without lymph node metastasis. The TCGA 
data are further supportive evidences to strengthen our 
observation.

DISCUSSION

Before using TSACP, we have assessed the 
specificity and sensitivity of TSACP in our previous 
study. The lowest threshold of genetic mutation detection 
(both SNVs and InDels) is 3% at the depth of 2000× 
for TSACP. Furthermore, several conventional genetic 
analysis methods, including quantitative polymerase chain 
reaction, Sanger sequencing, and pyrosequencing, were 
compared with NGS assay to validate the detected variants 
in this cohort. A total of 20 variants were validated, and 
these variants were completely consistent among NGS 
and other genetic analysis methods (Supplementary 
Table 4). In our study, we verified the final 196 variants 
for subsequent clinical–pathological analysis using PCR 
method. The IntOGen cancer drivers, dbSNP, and ClinVar 
databases were used to exclude commonly reported 
germline mutations (such as the recurrent mutations in 
KDR gene) and FFPE false-positive mutations. We also 
adopted VarScan2 mutation calling pipeline to avoid false-
positive mutations.

The patterns of mutations in well-studied oncogenes 
and tumor suppressor genes are highly characteristic and 
nonrandom. Vogelstein et al. supplied a lenient “20/20 

Figure 5: Distribution of 196 driver mutations. (A) The top of the figure shows the tissue type, sample type, gender, and age for 
165 samples. The middle of the figure shows 196 variants distributed based on the sample ID and gene name. (B) The figure shows the co-
occurrence of driver mutations in samples.



Oncotarget68753www.impactjournals.com/oncotarget

rule” to classify oncogenes and tumor suppressor genes 
and published a list of 125 gene (Vogelstein, Papadopoulos 
et al. 2013). In our manuscript, we classified 196 somatic 
driver mutations into two parts: A-driver genes and LF-
driver genes using IntOGen cancer driver database. From 
the perspective of oncogenes and tumor suppressor genes, 
we reanalyzed our results based on the frequently-used 
tumor-associated gene database.We compared our results 
with Vogelstein’s results; all the genes had consistent 
classification except gene SMO, which was classified as 
an oncogene in Vogelstein’s paper but a tumor suppressor 
gene in the tumor-associated gene database we used.

Chang et al. developed a statistical algorithm to 
identify recurrently mutated residues in tumor samples. 
They applied the algorithm to 11,119 human tumors, 
spanning 41 cancer types, and identified 470 somatic 
substitution hotspots in 275 genes, including 243 novel 
hotspots [16]. We compared our data with the published 
470 somatic substitution hotspots, and 14 mutations were 
previously filtered out by the IntOGen database. The 14 
mutations may confer a selective growth advantage to the 
tumor cell but need further confirmation.

We further studied the mutation abundance of TSACP 
and whole exome sequencing (WES) using the public data 

Table 1: Association of driver gene mutations and clinical-pathological characteristics of NSCLC

Characteristics No. of patients (N =71) P-value

Mutation+ Mutation-

Sex

 Male 12 22
P=1

 Female 14 23

Age

 >60 11 23
P=0.623

 ≤60 15 22

Tumor location

 Left lung 14 15
P=0.133

 Right lung 12 30

Stage

 I 4 13

P=0.538
 II 3 4

 III 5 5

 IV 14 23

Lymph node metastasis

 Yes 21 28
P=0.119

 No 5 17

Distant metastasis

 Yes 12 18
P=0.628

 No 14 27

Pathology

 Adenocarcinoma 25 30

P=0.014 Squamouscarcinoma 1 11

 Large cell 0 4

Treatment

 Niave 17 25 P=0.462

 Refractory 9 20
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of 478 NSCLC and 472 CRC cases in TCGA database. 
We firstly compared the mutation abundance of 48 genes 
covered by TSACP between our dataset and TCGA database, 
and found that no significant differences were detected in 
normalized numbers of mutations per 100kb either in NSCLC 
or CRC samples (p=0.966 ; p=0.346). Afterwards, we 
compared the mutation abundance of 48 selected genes and 
total genes in TCGA database, and found that in NSCLC the 
normalized numbers of mutations of 48 genes (medican:3.7 
vs 0.6 per 100kb, p =0.000 )were statistically higher than 
those of WES using nonparametric test. Similar result was 
obtained in CRC (medican:7.4 vs.0.38 per 100kb, p=0.000).
TSACP is to detect somatic mutations within important 
cancer-related hotspot genes, covering quite a number of 
highly mutated loci in cancer. Comparing to WES, higher 
mutation abundance was detected using TSACP, which 
implied that TSACP is relatively more efficient than WES 
in screening driver gene mutations and predicting clinical 
response to target therapy and immunotherapy.

In our study, 74.5% of the solid tumors bear more 
than one somatic mutation in either one or multiple genes, 
which showed significant medical value. Previous studies 
have demonstrated that the Co-SM in multiple driver 
genes were correlated with certain clinical–pathological 
features of solid tumors and therapeutic response to certain 
treatments; for example, KRAS and PIK3CA comutations 
were the most distinctive features of early NSCLC, whereas 
the RB1 and TP53 coalterations indicated a characteristic 
genotype of small cell lung cancer [17]. In breast cancer, 
TP53 + PIK3CA comutations conferred the worst disease-
free survival in patients than single PIK3CA mutation 
[18]. In NSCLC, single PIK3CA mutation-bearing patients 
had shorter overall survival than those with the PIK3CA + 
EGFR or PIK3CA + KRAS comutations [19]. In our study, 
Co-SM in multiple driver genes was correlated with lymph 
node metastasis and pathological typing of NSCLC. Higher 
frequency of lymph node metastasis and higher percentage of 
adenocarcinoma occurred in Co-SM+ patients with NSCLC 
in comparison with Co-SM− patients. Medical significance 
of Co-SM with lymph node status in NSCLC was validated 
in TCGA database. The TCGA database mainly included 
white people, which was different from our collection that 
consisted of Asian people. TCGA data showed that Co-SM+ 
occurred more in patients with lymph node metastasis than in 
patients without lymph node metastasis, this finding further 
strengthened our results. Hence, NSCLC bearing Co-SM in 
multiple driver genes might be more aggressive and lead to 
a higher risk of early relapse after surgery, for which more 
comprehensive treatment should be prescribed to control 
disease progression and improve prognosis. Our research 
showed wider significance, which is not limited to Asian 
populations.

In our study, concurrent sensitive and resistant 
somatic mutations in EGFR gene were the most frequently 
detected Co-SMs in lung adenocarcinoma, in which 
L858R + T790M or Exon19 deletion + T790M were 

frequently detected in patients with refractory NSCLC 
rather than in untreated naive patients; this result was 
consistent with the knowledge that most of the secondary 
EGFR-TKIs resistance are correlated with emerging 
EGFR T790M-positive tumor clones in NSCLC. Given 
the deep coverage of the platform, we did the abundance-
based clonality analysis for the EGFR L858R+T790M to 
distinguish which one was clone or subclone according 
to the reported method [20, 21]. Clonality analysis 
was performed to distinguish which one was cloned 
or subcloned. Subclones were obtained by clustering 
cancer cell fractions by PyClone, which can deconvolute 
the tumor into subclones using a hierarchical Bayesian 
clustering mode. The subclones were compared using the 
density plot of cancer cell fractions. EGFR L858R+T790M 
mutation was detected in two patients with NSCLC in our 
study, in which L858R was demonstrated as the major 
subclone and T790M as the minor subclone. The above 
results were consistent with previous report that T790M 
mutation was detected as a “second-site mutation” in 
EGFR-mutated lung cancers, which is prone to acquire 
resistance to erlotinib or gefitinib [22, 23].

Moreover, in our study, we further studied the 
influence of formalin-fixed conditioning of tumor tissues on 
NGS data. Weyn et al. reported the significant association 
between the storage of the FFPE blocks and the result 
quality that lower DNA quality and a high number of false 
mutations were observed in tumor tissue samples older than 
4 years [20]. It was accepted that the storage period of the 
FFPE blocks significantly influenced the integrity of DNA 
samples and efficiency of PCR amplification in NGS [21]. 
Furthermore, Ivanov et al. reported that lower concentration 
of pre-normalization libraries in FFPE samples dramatically 
increased the number of sequence artifacts after NGS [22]. 
Accordingly, we also found more variants in formalin-fixed 
tumor tissues, and most of them were C > T mutations 
with low frequency, which was significantly consistent 
with a previous report stating that more potential artifacts 
occurred in FFPE tumor tissues than in fresh tissues [19]. 
To eliminate the contamination of false mutations, we 
conducted gene screening filtered by IntOGen cancer 
drivers database, dbSNP 147, and ClinVar database, which 
excluded commonly reported germline mutations and FFPE 
artifacts before the subsequently clinical–pathological 
analysis. However, we did not find significant correlation 
between archival age of FFPE samples and mutation 
numbers in our study (p = 0.813). This might be derived 
from short storage time of in-house FFPE samples, which 
are less than 4 years.

We further studied the correlation between the 
proportions of C:G>T:A mutations and archival age of 
FFPE samples. FFPE samples in our study were divided into 
two groups using the median archival age of FFPE samples 
(30.5days) as cutoff. There was no significant difference in 
the proportions of C:G>T:A mutations between two groups. 
But when we conducted the Spearman correlation analysis 
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on the archival age of FFPE samples and the proportions 
of C:G>T:A mutations, we found a trend of increased 
proportions of C:G>T:A mutations in FFPE samples of 
longer archival age with a marginal significance (p = 0.145). 
Therefore, the mutation signature analysis might help to 
evaluate the negative influence of archival age of FFPE 
samples on NGS since the FFPE-associated false positives 
have specific sequence contexts.

TSACP-based target NGS can provide high 
efficiency in detecting low-frequency drug-sensitive 
genetic mutations in advanced patients who might be 
beneficial from the target therapies. The typical case 
was listed below. A 53-year-old male IV-stage NSCLC 
patient pleural fluid was sequenced by NGS; EGFR 19 
exon deletions and EGFR T790M were both detected, 
and their variant frequencies were 15.66% and 4.58% 
covered, respectively, at around 2000× sequencing depth. 
The patient was treated with Afatinib for 1 month, and 
the tumors shrunk at least 10%. The clinical symptoms 
were relieved accordingly. In this case, the EGFR T790M 
mutation was of low frequency, which can be only 
detected at the sequencing depth of 2000×, in comparison 
with whole genome sequencing (Supplementary Figure 1).

In conclusion, our study demonstrated that tumor 
genetic profiling varied significantly among different 
tumor and sample types. However, Co-SM in multiple 
driver genes with different modes of action were 
frequently detected in solid tumor tissues and correlated 
with lymph node metastasis, pathological typing, and 
clinical response in NSCLC. The coordinating network 
among driver genes is playing more vital roles in 
carcinogenesis than individual driver genes. However, 
enlarging the sample size of this study will provide more 
evidences to elucidate further the interaction among 
multiple genes during carcinogenesis and progression.

MATERIALS AND METHODS

Clinical samples

A total of 165 solid malignancy samples, including 
103 NSCLC, 23 CRC, 15 PsC, 6 HC, 4 ovarian cancer (OC), 
4 melanoma (MA), 4 pancreatic cancer (PcC), 3 GC, and 3 
sarcoma, were collected from the Department of Pathology 
of Tianjin Medical University Cancer Institute & Hospital 
(TMUCH) between August 2013 to January 2016. Among 
them, 51 were surgically resected tumor samples, 72 were 
puncture biopsy tumor samples, 18 were pleural effusion 
samples, and 24 were FFPE tumor samples. All samples had 
a minimum tumor content of 70%, and the detectable levels 
of tumor cells in pleural fluid were independently assessed 
by two experienced pathologists at TMUCH. This project 
was approved by the Ethics Committee of Tianjin Medical 
University. All experiments were performed in accordance 
with the principles of the Declaration of Helsinki. Written 
consents were obtained from each patient.

Library construction and amplicon-based target 
NGS

For fresh tumor tissues, such as surgically resected 
tumor samples, puncture biopsy tumor samples, and 
pleural effusion samples, genomic DNA was extracted 
using the QIAamp DNA Mini Kit (Qiagen, Hilden, 
Germany). For FFPE tissues, genomic DNA was extracted 
using QIAamp FFPE DNA Tissue Kit (Qiagen, Hilden, 
Germany). Sequencing libraries were generated using 
TSACP (Illumina, San Diego, CA, USA), a previously 
validated targeted gene panel covers mutational hotspots 
in 48 cancer-related genes based on amplicons sequencing, 
which consists of 212 pairs of probes designed to bind 
genomic target sequences of interest spanning more than 
35 kb length of genomic DNA [24–26]. Sequencing was 
performed on a MiSeq sequencer with paired-end reads 
(MiSeq Reagent Nano Kit v2, 300 cycles). The designed 
average sequencing depth was ×2000.

Variant calling and bioinformatics analyses

The generation of FASTQ files from raw read 
data was accomplished with MiSeq Reporter Software 
2.6 (Illumina). The alignment of paired-end raw reads 
to the human hg19 genome assembly was performed 
using BWA aligner 0.7.15. The Somatic Variant Caller 
Algorithm Version 3.1.10.0 (Illumina) was used for 
variant identification from aligned reads, and the coverage 
analysis was performed in parallel with Samtools 1.3.1. 
Variants were annotated by ANNOVAR (2016Feb01) with 
dbSNP release 147. Nonprotein-coding region variants 
and synonymous variants were excluded in this study. 
Variants with allele frequency lower than 3% were filtered 
out, which were considered low-quality data based on our 
previous study. Somatic driver mutations were identified 
using several databases, which are IntOGen, dbSNP 
release 147, and ClinVar databases. A-driver genes and 
LF-driver genes were classified using IntOGen cancer 
driver database provided data The Integrative Genomics 
Viewer 16 (Broad Institute, Cambridge, Massachusetts) 
was used to visualize variants against the reference 
genome. VarScan2 mutation calling pipeline was used 
for validation to avoid false positives. TCGA data were 
obtained from official website. TCGA mutations data 
among the 48 genes used in TSACP were picked and then 
filtered with IntOGen, dbSNP release 147, and ClinVar 
database the same way as TSACP data. Clonality analysis 
was performed using PyClone.

Statistical analysis

The SPSS 19.0 software was used for statistical 
analyses. Descriptive statistics calculated the median 
values and ranges of the variant number. Nonparametric 
tests were used to compare the distribution of variant 
number in different tumor and sample types, in which 
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Kruskal–Wallis test was followed by all pairwise multiple 
comparisons. Chi-squared or Fisher’s exact test was used 
to compare variant numbers among groups with different 
clinical and pathological characteristics. All tests were two 
tailed, and p ≤ 0.05 was considered statistically significant.
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