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ABSTRACT
The concept of macrophage polarization is defined in terms of macrophage 

phenotypic heterogeneity and functional diversity. Cytokines signals are thought to be 
required for the polarization of macrophage populations toward different phenotypes 
at different stages in development, homeostasis and disease. The suppressors of 
cytokine signaling family of proteins contribute to the magnitude and duration of 
cytokines signaling, which ultimately control the subtle adjustment of the balance 
between divergent macrophage phenotypes. This review highlights the specific roles 
and mechanisms of various cytokines family and their negative regulators link to the 
macrophage polarization programs. Eventually, breakthrough in the identification of 
these molecules will provide the novel therapeutic approaches for a host of diseases 
by targeting macrophage phenotypic shift.

INTRODUCTION

Cytokines profiles are now well-defined in 
the pathophysiology of multiple diseases mainly by 
influencing the growth, proliferation, differentiation of 
a variety of cell types [1]. Theses cytokines signaling 
pathways are triggered as a consequence of enhanced 
interaction of cytokines with their specific cell surface 
receptors, which leads to the activation of intracellular 
molecules, such as Janus kinases (JAKs) and signal 
transducers and activators of transcription (STATs)  
[2, 3]. Studies have reported that macrophages are 
important immune cells and function as the direct target of 
some cytokines, which might contribute to the pathogenesis 
of many diseases [4, 5]. Monocyte-macrophage lineage 
has long been recognized as heterogeneous cell type that 
could undergo a continuum from M1 to M2 activation 
states depending on the microenvironment signals [6, 7]. 
The M1/M2 subpopulation represents the dynamic shift 
between inflammatory and reparative macrophages, which 
significantly contribute to either beneficial or detrimental 

effects in different diseases  [8, 9]. As expected, these 
distinct and opposing subsets are often exposed to the 
various cytokines stimuli, for example interleukins (ILs), 
interferons (IFNs) and growth factors [10–12]. 

In response to pathogens or injury, cytokines and 
intracellular signaling pathways may promote the M1/M2 
macrophage polarization in cancer and other disorders 
[13–15]. Suppressors of cytokine signaling (SOCS) 
proteins act as inducible negative feedback regulators of 
cytokine signaling by a generic mechanism of targeting 
associated proteins for degradation [16, 17]. Profound new 
discoveries have showed that the disparate SOCS family 
molecules may serve as the molecular switch that controls 
immune activation/suppression and M1/M2 macrophage 
polarization [18, 19]. Herein, this review provides an 
overview of the emerging roles and mechanisms of 
SOCS proteins in cytokines-induced M1/M2 macrophage 
polarization. Taken together, an updated understanding of 
the fate of SOCS-directed macrophage polarization and 
function could guide the development of novel therapeutic 
targets for various diseases.

                                                                      Review
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THE CLASSIFICATION, STRUCTURE, AND 
ACTION MECHANISM OF SOCS FAMILY 
OF PROTEINS 

At present, the mammalian SOCS family of proteins 
is believed to consist of eight members: SOCS1-7 and the 
alternatively named cytokine-inducible Src homology 2 
(SH2)-containing protein (CIS) [20, 21]. The SOCS/CIS 
family is a group of intracellular proteins, several of which 
downregulate cytokines signaling following cytokines 
engagement of their specific receptors complex through a 
negative feedback loop [22]. 

 Lines of evidence suggest that SOCS/CIS family 
negatively regulates the cytokines signaling is largely 
attributing to their domain structure characteristics 
[23]. Each SOCS protein shares a common modular 
organization that generally contains three differentially 
conserved domains: an amino (N)-terminal region of 
varied length and amino acid sequence (low conserved), 
a central SH2-domain (conserved) and a carboxy (C)-
terminal 40 amino acid module, e.g. SOCS box motif 
(highly conserved), which has been well-described in 
previously published literatures [24, 25]. Particularly, the 
SOCS3 and CIS-SH2 domains exist a 35-residue (PEST) 
(proline-, glutamicacid-, serine- and threonine-rich)-motif 
that inserted between the α β helix and the BG loop, 
which can affect the SOCS3 turnover and stability [26]. 
Another feature of the SOCS family is the extended SH2 
sequence called (ESS) that is important for the interaction 
with phosphotyrosine residues on the target protein [27]. 
There exists an amino acid sequence homology in pairs 
between all SOCS family members: CIS and SOCS2, 
SOCS1 and SOCS3, SOCS4 and SOCS5, and SOCS6 and 
SOCS7, which have marked pair-wise homology across 
the entire protein sequence [28, 29]. However, several 
important distinctions among different SOCS members are 
also unambiguous in view of firstly based on a short(CIS, 
SOCS1-3) or long, N-terminal region(SOCS4-7) and 
secondly, it is the former group, which are most clearly 
induced in response to cytokine signaling and act in a 
classical negative-feedback loop [30] (Figure 1).

There are mainly two kinds of action modes that 
are necessary for the proper regulatory functions of 
CIS-SOCS-family proteins. The first approach of all 
SOCS proteins to degrade the targets is dependent on 
the ubiquitin pathway [31]. The SOCS box interacts with 
elongin B and C, cullin-5 and RING-box-2 (RBX2) to 
recruit E2 ubiquitin transferase and E3 ubiquitin ligases 
complex. This could lead to the polyubiquitylation 
of bound signaling proteins, and their consequent 
proteasomal degradation, resulting in the termination of 
signaling [32, 33]. Second, both SOCS1 and SOCS3 can 
inhibit the catalytic-activity function of JAK tyrosine 
kinase by acting as a pseudosubstrate and competing with 
substrates through their SH2 domain and kinase inhibitory 
region (KIR), which locates N-terminal domain [34, 35] 

(Figure 1). Meanwhile, CIS and SOCS2 have been thought 
to act by competing with STAT proteins for binding to 
phosphorylated tyrosine residues within the receptor 
cytoplasmic domains [36]. In contrast, the functions and 
mechanisms of SOCS4-7 will be discussed later in this 
review (Figure 2). 

CYTOKINES SIGNALING AND 
MACROPHAGE POLARIZATION

Within differential cytokines microenvironment, 
macrophage could undergo polarization toward M1 or 
M2 phenotype. Though the mechanisms of cytokines 
signaling controlling macrophage polarization remain not 
fully clear, we discuss some recently important findings 
regarding the roles of cytokines signaling in the regulation 
of macrophage polarization.  

INTERLEUKINS (ILS) 

Interleukins (ILs) are a wide range of peptidic 
substances released by a variety of cell types in response 
to various inflammatory processes [37]. They are known 
as soluble factors and thought to have a critical role in 
the modulation of many immune pathways [38, 39]. 
Remarkably, it has now been approved that monocytes and 
macrophages M1/M2 phenotype formation required after 
the ILs stimulation.

It has been widely accepted that IL-4 or/and IL-13 
can stimulate the macrophage into the M2 subpopulation 
[10, 40]. IL-4Rα binding of IL-4 activates JAK1 and 
JAK3, which lead to the activation and translocation 
of STAT6 into nucleus where it binds to the promoter 
region of target M2 genes [41, 42]. IL-4-provoked M2 
functions are largely mediated by the activation of IL-4/
STAT6 signaling pathway and enhanced Arg-1 production 
[43, 44]. Furthermore, IL-13 receptor alpha 1 (IL-13Rα1) 
specifically  heterodimerizes with the IL-4Rα chain to form 
a type II heteroreceptor, which is able to phosphorylate 
STAT6 efficiently and controls the differentiation and 
function of M2 macrophages [45, 46].Thus, utilizing an 
IL-4/STAT6-dependent mechanism to shift macrophage 
polarization to the M2/anti-inflammatory phenotype 
might ameliorate inflammatory and autoimmune diseases 
in clinical treatment. IL-5 activity inhibition may lead to 
the substantial reduction of IL-13-triggered M2 responses, 
which were associated with increased production of 
the cytokine IFN-γ [47]. Conversely, tumor associated 
macrophages (TAMs) from the STAT6-null mice showed a 
functional M1 phenotype upon activation as characterized 
by i.e. NO production, which firmly indicated that JAK1, 
3/STAT6 signaling pathway are essential for the M2 
activation [48, 49].  IL-4 in combination with IL-13 has 
been widely used as the inducers in vitro of skewing 
monocytes/macrophages into the M2 polarization. 
However, IL-4 and IL-13 signaling in monocytes/
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macrophages might differentially regulate the expression 
of several inflammatory genes starting from IL-4/IL-13 
cytokine receptors to ultimately control Jak/Stat-mediated 
signaling pathways [50]. IL-13 utilizes both IL-4Rα/
Jak2/Stat3 and IL-13Rα1/Tyk2/Stat1/Stat6 signaling 
pathways, while IL-4 can use only the IL-4Rα/Jak1/Stat3/
Stat6 cascade to promotethe expression of some critical 
inflammatory genes [51]. These conclusions provide novel 
insights into the mechanisms and functions of alternatively 
activated monocytes/macrophages stimulated by IL-4 and 
IL-13, which have important implications for the potential 
treatment of multiple inflammatory diseases. 

In addition, though IL-6 is commonly recognized 
as a pro-inflammatory mediator and is associated with 
the pathogenesis of many inflammatory processes, the 
pleiotrophic nature of IL-6 are also controversial [52, 53]. 

IL-6 is considered to assign an unexpected homeostatic 
role to limit inflammation and as an important inducer in 
promoting M2 polarization, which is mainly dependent on 
the upregulation of the IL-4Rα [54]. IL-6 could induce 
the expression of the receptor for IL-4 and augment the 
response to IL-4 in macrophages, but IL-6ra∆myel mice are 
resistant to IL-4-mediated M2 polarization and exhibit 
enhanced susceptibility to lipopolysaccharide (LPS)-
induced endotoxemia [55]. Besides, the anti-inflammatory 
cytokine IL-10 promotes M2 polarization through 
the induction of p50 NF-κB homodimer, c-Maf, and 
STAT3 activities [56]. On the contrary, the M1 subtype 
is a phenotype characterized by the marked increase in 
cytokines(IL-1β, IL-12) and decrease in cytokines(IL-4, 10 
and 13) [57, 58]. IL-12p40 and L-12p35 bind to IL-12Rβ1 
and β2, respectively, which results in transphosphorylation 

Figure 1: The classification and domain structure of the SOCS protein family. All of the eight SOCS-family members have 
a central SH2 domain,an amino-terminal domain of variable length and a 40-amino-acid motif at the carboxy terminus that is known as 
the SOCS box. Although there is sequence homology between all family members-particularly in the SOCS box and SH2 domain-CIS 
and SOCS2, SOCS1 and SOCS3, SOCS4 and SOCS5, and SOCS6 and SOCS7 have marked pair-wise homology across the entire protein 
sequence, as indicated. In SOCS1 and SOCS3, a kinase-inhibitory region (K) adjacent to the SH2 domain that is required for high-affinity 
binding to Jaks and the inhibition of kinase activity has also been defined. The alternative nomenclature for each SOCS protein is given in 
parentheses. CIS, cytokine-induced SH2 protein; JAB, Janus kinase(Jak)-binding protein; NAP4, Nck, Ash and phospholipase-C binding 
protein; SH2, SRC-homology 2; SOCS, suppressor of cytokine signalling; SSI, Stat-induced Stat inhibitor; Stat, signal transducer and 
activator of transcription.
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of associated JAKs (JAK2 and TYK2) and then leads the 
activation and translocation of STAT4 into nucleus where 
they bind to STAT binding sites in the IFN-γ promoter 
of targeting M1 genes [59]. In conclusion, different 
STATs seem to be pivotal factors and relevant to the in 
M1/ M2 balance (Figure 3).

OTHER CYTOKINES 

Chemokines are a superfamily of small proteins 
with a crucial role in the polarized immune responses [60]. 
Particularly, chemokines and their receptors are able to 
trigger the differentiation and activation of mononuclear 
phagocytes by influencing the expression of functionally 
relevant and polarization-associated genes [61]. The 
crosstalk between chemokines and other cytokines has been 
reported to play critical roles in macrophage polarization. 
For example, CCL2 and IL-6 were found to contribute to 
the survival of CD11b+ myeloid monocytes recruited to the 

tumor microenvironment and skew the phenotype toward 
tumor-promoting CD14+/CD206+ M2-type macrophages 
[62]. CCL2-CCR2 axis was found to down-regulate the 
extent of pro-inflammatory M1 polarization by influencing 
the polarization-associated genes, including TNF-α, IL-6, 
granulocyte macrophage colony-stimulating factor (GM-
CSF) and macrophage colony-stimulating factor (M-CSF) 
[63, 64]. GM-CSF and M-CSF are commonly recognized 
as critical factors controlling the M1 and M2 polarization, 
respectively [65]. GM-CSF favors the M1 phenotype 
through the activation of Jak2-STAT5 signalling [66], 
but M-CSF-dependent M2 phenotype is largely skewed 
by the activation of STAT3 [67]. Moreover, activin A 
preferentially released by M1 (GM-CSF) macrophages, 
and activin A-initiated Smad2 and prolyl hydroxylase 
PHD3 signaling both skew macrophage polarization 
toward the acquisition of a proinflammatory phenotype 
[68, 69]. Investigation of GM-CSF knockout alveolar 
macrophages (AMs) revealed intrinsic overexpression of 

Figure 2: Negative-feedback loop regulation of cytokines signaling by SOCS proteins. Cytokine stimulation activates the 
Jak-Stat pathway, leading to the induction of CIS, SOCS1 and SOCS3. CIS, SOCS1 and SOCS3 could inhibit signaling by different 
mechanisms: SOCS1 binds to the JAKs and inhibits catalytic activity; SOCS3 binds to JAK-proximal sites on cytokine receptors and 
inhibits JAK activity; and CIS blocks the binding of Stats to cytokine receptors. Both SOCS1 and SOCS3 contain a kinase inhibitory region 
(KIR) for the suppression of Jak tyrosine kinase activity.
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IFN-γ, a potent inducer of the M1 phenotype, which as 
a causative factor for activin A, iNOS, CCL5, and IL-6 
upregulation [70]. Examination of M2 markers in GM-CSF 
knockout mice are also simultaneously elevated, suggesting 
a unique mix of M1-M2 macrophage phenotypes in GM-
CSF knockout mice. Besides, TGF-β is believed to control 
the M2-like polarization in part through the activation of 
Jak-STAT signaling [71]. Apparently, the activation of 
various cytokines signaling has been shown to act as the 
critical modulator of macrophage polarization based on the 
aforementioned researches. Thus, the molecules that could 
switch M1/M2 polarization derived from the cytokines 
signaling might provide a basis for macrophage-centered 
therapeutic strategies.

SOCS PROTEINS FAMILY AND 
MACROPHAGE POLARIZATION

SOCS1 

SOCS1 is one of the best-studied SOCS proteins and 
is initially reported as a molecule induced by STATs [34, 
72].The expression of SOCS1 has now been confirmed 

to be induced by diverse cytokines, including insulin and 
LPS [73]. It is a well-known negative regulator of JAKs-
STATs by accessing the activation loop of JAKs with its 
KIR domain and these effects are associated with  the 
attenuated signaling of LPS, IFN-γ and IL-4 in many 
diseases [74–76]. 

SOCS1 has been reported to exert a significant 
role in the regulation of macrophage polarization and 
function [77, 78]. Macrophage phenotypes alterations 
have been shown to be influenced by the epigenetic 
mechanism by which SOCS1 plays as a capacitor 
for M1/M2 polarization. Upregulation of DNA 
methyltransferases1 (DNMT1) appears to be linked with 
the SOCS1 hypermethylation, which lead to the activation 
of JAK2/STAT3 pathway and the releasement of LPS-
induced pro-inflammatory cytokines(TNF-α, IL-6) in 
macrophages [79, 80]. This result indicated that loss of 
SOCS1 expression might direct the pro-inflammatory 
M1 effect of macrophage by activating the JAK/STAT 
pathway. In addition, microRNAs (miRs) were also 
shown to play pivotal roles in the SOCS1 function. 
MicroRNA-155 (miR155) as a pro-inflammatory regulator 
could enhance macrophage inflammatory responses by 

Figure 3: Different cytokines stimuli direct the effects of M1- and M2-like polarization. Here, we summarize key signaling 
mediators and receptors in common and distinct pathways. (A) IL-4-stimulated Stat6 activation is mediated by Jak1, which is required 
for M2-like polarization. (B) IL-6-treated macrophage polarization is induced by the activation of Jak2/Stat3 signaling pathway. (C) Jak2 
and Tyk2 are required for Stat3 activation in IL-10-dependent M2-like polarization. (D) Jak2 controls Stat4 activation in IL-12-treated 
monocytes, which could induce M1-like polarization. (E) Jak2 and Tyk2 are the upstream regulators of Stat3 and Stat6 activation in IL-13-
stimulated monocytes, which eventually induce the M2-like polarization.
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targeting and degrading SOCS-1 [81, 82]. RNA virus 
infection induces miR-155 expression in macrophages 
via TLR/MyD88-independent and the inducible miR-
155 feedback positively regulates host antiviral innate 
immune response by promoting type I IFN signaling 
via targeting SOCS1 [83, 84]. In human macrophages, 
miR-155 directly targets IL13Rα1 and reduces the levels 
of IL13Rα1 protein, leading to diminished activation of 
STAT6. MiR-155 affects the IL-13-dependent regulation 
of several genes (SOCS1, DC-SIGN, CCL18, CD23, 
and SERPINE) involved in the establishment of an M2/
pro-Th2 phenotype in macrophages [85]. Further studies 
showed that miR-155 might promote the inflammation 
in atherosclerosis (AS) via the SOCS1-STAT3-PDCD4 
axis, which increased the IL-6 and TNF-α expression 
in macrophages [86]. Thus we could find that miR-
155-mediated SOCS1 downregulation is extremely 
associated with M1 polarization. As expected, Ma et 
al suggested that resveratrol exerts anti-inflammatory 
effects due to the upregulation of SOCS1 in macrophages, 
which is a potential target of miR-155 [82]. In contrast, 
inhibiting the STAT1-miR-155-SOCS1 signaling axis 
might enhance the development of tumor-promoting 
M2 macrophages in colon cancer [87]. These findings 
thus reveal a novel role of miR-155-SOCS1 pathway in 
the balance between pro-inflammatory M1 macrophages 
and anti-inflammatory M2 macrophages during different 
kinds of diseases [86]. Additionally, upregulation of 
miR-142-5p and downregulation of miR-130a-3p in 
macrophages play a pivotal role in the profibrogenic M2 
effect of tissue fibrogenesis partially through targeting the 
SOCS1-STAT6 signaling [88]. SOCS1 is a key regulator 
of M1/M2 functions that coordinates with various cellular 
signaling pathways underlies the pathogenesis of many 
diseases, which could be developed as a useful therapy 
target (Figure 4).

SOCS3

SOCS3 protein is commonly known to serve 
as a negative regulator of STAT3, which is the key 
physiological regulator in immune homeostasis and 
diseases pathogenesis [89–91]. SOCS3 has been 
shown to be induced by a wide variety of the cytokines 
and growth factors, such as IL-1β, 2, 4 and M-CSF  
[92, 93]. Unlike its closest homologue, SOCS-3 molecules 
differ greatly in their mechanism of function of SOCS-1. 
SOCS1 can inhibit activation of JAK by directly binding 
to JAK, whereas SOCS-3 sufficiently inhibits the action 
of JAK only in the presence of receptors, such as gp130 
[94]. SOCS3 is a repressor of cytokine signaling which 
could inhibit the inflammatory genes expression in 
macrophages [95–97]. Recently, Sun et al investigated the 
anti-inflammatory effect of L. paracasei on the inhibition 
of TNF-α, IL-1β and IL-6 expressions by PBMC and 
THP-1 cell line owing to the expression of negative 

regulators of the NF-κB signaling pathway, including the 
SOCS1, SOCS3 [97]. Recombinant human IL-37 (rhIL-
37) has both preventive and therapeutic effects in gouty 
arthritis by enhancing the activation of SOCS3 to trigger 
multiple intracellular switches to block inflammation 
[98]. Of note, several reports are available for the roles of 
SOCS3 in modulating macrophages M1/M2 polarization 
governed by the transcriptional and post-transcriptional 
mechanisms [99–101]. For example, SOCS3-deficient 
macrophages exhibit heightened STAT3 activation and are 
polarized toward the M1 phenotype [102]. Intriguingly, 
M2 macrophage (expressing upregulated Arg-1 and 
SOCS3) could be switched from M1 through the 
apolipoprotein E (APOE) signaling via very-low-density 
lipoprotein receptor (VLDL-R) or APOE receptor-2 
(APOER2) [103]. These results collectively imply that 
SOCS3 is involved in repressing the M1 pro-inflammatory 
phenotype, thereby ameliorating inflammatory responses 
in macrophages [104]. SOCS3 is highly and preferentially 
expressed in hapten-induced contact hypersensitivity 
(CHS), which promotes the M2 polarization and 
participates the attenuation of CHS by suppressing 
MMP12 production [105]. Reprogramming macrophages 
to M2c subtype effectively suppressed the inflammation 
and fibroproliferarion in acute lung injury (ALI) partially 
mediated by activating the JAK1/STAT3/SOCS3 
signaling pathway due to the production of IL-10 [106]. 
Collectively, we concluded that STAT3 and SOCS3 
signaling are extremely required for the pro- and anti-
inflammatory effects of macrophages, respectively. 

There is also increasing evidence suggests that 
SOCS3 is involved in suppressing the M2 polarization 
and reciprocally promoting the M1 polarization. For 
example, macrophages lacking the SOCS3 gene or 
carrying a mutation of the SOCS3-binding site in gp130, 
the production of TNF and IL-12 is suppressed by 
the anti-inflammatory response originated from IL-6 
signaling [107]. The carbohydrate kinase-like protein 
(CARKL) is rapidly downregulated in vitro and in vivo 
upon LPS stimulation in both mice and humans and 
the CARKL-dependent metabolic reprogramming is 
required for proper M2 polarization, which is associated 
with enhanced STAT3 phosphorylation and decreased 
SOCS3 expression, without influencing SOCS1 levels 
[108]. Rat bone marrow-derived macrophages (BMDM) 
in incubation with IFN-γ and LPS suppressed SOCS1 
while uniquely polarizing macrophages to SOCS3 
expressing macrophages, which proposing that SOCS3 is 
essential for development of M1 macrophages. In contrast, 
knockdown of SOCS3 by siRNA had enhanced STAT3 
activity; induction of macrophage mannose receptor, Arg-
1 and SOCS1  [109]. Myeloid-restricted SOCS3 deletion 
(Socs3Lyz2cre) resulted in resistance to LPS-induced 
endotoxic shock and observed striking bias toward M2 
macrophages in Socs3Lyz2cre mice, enhanced regulatory 
T (Treg) cell recruitment bySocs3Lyz2cre cells coincided 
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with enhanced interleukin-4 (IL-4) plus IL-13-induced 
STAT6 phosphorylation in Socs3Lyz2cre macrophages.
[110] Taken together, these observations strongly suggest 
that phenotypic and functional heterogeneity of SOCS3-
expressing macrophages within different diseases might 
be dependent on the specific local microenvironments. 
Finally, understanding how the M1/M2 polarization occurs 
in vivo, which is essential for designing pharmacologic 
and genetic approaches that employed to treat various 
diseases (Figure 4).

Other SOCS proteins 

The function as well as the mechanism of SOCS-
2 has been reported to be involved in the SHP2-binding 
site of activated growth hormone (GH) receptors, and 
it attenuates GH signaling by inhibiting the activation of 

JAK2 and STAT5b axis [111]. SOCS2 is considered as 
essential controller of macrophage activation and function. 
Genetic studies using transgenic approaches have shown 
that SOCS2 over-expressing transgenic (SOCS2Tg) mice 
showed functional improvement of anti-inflammatory 
response with the increased numbers of CD11b+CD206+ 

M2 macrophages than wildtype littermates following mild 
or moderately severe traumatic brain injury (TBI) [112]. As 
expected, M1 population was enriched in SOCS2(-/-) mice 
and the altered polarization coincided with enhanced IFN-
γ-induced STAT1 activation in SOCS2(-/-) macrophages 
[110]. Therefore, SCOS2 is known as the M2 marker and 
the mRNA levels are downregulated with increasing disease 
severity in isolated lesions of atherosclerotic disease [113]. 

Previous studies have supported that miRNAs are 
functionally involved in macrophage polarization and 
function by the translational repression mechanism [114]. 

Figure 4: Functions and molecular mechanisms of SOCS1, SOCS2 and SOCS3 are implicated in directing macrophage 
polarization. Firstly, SOCS1 suppresses Stat1 and stimulates the M2-type polarization which could be influenced by different molecular 
mechanisms. Particularly, Akt1 ablation might influence MiR-155 expression and promote the M1-like polarization by targeting and 
inhibiting SOCS1. Moreover, DNMT1-mediated the methylation of SOCS1 could influence the M2-like macrophage. Secondly, SOCS2 
knock out might stimulate M2-like polarization via the activation of Stat1. Thirdly, SOCS3 knock out could stimulate the M2- and M1-
like polarization via the activation of Stat6 and Stat3, respectively. However, there seems to be still elusive about the SOCS proteins in the 
regulation of macrophage polarization and the real situation is much more complicated. 
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Up-regulation of let-7b is characteristic of prostatic TAMs 
(Tumor-associated macrophages), which targeting of the 
SOCS4 3’ untranslated region and inhibition of SOCS4 
promoted phosphorylation of STAT3 and STAT6 [115]. 
Signal activation of Jak2/STAT3/STAT6 pathway could 
exert an impact on the M2 polarization [116]. Given 
the aforementioned observations, the detailed analysis 
of the mechanisms of SOCS4 underlying macrophages 
polarization merits consideration. In addition, SOCS5 was 
particularly suppressed in the M1-IFNγ status confirmed 
by the RNA-Seq Data with the genome-wide analysis 
of the expression of transcription factors (TFs) in SOCS 
families [117]. Of note, SOCS5 recently has been shown 
to contribute to M1 polarization by binding the IL-4Rα 
and blocking STAT6 phosphorylation [118, 119]. The 
role of SOCS6 and SOCS7 in M1/M2 polarization is still 
obscure. For example, miR-199a-3p accumulation was 
associated with the P53 induction in renal fibrosis and 
SOCS7 was identified as a target gene of miR-199a-3p. 
Silencing of SOCS7 promoted STAT3 activation and the 
infiltration of macrophage was suppressed in p53-KO 
mice [120]. These lesser-studied SOCS, such as SOCS6 
and SOCS7 may play a yet undefined role in macrophage 
polarization and is needed to be further investigated [121].

CONCLUDING  REMARKS

Altogether, M1/M2 subtypes  might appear to be 
indispensable for fine-tuning the host responses to the various 
pathogens in different diseases. An understanding of how to 
program the macrophage polarization process is a keystone 
of deciphering homeostasis and disease pathogenesis. 
heThese observations that SOCS proteins participate in 
directing the dynamics of macrophage polarization have 
drawn attention to SOCS-dependent macrophage functions 
as a potential therapeutic target. Collectively, more in-
depth analysis of how SOCS members operate the M1/M2 
polarization is vital for developing novel strategies in the 
antiviral, antibacterial and antitumor responses.
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