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ABSTRACT
Tumor glucose metabolism and amino acid metabolism are usually enhanced, 

18F-FDG for tumor glucose metabolism PET imaging has been clinically well known, 
but tumor amino acid metabolism PET imaging is not clinically familiar. Radiolabeled 
amino acids (AAs) are an important class of PET/CT tracers that target the upregulated 
amino acid transporters to show elevated amino acid metabolism in tumor cells. 
Radiolabeled amino acids were observed to have high uptake in tumor cells but low 
in normal tissues and inflammatory tissues. The radionuclides used in labeling amino 
acids include 15O, 13N, 11C, 123I, 18F and 68Ga, among which the most commonly used is 
18F [1]. Available data support the use of certain 18F-labeled AAs for PET/CT imaging 
of gliomas, neuroendocrine tumors, prostate cancer and breast cancer [2, 3]. With the 
progress of the method of 18F labeling AAs [4–6], 18F-labeled AAs are well established 
for tumor PET/CT imaging. This review focuses on the current status of key clinical 
applications of 18F-labeled AAs in tumor PET/CT imaging. 

INTRODUCTION

The clinical applications of tumor PET imaging 
are very extensive, including diagnosis, confirming status 
of lymph node and distant metastasis, and evaluating of 
curative effect. 18F-labeled AAs have been used for tumor 
PET imaging for decades, these are an important class 
of PET imaging agents that target the increased levels 
of AA transport by many types of tumor cells. System 
L AA transporter has been a major focus of imaging 
agents development, and work in this field has led to 
several 18F-labeled AAs as PET tracers, such as 18F-FET, 
18F-FDOPA, 18F-D-FMT, 18F-FAMT, 18F-OMFD, and 
18F-FACBC. Recently, emerging 18F-labeled AAs have 
been developed that target system A, xCT, glutamine, and 
cationic amino acid transporters [7]. So far, the main clinical 
applications of 18F-labeled AAs are gliomas, neuroendocrine 
tumors, prostate cancer and breast cancer PET/CT imaging. 

Mechanism of amino acid metabolism for tumor 
PET imaging 

Certain AA transporters, particularly LAT1 and 
ASCT2 [8–10], are upregulated in a wide range of 
different types of tumors, there is growing evidence that 
some AA transporters and their substrates interact with the 
mammalian target of rapamycin (mTOR) pathway, which 
regulates cell proliferation and protein synthesis [11, 12]. 
These upregulated AA transporters increase much more 
amino acid uptake of tumors. 18F-labeled amino acids 
are an important class of tumor imaging agents suitable 
for PET/CT. PET is a kind of radiotracer-based imaging 
method, which can provide unique, noninvasive molecular 
and functional information about tumor biology that 
complements more anatomically based modalities, such 
as magnetic resonance imaging (MRI) and computed 
tomography (CT). 18F-labeled AAs detect increased tumor 
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amino acid metabolism levels by targeting upregulated 
AA transporters in PET imaging, the key of that is the 
amino acid transport system [1, 2, 13, 14]. Amino acids 
enter cells through membrane-associated transporter, 
and more than 20 amino acid transporters have been 
discovered in mammalian cells [15–18]. According to the 
need for sodium ions, amino acid transport system can be 
divided into the following two categories [10, 19–21]: (1) 
Na+-dependent amino acid transport systems, including 
system ASC (alanine-serine-cysteine preferred), system 
A (alanine preferred), system N (glutamine, aspartic acid 
and histidine preferred), X- AG(transport L-glutamic 
acid, D-/L-aspartic acid) and B0+(transport neutral and 
basic amino acids); (2) Na+-undependent amino acid 
transport systems, including system L (leucine preferred), 
y+ (CAT) (selectively transport basic amino acids), y+L 
(transport neutral and basic amino acids), b0+ (transport 
neutral and basic amino acids) and X- C (transport cystine 
and glutamic acid). The system A, system L and system 
ASC are the most common amino acid transport systems  
[16, 22–26]. 

PET tracers based on 18F-labeled amino acids

18F-labeled amino acids are an class of the most 
commonly used tracers for tumor PET imaging, the ideal 
PET tracers based on 18F-labeled AAs should conform to 
the following conditions: (1) can be quickly transported to 
the tumor cells, and have a high uptake rate and a certain 
retention time; (2) do not combine with non-protein and 
inflammatory tissue; (3) have a high plasma clearance rate; 
(4) have a better blood-brain barrier permeability for the 
brain tumors; (5) have a relatively simple and practical 
labeling method [18, 27]. At present, clinical commonly 
used 18F-labeled amino acids are basically in line with the 
above conditions, these are listed in Table 1.

Clinical applications of 18F-labeled amino acids 
in tumor PET/CT imaging 

Gliomas

Gliomas are occurring in the neuroectodermal, are 
also known as neuroectodermal tumors or neuroepithelial 
tumors. Contrast-enhanced MRI plays a critical role in 
glioma imaging, including diagnosis, monitoring response 
to therapy, staging, and assessing for recurrence, but has 
limited accuracy for distinguishing between recurrence 
and radiation necrosis, and evaluating the nonenhancing 
portions of gliomas. The value of 18F-labeled AAs PET 
in delineating metabolic tumor volume, evaluating the 
tumor metabolic load and as a reference for treatment 
response is better than MRI. The metabolic information 
of 18F-FDG PET/CT has improved the diagnostic 
evaluation of a number of human malignancies [28–31]. 
However, 18F-FDG is limited by high uptake in normal 

brain, that interfere with the identification of glioma 
and normal brain. Two major advantages of 18F-labeled 
AAs for glioma imaging are their relatively low uptake 
and retention in normal brain and ability to visualize the 
entire glioma volume, compared with 18F-FDG PET/CT 
[7, 27, 32]. 18F-labeled AAs that useful for glioma PET/
CT imaging include 18F-FDOPA, 18F-OMFD, 18F-FET, 
18F-FAMT, 2-FTyr, 18F-BPA, 18F-FSPG and 18F-FGln, the 
most commonly used are 18F-FDOPA and 18F-FET. Both 
visual and semiquantitative indices of 18F-FDOPA PET 
detected glioblastoma recurrence with high accuracy and 
were predictive for PFS (progression-free survival) [33]. 
There was a study suggests that 18F-FET PET/CT adds 
valuable diagnostic information in brainstem and spinal 
cord glioma, particularly when the diagnostic information 
derived from MRI is equivocal [34]. A systematic 
review and meta-analysis indicates that 18F-FET PET/
CT demonstrated excellent performance for diagnosing 
primary brain tumors [35]. 18F-FET may also be used for 
distinguishing recurrent brain metastasis from radiation 
necrosis after radiation therapy [36], but additional data 
are needed in this field. 18F-FDOPA uptake on PET was 
associated with IDH (isocitrate dehydrogenase) mutation 
in newly diagnosed gliomas [37]. 18F-FDOPA PET/CT and 
fused 18F-FDOPA PET/MRI are also used for detecting 
striatal involvement in children with gliomas [38]. 18F-BPA 
(boron phenylalanine) is used for the tumor/ normal tissue 
ratio in boron neutron capture therapy of gliomas and 
other head and neck cancers [39–41]. 18F-FSPG was a 
novel PET radiopharmaceutical which demonstrated high 
uptake in intracranial malignancies studies of both small 
animal and human [42]. 18F-FGln showed high uptake 
in gliomas but low background brain uptake, facilitating 
clear tumor delineation [43–46].  

Neuroendocrine tumors

Neuroendocrine tumors (NETs) are a class 
of heterogeneous tumors that originate from 
peptidergic neurons and neuroendocrine cells, arise in 
different anatomic locations and are associated with 
symptoms resulting from the hormones or vasoactive 
peptides. Neuroendocrine tumors include carcinoid 
tumors, pheochromocytomas and paragangliomas, 
pancreatic islet cell tumors, medullary thyroid cancer, 
neuroblastoma, and small cell lung cancer [7, 47]. 
These tumors have been known as tumors with 
amine precursor uptake and decarboxylation (APUD)  
[48, 49]. APUD tumor cells can uptake and decarboxylate 
amine precursor such as 5-hydroxy-L-tryptophan (5-
HTP) and L-dihydroxyphenylalanine (L-DOPA) and 
pass through aromatic L-amino acid decarboxylase 
(AADC) to decarboxylate them to the corresponding 
5-hydroxy-L-tryptamine and dopamine. 18F-FDOPA 
has proved a valuable tool for the assessment of 
neuroendocrine tumors. 18F-FDOPA PET/CT is highly 
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sensitive in posttreatment evaluation of patients with 
pheochromocytomas and paragangliomas, and better 
than MRI and CT [50–52]. 18F-FDOPA is also suited 
for imaging gastroenteropancreatic neuroendocrine 
tumors and neuroblastoma [53–56]. 18F-FDOPA PET/
CT detected more positive body regions and lesions of 
carcinoid tumors than the combination of CT and SRS 
[55, 57–61]. 18F-FDOPA may play a potentially useful 
role in medullary thyroid cancer PET imaging as a better 
or at least complementary model [55, 62, 63]. However, 
for pancreatic islet cell tumors, the 18F-FDOPA PET is not 
significant [55, 64–66]. 

Prostate cancer

According to the WHO global tumor epidemiology 
statistics (GLOBOCAN 2008), prostate cancer in 2008 
ranked second in global male malignancy incidence 
(second only to lung cancer), accounting for 14% of all 
men with cancer [67]. CT and MR imaging has limited 
accuracy to detect the primary tumor and regional lymph 
node metastases. Typically, prostate cancer has a lower 
18F-FDG uptake rate. Recent studies with 18F-FACBC 
and 18F-FACPC have shown that these 18F-labeled AA 
tracers can accurately detect tumor and regional lymph 
node metastases with better specificity and sensitivity  
[7, 68, 69]. Because 18F-FACBC is slowly excrete into the 
bladder, the background radioactivity in the pelvic cavity is 
low, and the tumor and lymph node metastasis of primary 
and recurrent prostate cancer can be clearly visualized 

[70]. In addition, there were studies show that 18F-FACBC 
was superior in detecting prostate cancer recurrence in 
patients with recurrent prostate cancer compared with 
111In-capromab or 11C-choline [71–74]. Since the half-life 
of 11C is only 20.3 minutes, the use of 11C-choline PET is 
limited in institute with on-site cyclotron. Furthermore, in 
the case of natural amino acids such as L-11C-methionine 
(MET), rapid metabolism usually produces radiolabeled 
metabolites, which can confuse kinetic analysis and reduce 
image quality [75, 76]. 18F-FACBC could be considered 
an alternative tracer superior to 11C-choline in the setting 
of patients with biochemical recurrence after radical 
prostatectomy [71, 77–80]. 18F-fluciclovine PET/CT is 
also used for distinguishing between prostate tumours and 
benign tissue and for assessment of tumour aggressiveness 
[81]. A study of 18F-FACBC PET/CT used in the planning 
of radiation therapy for prostate cancer patients has also 
been reported [82].

Breast cancer

Recent studies [83–85] have shown that 
18F-fluciclovine that is a leucine analog radioactive tracer 
can also be used for breast cancer PET/CT imaging. 
18F-fluciclovine PET/CT visualizes malignant tumors 
including invasive lobular breast cancer (ILC) and invasive 
ductal breast cancer (IDC). In primary and metastatic 
breast cancers, 18F-fluciclovine uptake was significantly 
higher than benign breast lesions and normal breast 
tissue. Changes in 18F-fluciclovine avidity were strongly 

Table 1: Clinical applications of 18F-labeled amino acids
Abbreviation Full name of tracers Transport system Clinical applications

18F-FDOPA L-3,4-dihydroxy-6-18F-fluoro-
phenylalanine

System L and Amino 
acid decarboxylase

Brain tumors and Neuroendocrine 
tumors

18F-OMFD 3-O-methyl-6-18F-fluoro-L-3,4-
dihydroxyphenylalanine

System L Brain tumors

18F-FET O-(2-18F-fluoroethyl)-L-tyrosine System L Brain tumors
18F-FAMT L-3-18F-fluoro-alpha-methyl 

tyrosine
System L Brain tumors, Oral cavity cancer and 

Non-small cell lung cancer
2-FTyr 2-18F-fluoro-L-tyrosine System L Brain tumors
18F-FGln 4-18F-(2S,4R)-fluoro-glutamine System L and ASCT2 Brain tumors and Breast cancer
18F-D-FMT O-18F-fluoromethyl-D-tyrosine System L Non-small cell lung cancer
18F-FSPG (BAY 
94-9392)

(4S)-4-(3-18F-fluoropropyl)-L-
glutamate

System XC
- Brain tumors, Lung cancer and Liver 

cancer
18F-FASu 18F-5-fluoroaminosuberic acid System XC

- Breast cancer
18F-FACBC anti-1-amino-3-18F-

fluorocyclobutane-1-carboxylic acid
System L and ASCT2 Prostate cancer and Breast cancer

18F-FACPC anti-1-amino-2-18F-
fluorocyclopentane-1-carboxylic 
acid

System L and ASCT2 Prostate cancer

18F-Cis-FPro cis-4-18F-fluoro-L-proline System A and B0,+ Urinary system tumors
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associated with a reduction in the percentage of tumor on 
pathology caused by treatment [3]. In addition to detecting 
and locating breast cancer, 18F-fluciclovine may provide a 
new tool for the exploration of amino acid transport and 
metabolism in breast cancer. 18F-fluciclovine also detected 
lymph nodes and bone metastases, but liver metastases 
were less effective due to the high physiological uptake 
of the tracer in liver parenchyma. The highest uptake 
of 18F-fluciclovine appears in Nottingham grade 3 
cancers and triple-negative breast cancers, suggesting 
that 18F-fluciclovine may play a role in identifying more 
aggressive malignancies [83–85]. 18F-FASu may serve as a 
valuable target for the diagnosis and treatment monitoring 
of certain breast cancers and may provide more sensitive 
detection than 18F-FDG in certain tumors [86, 87]. 
18F-FGln PET could be used to track cellular glutamine 
pool size of triple-negative breast cancers [88]. 

CONCLUSIONS

18F-labeled amino acids have been developed 
for preclinical and clinical tumor PET/CT imaging. 
18F-FDOPA and 18F-FET are well established for diagnosis, 
monitoring response to therapy, staging, and assessing for 
recurrence of gliomas. 18F-FDOPA has proved a valuable 
tool for the assessment of neuroendocrine tumors. It is 
highly sensitive in posttreatment evaluation of patients 
with pheochromocytomas and paragangliomas, and 
suited for imaging gastroenteropancreatic neuroendocrine 
tumors and neuroblastoma. Studies with 18F-FACBC and 
18F-FACPC have shown that these 18F-labeled AA tracers 
can accurately detect tumor and regional lymph node 
metastases of prostate cancer with better specificity and 
sensitivity. 18F-fluciclovine used in breast cancer PET/
CT imaging have been reported. 18F-fluciclovine PET/
CT visualizes malignant tumors including invasive 
lobular breast cancer (ILC) and invasive ductal breast 
cancer (IDC). In primary and metastatic breast cancers, 
18F-fluciclovine uptake was significantly higher than 
benign breast lesions and normal breast tissue. In 
the future, we have some innovative and interesting 
18F-labeled amino acid anologues available, such as 
18F-BAAs (boramino acids), which demonstrated 
distinctly high AA transporter-mediated tumor uptake 
and rapid clearance from normal organs and tissues 
[7]. However, the role of 18F-labeled amino acids PET 
will be limited to diagnostic imaging only. In the era of 
theranostic medicine, the peptide-receptor imaging and 
further peptide-receptor radionuclide therapy (PRRT) are 
emerging for somatostatin-related neuroendocrine tumors 
and prostate cancers, for example, DOTA-TOC and 
DOTATATE PET/CT [89–93]. 
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