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ABSTRACT
Pseudogenes are initially regarded as non-functional genomic fossils resulted 

from inactivating gene mutations during evolution. Far from being silent, pseudogenes 
are proved to regulate the expression of protein-coding genes through function as 
microRNA sponge in vivo. The aim of our study was to propose an integrative systems 
biology approach to identify disease pseudogenes base on competitive endogenous 
RNA (ceRNA) hypothesis. Here, we applied our method to lung adenocarcinoma 
(LUAD) RNASeq data from TCGA and identified 33 candidate pseudogenes. We 
described the characteristics of the candidate pseudogenes and performed functional 
enrichment. Through analyzing neighboring genes we found these pseudogenes were 
surrounded by tumor genes and may involve in tumor pathway. Furthermore, the 
DNA methylation analysis indicated that 21 pseudogenes co-methylated with their 
competitive mRNAs. In the co-methylated network, we discovered 6 differentially 
expressed pseudogenes, which we termed potential LUAD-associated pseudogenes. 
We further revealed that the 3 ceRNA triples (miR-21-5p-NKAPP1-PRDM11, miR-
29c-3p-MSTO2P-EZH2 and miR-29c-3p-RPLP0P2-EZH2), whose high risk groups 
were associated with the poor prognosis of LUAD, may be considered as potential 
prognostic signatures. Moreover, by integrating target information of microRNA 
we also provided a new perspective for the discovery of potential small molecule 
drugs. This work may facilitate cancer research and serve as the basis for future 
efforts to understand the role of pseudogenes, develop novel biomarkers and improve 
knowledge of tumor biology.

INTRODUCTION

Pseudogenes, a sub-class of long non-coding RNAs 
(lncRNAs) that developed from protein-coding genes 
(PCGs) but have lost the ability to produce proteins, have 
long been described as non-functional genomic relicts 
of evolution [1]. However, it is becoming clear that 
some of pseudogenes have important regulatory roles in 
cells. Far from being silent, pseudogenes participate in 
various biological activities, including being a part in the 
transcription process [2], or participating in the formation 
of small interfering RNA (siRNA) which regulated 
gene expression through RNA-interference pathway 
[3, 4]. Several studies also implicate dysregulation of 

pseudogenes as contributing factor in human cancer, with 
early example such as KRASIP [5].

Notably, an increasing number of studies describe 
pseudogenes that act as critical effectors in cancer 
progression [6]. For example, NANOG and OCT4 are 
essential transcription factors for the maintenance of 
pluripotency in embryonic stem cells [7, 8], while their 
pseudogenes, NANOGP1 and POU5F1P1, are aberrantly 
expressed in human cancers [9]. Poliseno et al. had shown 
that the pseudogene PTENP1 regulated the expression 
of tumor suppressor PTEN through binding microRNA 
and took part in tumor biological processes [10]. More 
recently, Florian et al. had provided an evidence that the 
BRAF pseudogene acted as a competitive endogenous 
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RNA (ceRNA) and induced lymphoma in vivo [11]. 
These studies provide key insights into the potential 
role of pseudogenes in tumor biology. While intriguing, 
all of them are still limited in individual pseudogenes, 
and it is likely that more pseudogenes have roles in 
oncogenic programs. Therefore, it is essential to perform 
a systematic analysis across large patient sample cohorts 
to identify cancer-related pseudogenes. The idea was 
first explored in 13 cancer using RNA-Seq resource of 
293 samples, revealing associations between pseudogene 
expression and cancer progression [12]. However, though 
pseudogenes has been reported to act as microRNA 
sponges that compete with mRNAs to attract microRNAs 
for interactions and influence the expression of mRNAs 
[13], the biological characteristic and clinical relevance 
of pseudogenes that function as ceRNAs remain unclear.

In order to systematically describe cancer-related 
pseudogenes that act as ceRNAs, here, compared with 
previous studies that identified ceRNA pairs [14–16], 
we developed a computational framework and gradually 
identified LUAD-related pseudogenes. We first obtained 
the RNA-seq transcript data of LUAD that made 
available from TCGA and selected positive pseudogene-
mRNA interactions based on ceRNA hypothesis. These 
candidate pseudogenes were characterized in several 
ways, including transcript length, exon numbers, 
evolutionary conservation, neighboring gene analysis 
and co-methylation analysis. Then we inferred potential 
prognostic biomarker and small molecule drugs for 
LUAD treatment. Taken together, our study systematically 
characterized pseudogenes, provided a foundation 
for deeper understanding the role of LUAD-related 
pseudogenes and improved knowledge of tumor biology.

RESULTS

Identification of LUAD-related candidate 
pseudogenes that function as ceRNA

We constructed a framework to identify and analysis 
disease pseudogenes (Figure 1). First, we proposed a 
pipeline to gradually identify significant pseudogene-
microRNA-mRNA triples. After processing the 
RNASeqV2 data of 576 LUAD samples, we obtained 729 
pseudogenes and 16,610 mRNAs profiles respectively. 
Furthermore, based on the target information, we obtained 
434,691 pseudogene-microRNA-mRNA triples. The 
mRNAs and microRNAs in those triples were LUAD-
related which were selected from cancer databases. 
Recent studies had shown that the two microRNA sponges 
were more correlative with each other if they shared 
more microRNAs [14]. In order to identify candidate 
pseudogene-mRNA competing pairs, a hypergeometric 
test was used to compute the significance of shared 
microRNAs for each possible gene pair. All p-values 
were subject to FDR correction and 750 pseudogene-

mRNA pairs with FDR < 0.05 were remained for further 
analysis. Moreover, in order to reduce the false positive 
rate of result, all the candidate pseudogene-mRNA pairs 
with Pearson Correlation Coefficient (PCC) ≥ 0.259 
and p-adjusted < 0.05 were identified as ceRNA-ceRNA 
interactions. In total, 33 pseudogenes were identified as 
candidate LUAD-related genes (Supplementary Data 1). 
In addition, we found the mRNAs in candidate ceRNA 
pairs were enriched in several critical pathways, such as 
Jak-STAT signaling pathway, Adipocytokine signaling 
pathway, MicroRNA in cancer and One carbon pool by 
folate. These observations suggested that some of the 
candidate pseudogenes may be members of those signaling 
pathways and prompt cancer development.

Properties of candidate pseudogenes

We explored the transcript length and exon number 
of candidate pseudogenes, and compared these properties 
with all pseudogenes and lincRNAs. Transcripts for 
candidate pseudogenes were longer than those for all 
pseudogenes and lincRNAs were (Figure 2A, candidate 
pseudogenes versus all pseudogenes, p < 2.2e-16; 
candidate pseudogenes versus lincRNAs, p = 6.09e-06). 
Moreover, candidate pseudogenes had more exons per 
transcript than all pseudogenes and lincRNAs did (Figure 
2B, candidate pseudogenes versus all pseudogenes, p < 
2.2e-16; candidate pseudogenes versus lincRNAs, p = 
4.505e-12). Previous study pointed out that the lncRNAs 
with long transcripts and a large number of exons may 
be involved in the function as microRNA sponges in 
biological processes [17, 18]. These results suggested that 
the candidate pseudogenes may also function as ceRNA 
and have key functions in cancer. 

Candidate pseudogenes had high evolutionary 
conservation

Next, we evaluated the evolutionary conservation of 
candidate pseudogenes, all pseudogenes, lincRNAs, PCGs 
and neighboring PCGs respectively by using phastCons 
scores. The flanking PCGs within 500kb of pseudogenes 
were considered as neighboring PCGs. Our results 
showed that pseudogenes and lincRNAs exhibited poor 
evolutionary conservation relative to PCGs (Figure 3). We 
also found that all pseudogenes exhibited relatively higher 
evolutionary conservation than lincRNAs did (p < 2.2e-
16). It can be explained by the fact that most intergenic 
transcripts show little or no evolutionary conservation 
[19]. Especially, candidate pseudogenes had a remarkably 
higher conservation than all pseudogenes did (p < 2.2e-
16), perhaps because of its relatively high percentage of 
exons. The results indicated that the ceRNA pseudogenes 
may have important functions in biological process. 
Therefore, though losing the ability to produce proteins, 
it was still valuable to analyze the ceRNA pseudogenes.
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Neighboring PCGs analysis 

We next evaluated the potential roles of candidate 
pseudogenes in cancer. We calculated the PCC value 
between the candidate pseudogenes and their neighboring 
PCGs (Figure 4A and 4B). In network, the candidate 
pseudogenes were surrounded by disease-related genes. 
For example, MSTO2P was surrounded by 12 genes. 
LAMTOR2 complex regulated focal adhesion dynamics 
during cell migration [20] and CLK2 was proved to 
change in Alzheimer’s disease [21]. Furthermore, DAVID 
v6.8 was used to perform gene ontology (GO) terms 
and pathway enrichment for neighboring PCGs. The 
GO semantic annotation showed that neighboring PCGs 
were enriched in some functions that was related with 
development and progression of tumors such as autophagy 
and antigen processing (Figure 4C). The pathway 
enrichment of neighboring PCGs also revealed that they 

participated in cancer-related biology pathway such as 
viral carcinogenesis. The viral carcinogenesis pathway 
revealed the molecular mechanisms and the etiology of 
human disease [22], which may suggest that candidate 
pseudogenes were members of these pathway and affected 
the development and progression of cancer.

Construction of co-methylation network

Previous studies had demonstrated that DNA co-
methylation suggested functional associations between 
gene pairs in cancers [23]. To further explore the 
relationship between candidate pseudogenes and LUAD-
related mRNAs, we performed co-methylation analysis 
(Figure 5A). The co-methylated network contained 21 
pseudogenes and 22 mRNAs (p < 0.05, PCC ≥ 0.2), 
and it may reveal the functional association between 
pseudogenes and their target mRNAs. For example, altered 

Figure 1: Work flow.
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expression of EZH2 was proved to be associated with 
the risk of lung cancer [24]. In network, 4 pseudogenes 
(RRP7B, RPLP0P2, MSTO2P and AFG3L1P) co-
methylated with EZH2, suggesting an involvement in the 
progression of lung cancer. Pak6 protein kinase is a novel 
effector of an atypical Rho family GTPase Chp/RhoV [25]
and it co-methylated with pseudogene PLEKHM1P and 
RP11-480I12.5, indicating that the two pseudogenes may 
take part in cancer biological processes. In addition, 6 of 
the 21 pseudogenes were differentially-expressed (DE) 
genes (Supplementary Data 2). We further analyzed DNA 
methylation pattern of the 6 DE pseudogenes. The result 
showed that the methylation level of DE pseudogenes was 
lower than that of non-differentially expressed (NDE) 
pseudogenes (Figure 5B). Accumulating evidences 
indicated that hypomethylation was an important 
phenomenal characteristic. For example, a study proved 
that body-hypomethylated human genes were prone to 
cancer-associated dysregulation [26]. Therefore, it can 
be inferred that the DE pseudogenes played key roles 
in cancer processes and we selected them for further 
analysis. We also explored the methylation pattern of DE 
pseudogenes in tumor samples and normal samples, and 
the methylation level in normal samples was higher than 
that of tumor samples (Figure 5C).

Prognostic ceRNAs in LUAD

To explore the influence of the ceRNA triples 
on patient survival, we calculated the risk score for 

each pseudogene-microRNA-mRNA triple based on 
risk score of single factor regression analysis of each 
node, and divided patient samples into high-risk and 
low-risk groups by median, then drew Kaplan-Meier 
curves with R software. Cox p-value was used to 
evaluate the significance between expression of triples 
and overall survival. Log-Rank test p-value was used to 
test the significance between the two groups of patient 
samples. The result exhibited that the 3 triples (miR-
21-5p-NKAPP1-PRDM11, miR-29c-3p-MSTO2P-EZH2 
and miR-29c-3p-RPLP0P2-EZH2) were significantly 
associated with prognosis (p < 0.05, Figure 6). The 
high-risk group consisting of patients with high risk 
scores had lower survival time, which revealed that 
the high risk group was associated with the poor 
prognosis of LUAD. In addition, RPLP0P2 was proved 
to be associated with cell proliferation and adhesion in 
LUAD tumor cells [27]. It was suggested that the patient 
survival could be affected by the ceRNA pairs. These 
results indicated that the 3 ceRNA triples may serve as 
potential biomarkers of LUAD and contribute to the 
following treatment.

Potential small molecule drugs for LUAD 
treatment

In the pseudogene-microRNA-mRNA triples, the 
perturbation of microRNA expression can influence the 
expression level of pseudogenes and mRNAs. Moreover, 
several studies had verified that bioactive small molecules 

Figure 2: The properties of candidate pseudogenes. (A and B) The boxplot depicted the transcript length and exon number of 
genes respectively. 
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could regulated microRNA expression [28, 29]. Here, 
referring to a previous work [30], we combined the 
information that provided by SM2miR [31] with the 
module to infer potential small molecule drugs for LUAD 
treatment. In the triples, some of the potential drugs could 
up/down-regulate the microRNA expression and further 
down/up-regulate the expression of pseudogenes and 
contribute to the treatment of LUAD (The risk coefficient 
of miR-21was 0.382, so that we needed to down-regulate 
it; the risk coefficients of miR-29 were -0.303 and -0.381 
respectively, thus we needed to up-regulate them). In 
miR-21-5p-NKAPP1-PRDM11, 5-aza-2’-deoxycytidine 
(5-Aza-CdR) could down-regulate the miR-21, and up-

regulate the expression of corresponding pseudogene/
mRNA. It was proved to be a potent inhibitor of DNA 
methylation for therapy of advanced non-small cell lung 
cancer [32]. Triptolide, a natural diterpenoid compound, 
was proved to be an inhibitor of lung inflammation. In 
addition, for miR-29c-3p-RPLP0P2-EZH2/miR-29c-
3p-MSTO2P-EZH2 triples, Enoxacin can inhibit RNA 
helicase DHX9 in lung cancer and was an effective 
agent for lung cancer prevention and treatment [33]. 
Glucocorticoid could also up-regulate the expression of 
miR-29c and involve in important biological pathway 
[34] while it was not mentioned in LUAD. Therefore, we 
inferred that those small molecule drugs which regulated 

Figure 3: Evolutionary conservation analysis. Cumulative distribution of conservation scores of lincRNAs, pseudogenes, PCGs, 
candidate pseudogenes and neighboring PCGs. 
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the expression of microRNAs in ceRNA triples, may serve 
as potential drugs for LUAD treatment (Figure 7 and 
Supplementary Data 3).

DISCUSSION

Recently, pseudogenes have emerged as new 
players in tumor biology. However, the way of effectively 
identifying cancer-related pseudogenes that functions as 
ceRNA still remains unclear. Here, by establishing a novel 

computational framework we systematically explored the 
potential role of pseudogenes as microRNA sponges for 
LUAD. Notably, to ensure the accuracy of prediction power, 
positive pseudogene-mRNA interactions was identified 
by strict criteria: (i) both of the mRNA and microRNA in 
each triple must be verified by disease databases; (ii) each 
possible mRNA-pseudogene pair must significantly share 
common microRNAs which can interact with both of them 
(hypergeometric test, FDR < 0.05); (iii) only top correlated 
mRNA-pseudogene pairs, whose correlation coefficients 

Figure 4: Analysis of neighboring PCGs. (A) Cis-acting network (PCC ≥ 0.6). (B) Pie chart. The proportion of PCC value between 
pseudogenes and their neighboring genes. (C) GO enrichment and KEGG pathways (p < 0.05, FDR < 0.05). 

Figure 5: Co-methylation analysis. (A) Co-methylated network. (B) The boxplot depicted the methylation level between DE and 
NDE pseudogenes. (C) The boxplot depicted the methylation level between normal samples and tumor samples (7 differentially expressed 
pseudogenes).
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were higher than the threshold of the 90th percentile of 
the corresponding overall correlation distribution (PCC 
≥ 0.259), were regarded as candidate pseudogene-mRNA 
interactions. Moreover, DE analysis that has been used 
frequently in mRNA and microRNA research may not be 
suitable for identifying microRNA sponge interactions 
[35]. The reason is that the pseudogenes that are not DE 
may affect the amount of the microRNAs available for 
bindings [36]. Therefore, the DE analysis between normal 
samples and tumor samples of pseudogenes was performed 

after getting candidate pseudogenes. The candidate 
pseudogenes had relatively long transcripts and plenty of 
exons, suggesting they may have important functions. 
In addition, we observed that candidate pseudogenes had 
high evolutionary conservation, while previous studies had 
revealed that the evolutionary conservation of lncRNAs 
was poor [37]. It may suggest that ceRNA pseudogenes had 
highly evolutionary conservation and played important roles 
in biological progress. Although the existing classification of 
lncRNAs still faced with challenge [38], the above analysis 

Figure 6: Survival analysis of the ceRNA triples.
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suggested that pseudogenes may serve as an independent 
category because of the unique characteristic. Through 
neighboring PCGs analysis, we found candidate genes 
were surrounded by oncogenes, and they may be members 
of cancer pathways. Importantly, utilizing 450k DNA 
methylation data from TCGA, we found 21 pseudogenes co-
methylated with mRNAs and 6 of them were differentially-
expressed. We showed different methylation levels between 
DE and NDE pseudogenes in gene-body regions, which 
suggested methylation level may affect the expression 
of DE pseudogenes [39]. The 6 differentially-expressed 
pseudogenes co-expressed and co-methylated with 
experiment-validated LUAD-related mRNAs. Hence, we 
inferred they were potential LUAD-related pseudogenes. To 
infer clinical relevance of the LUAD-related pseudogenes, 
survival analysis was also taken into consideration. We 
found that the pseudogene RPLP0P2, one of the 6 potential 
LUAD-related genes, was reported to be associated with 
decreased cell proliferation and adhesion ability in LUAD 
[27, 40]. These analyses revealed that the 6 pseudogenes 
may be functional involved in tumorigenesis and implied a 
novel prognostic strategy for cancer treatment. At last, we 
provided a new perspective for the discovery of potential 
small molecule drugs and expected to find effective drugs 
for cancer treatment in the future.

In recent years, a growing body of studies has 
focused on functional pseudogenes that played critical 
roles in human diseases. For example, Zheng et al. 
analyzed the pseudogene CYP4Z2P based on ceRNA 
hypothesis in breast cancer [41]. However, cancer-
related pseudogenes may affect many genes in ceRNA 
network while they solely focus on single pseudogene 
or gene. Although the methods were all based on 
ceRNA hypothesis, our study had two advantages over 
them: (i) a strict computational pipeline was applied 
to identify candidate ceRNA pairs; (ii) the identified 
pseudogenes were differentially-expressed and co-
expressed/methylated with experiment-verified LUAD-
related gene. Certainly, as with any computational 
approach, our framework was limited by the quality and 
quantity of the input data. Further power is anticipated 
by including additional samples, complement of 
methylation probes, and better interaction networks. 
For example, since strict criteria were used in our study, 
few datasets was suitable for identifying cancer-related 
pseudogenes, which implies that our framework could 
be more accurate by the complement of data in the 
future. 

In summary, we provided a framework to identify 
cancer-related pseudogenes and integrate them with 

Figure 7: Potential small molecule drugs for LUAD treatment. The capsules represented experimental validation drugs and 
potential drug respectively. The nodes represented pseudogenes and LUAD-related mRNAs respectively.
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genomic analysis. These candidate cancer-related 
pseudogenes could be further evaluated as potential 
therapeutic targets.

MATERIALS AND METHODS

Expression profiles of pseudogene and mRNA in 
LUAD

The RNA-seq V2 data of LUAD patient samples 
was obtained from TCGA project (http://cancergenome.
nih.gov/) [42], including 517 tumor samples and 59 
adjacent normal samples (Supplementary Table 1). 
GENCODE hg19 genome was used as a reference. 
The reads were mapped to the exons of mRNAs and 
pseudogenes. The pseudogenes/mRNAs that overlapped 
with mRNAs/pseudogenes were excluded. RPKM value 
was calculated to evaluate the expression levels of 
pseudogene and mRNA: 

RPKM =109 C
NL

Where C is the number of mapped reads for 
pseudogene or mRNA, N is the number of total mapped 
reads, L is the length of the pseudogene or mRNA. To 
reduce false positive rate, pseudogenes or mRNAs with 
missing values in > 50% of the sample were removed 
[14]. Next, we added 0.00001 to the expression value of 
each gene and performed log2-transformed. In total, we 
obtained 729 pseudogenes and 16,610 mRNAs for further 
analysis.   

Argonaute CLIP-supported microRNA-target 
interactions

Recently, several studies have reported that the use 
of cross-linking and Argonaute (Ago) immunoprecipitation 
coupled with high-throughput sequencing (CLIP-Seq) 
could identify endogenous genome-wide interaction 
maps for microRNAs [43, 44]. To investigate human 
microRNA-target regulatory relationships, the Human 
microRNA-mRNA interactions were collected from five 
prediction programs including TargetScan [45], PicTar 
[46], PITA [47], miRanda [48] and RNA22 [49] in 
starBase v2.0 [50]. By integrating the above databases, 
a total of 423,405 non-redundant microRNA-mRNA 
interactions were used in our study. The microRNA-
pseudogene interactions were also collected from starBase 
v2.0, including 16,126 interactions pairs.

Collection of LUAD-associated mRNAs and 
microRNAs

Several database systems have proposed to provide 
a comprehensive resource of mRNAs and microRNAs 
dysregulation in various human diseases. LUAD-related 

mRNAs were collected from four databases, including 
COSMIC [51], OMIM [52], GAD [53] and Phenopedia-
Genopedia database [54]. In addition, experimentally 
verified LUAD-related microRNAs were obtained from 
HMDD [55], miR2Diease [56], miREnvironment [57] and 
OncomiRDB [58].

Identification of potential LUAD-related 
pseudogenes

Having got the Ago CLIP-supported mRNA-
microRNA and pseudogene-microRNA regulatory data, 
we performed a three-step pipeline to gradually identify 
LUAD-related pseudogenes that acted as microRNA 
sponges based on the ceRNA hypothesis. First, the 
pseudogene-microRNA-mRNA triples were obtained 
using predicted microRNA target information, in which 
all of the microRNAs and mRNAs were selected by 
disease database. Second, in order to identify competing 
pseudogene-mRNA interactions, a hypergeometric test 
was performed to evaluate the significance of shared 
microRNAs for each possible gene pair:
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Where N is the total number of microRNAs 
which were associated with pseudogene or mRNA, M 
is the number of microRNAs interacting with this given 
pseudogene, L is the number of microRNAs interacting 
with this given mRNA, and x is the number of microRNAs 
that interact with both of them, respectively. The p-value 
and FDR correction less than 0.05 were used as the 
threshold [59]. Finally, in order to reduce the false positive 
rate of result, the pseudogene-mRNA pairs that P < 0.05, 
PCC ≥ 0.259 (75 pairs, 10% top correlated pseudogene-
mRNA pairs, including 33 pseudogenes and 40 mRNAs) 
were considered to be potential pseudogene-mRNA 
interactions [16].

Evolutionary conservation analysis

We evaluate the evolutionary conservation of all 
pseudogenes, lincRNAs, PCGs, candidate pseudogenes 
and their neighboring PCGs. The evolutionary 
conservation was evaluated by 46-way phastCons 
vertebrate conserved elements from the UCSC Genome 
Browser website [60]. We considered a base as a unit and 
computed average phastCons scores for exons.  

DNA methylation analysis

DNA methylation data of LUAD from Illumina 
Infinium Human Methylation 450 Beadchip (Infinium 
450 k) arrays was obtained from TCGA, including 
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485,577 probes, 475 tumor samples and 32 normal 
samples (Supplementary Table 1). We then assigned the 
probes into the gene-body regions. 

To estimate the methylation level of a given probe, 
we used the beta value: the ratio of intensities between 
methylated and unmethylated alleles. The beta value was 
obtained from the level 3 Infinium 450k data in TCGA; 
the corresponding p-value of each probe was obtained 
from level 2 Infinium 450k data. We only used the beta 
values with significant detection p-values (p < 0.05) in 
calculations to avoid using the missing data [61]. The 
average value of probes within a gene was regarded as 
methylated value.

Survival analysis

The clinical information of LUAD patient samples 
was obtained from TCGA. Cox regression analysis 
was used to evaluate the correlation between survival 
time and pseudogene expression. The risk ratio was 
used to calculate the risk score for each sample. Then 
these sample were divided into high-risk and low-risk 
group based on the mid-value of risk score [62]. The 
Kaplan-Meier survival method was used to evaluate the 
influence of the pseudogene for patient prognosis. The 
Log-Rank test p-value was used to test the significance 
of correlation between two groups of patients (p-value 
< 0.05). The Cox p-value was used to evaluate the 
significant correlation between the overall survival and 
genes (p-value < 0.05).

Statistical analyses

The p-value and FDR correction less than 0.05 
were used as the threshold in the hypergeometric test. The 
pseudogenes that fold change > 1.5 and FDR < 0.01 were 
considered as DE pseudogenes. Functional enrichments of 
mRNAs were consisted on the Fisher’s exact test (two-
tailed) implemented by DAVID v6.8 (https://david-d.
ncifcrf.gov/) [63]. Wilcox rank sum test was used to test 
the significance between two groups of data (p < 0.05).

Abbreviations

LUAD: lung adenocarcinoma; PCGs: protein-
coding genes; ceRNA: competitive endogenous RNA; 
siRNA: small interfering RNA; DE: differentially 
expressed; NDE: non-differentially expressed; PCC: 
pearson correlation coefficient

Author contributions

YX designed the study, YW performed the research 
and wrote the manuscript. YW, ZC, CW, and YZ analyzed 
the data. KL revised the manuscript. All authors reviewed 
the manuscript.

CONFLICTS OF INTEREST

The authors declared that they have no conflicts of 
interest.

FUNDING

This work was supported by the National Natural 
Science Foundation of China (grant numbers 81372492 
and 81673036).

REFERENCES

 1. Harrison PM, Hegyi H, Balasubramanian S, Luscombe NM, 
Bertone P, Echols N, Johnson T, Gerstein M. Molecular 
fossils in the human genome: identification and analysis of 
the pseudogenes in chromosomes 21 and 22. Genome Res. 
2002; 12:272–280. 

 2. Hawkins PG, Morris KV. Transcriptional regulation 
of Oct4 by a long non-coding RNA antisense to Oct4-
pseudogene 5. Transcription. 2010; 1:165–175. 

 3. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, 
Cheloufi S, Hodges E, Anger M, Sachidanandam R, 
Schultz RM, Hannon GJ. Pseudogene-derived small 
interfering RNAs regulate gene expression in mouse 
oocytes. Nature. 2008; 453:534–538.

 4. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-
Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, 
Nakano T, Surani MA, Sakaki Y, Sasaki H. Endogenous 
siRNAs from naturally formed dsRNAs regulate transcripts 
in mouse oocytes. Nature. 2008; 453:539–543. 

 5. Poliseno L. Pseudogenes: newly discovered players in 
human cancer. Sci Signal. 2012; 5:re5. 

 6. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, 
Carter DR. Pseudogenes: pseudo-functional or key 
regulators in health and disease? RNA. 2011; 17:792–798.

 7. Takahashi K, Yamanaka S. Induction of pluripotent stem 
cells from mouse embryonic and adult fibroblast cultures 
by defined factors. Cell. 2006; 126:663–676. 

 8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, 
Tomoda K, Yamanaka S. Induction of pluripotent stem 
cells from adult human fibroblasts by defined factors. Cell. 
2007; 131:861–872. 

 9. Cantz T, Key G, Bleidissel M, Gentile L, Han DW, 
Brenne A, Scholer HR. Absence of OCT4 expression in 
somatic tumor cell lines. Stem Cells. 2008; 26:692–697. 

10. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, 
Pandolfi PP. A coding-independent function of gene and 
pseudogene mRNAs regulates tumour biology. Nature. 
2010; 465:1033–1038. 

11. Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, 
Leopold V, Sjoberg M, Keane TM, Verma A, Ala U, Tay Y, 
Wu D, Seitzer N, et al. The BRAF pseudogene functions 
as a competitive endogenous RNA and induces lymphoma 
in vivo. Cell. 2015; 161:319–332. 



Oncotarget59046www.impactjournals.com/oncotarget

12. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, 
Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, 
Prensner JR, Lonigro RJ, Iyer MK, Barrette T, Shanmugam A, 
et al. Expressed pseudogenes in the transcriptional landscape 
of human cancers. Cell. 2012; 149:1622–1634. 

13. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of 
ceRNA crosstalk and competition. Nature. 2014; 505:344–352. 

14. Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z, Shao T, Zhang J, 
Wang L, Li X. The mRNA related ceRNA-ceRNA 
landscape and significance across 20 major cancer types. 
Nucleic Acids Res. 2015; 43:8169–8182. 

15. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q. 
Constructing lncRNA functional similarity network based 
on lncRNA-disease associations and disease semantic 
similarity. Sci Rep. 2015; 5:11338. 

16. Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, Yang L, 
Sun J. Characterization of long non-coding RNA-associated 
ceRNA network to reveal potential prognostic lncRNA 
biomarkers in human ovarian cancer. Oncotarget. 2016; 
7:12598–12611. https://doi.org/10.18632/oncotarget.7181.

17. Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, Zhi H, 
Wang T, Guo Z, Li X. Identification of lncRNA-associated 
competing triplets reveals global patterns and prognostic 
markers for cancer. Nucleic Acids Res. 2015; 43:3478–3489. 

18. Liu D, Yu X, Wang S, Dai E, Jiang L, Wang J, Yang 
Q, Yang F, Zhou S, Jiang W. The gain and loss of long 
noncoding RNA associated-competing endogenous RNAs 
in prostate cancer. Oncotarget. 2016; 7:57228–57238. 
https://doi.org/10.18632/oncotarget.11128.

19. Ponjavic J, Ponting CP, Lunter G. Functionality or 
transcriptional noise? Evidence for selection within long 
noncoding RNAs. Genome Res. 2007; 17:556–565. 

20. Schiefermeier N, Scheffler JM, de Araujo ME, Stasyk T, 
Yordanov T, Ebner HL, Offterdinger M, Munck S, 
Hess MW, Wickstrom SA, Lange A, Wunderlich W, 
Fassler R, et al. The late endosomal p14-MP1 
(LAMTOR2/3) complex regulates focal adhesion dynamics 
during cell migration. J Cell Biol. 2014; 205:525–540. 

21. Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, 
Faltraco F, Rosenberg C, Hulette C, Jellinger K, Hampel H, 
Riederer P, Moller HJ, Andreadis A, et al. The alternative 
splicing of tau exon 10 and its regulatory proteins CLK2 
and TRA2-BETA1 changes in sporadic Alzheimer's 
disease. J Neurochem. 2006; 96:635–644. 

22. Butel JS. Viral carcinogenesis: revelation of 
molecular mechanisms and etiology of human disease. 
Carcinogenesis. 2000; 21:405–426. 

23. Akulenko R, Helms V. DNA co-methylation analysis suggests 
novel functional associations between gene pairs in breast 
cancer samples. Hum Mol Genet. 2013; 22:3016–3022. 

24. Yoon KA, Gil HJ, Han J, Park J, Lee JS. Genetic 
polymorphisms in the polycomb group gene EZH2 and the 
risk of lung cancer. J Thorac Oncol. 2010; 5:10–16. 

25. Shepelev MV, Korobko IV. Pak6 protein kinase is a novel 
effector of an atypical Rho family GTPase Chp/RhoV. 
Biochemistry (Mosc). 2012; 77:26–32. 

26. Mendizabal I, Zeng J, Keller TE, Yi SV. Body-
hypomethylated human genes harbor extensive intragenic 
transcriptional activity and are prone to cancer-associated 
dysregulation. Nucleic Acids Res. 2017; 45:4390–4400. 

27. Chen J, Hu L, Chen J, Wu F, Hu D, Xu G, Zhu P, Wang Y. 
Low expression lncRNA RPLP0P2 is associated with poor 
prognosis and decreased cell proliferation and adhesion 
ability in lung adenocarcinoma. Oncol Rep. 2016; 
36:1665–1671. 

28. Meng F, Wang J, Dai E, Yang F, Chen X, Wang S, Yu X, 
Liu D, Jiang W. Psmir: a database of potential associations 
between small molecules and miRNAs. Sci Rep. 2016; 
6:19264.

29. Wang J, Meng F, Dai E, Yang F, Wang S, Chen X, Yang L, 
Wang Y, Jiang W. Identification of associations between 
small molecule drugs and miRNAs based on functional 
similarity. Oncotarget. 2016; 7:38658–38669. 

30. Liu D, Yu X, Wang S, Dai E, Jiang L, Wang J, Yang Q, 
Yang F, Zhou S, Jiang W. The gain and loss of long 
noncoding RNA associated-competing endogenous RNAs 
in prostate cancer. Oncotarget. 2016; 7:57228–57238. 
https://doi.org/10.18632/oncotarget.11128.

31. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, 
Li X, Jiang W. SM2miR: a database of the experimentally 
validated small molecules' effects on microRNA 
expression. Bioinformatics. 2013; 29:409–411. 

32. Momparler RL, Ayoub J. Potential of 5-aza-2'-
deoxycytidine (Decitabine) a potent inhibitor of DNA 
methylation for therapy of advanced non-small cell lung 
cancer. Lung Cancer. 2001; 34:S111–5. 

33. Cao S, Sun R, Wang W, Meng X, Zhang Y, Zhang N, Yang S. 
RNA helicase DHX9 may be a therapeutic target in lung 
cancer and inhibited by enoxacin. Am J Transl Res. 2017; 
9:674–682. 

34. Lu KD, Radom-Aizik S, Haddad F, Zaldivar F, Kraft M, 
Cooper DM. Glucocorticoid receptor expression on 
circulating leukocytes differs between healthy male and 
female adults. J Clin Transl Sci. 2017; 1:108–114. 

35. Jiang W, Jia P, Hutchinson KE, Johnson DB, Sosman JA, 
Zhao Z. Clinically relevant genes and regulatory pathways 
associated with NRASQ61 mutations in melanoma through 
an integrative genomics approach. Oncotarget. 2015; 
6:2496–2508. https://doi.org/10.18532/oncotarget.2954.

36. Le TD, Zhang J, Liu L, Li J. Computational methods for 
identifying miRNA sponge interactions. Brief Bioinform. 
2016. 

37. Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L, Zhao H, Yu F, 
Ping Y, Zhang G, Lan Y, Xiao Y, Li X. A comprehensive 
overview of lncRNA annotation resources. Brief 
Bioinform. 2016. 

38. St Laurent G, Wahlestedt C, Kapranov P. The Landscape 
of long noncoding RNA classification. Trends Genet. 2015; 
31:239–251. 

39. Szafranski P, Dharmadhikari AV, Brosens E, Gurha P, 
Kolodziejska KE, Zhishuo O, Dittwald P, Majewski T, 



Oncotarget59047www.impactjournals.com/oncotarget

Mohan KN, Chen B, Person RE, Tibboel D, de Klein A,  
et al. Small noncoding differentially methylated copy-
number variants, including lncRNA genes, cause a lethal 
lung developmental disorder. Genome Res. 2013; 23:23–33. 

40. Xu G, Chen J, Pan Q, Huang K, Pan J, Zhang W, Chen J, 
Yu F, Zhou T, Wang Y. Long noncoding RNA expression 
profiles of lung adenocarcinoma ascertained by microarray 
analysis. PLoS One. 2014; 9:e104044. 

41. Zheng L, Li X, Meng X, Chou J, Hu J, Zhang F, Zhang Z, 
Xing Y, Liu Y, Xi T. Competing endogenous RNA networks 
of CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen 
resistance in breast cancer. Mol Cell Endocrinol. 2016; 
427:133–142.

42. Cancer Genome Atlas Research Network, Weinstein JN, 
Collisson EA, Mills GB, Shaw KR, Ozenberger BA, 
Ellrott K, Shmulevich I, Sander C, Stuart JM. The Cancer 
Genome Atlas Pan-Cancer analysis project. Nat Genet. 
2013; 45:1113–1120. 

43. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping 
the human miRNA interactome by CLASH reveals 
frequent noncanonical binding. Cell. 2013; 153:654–665. 

44. Zhang C, Darnell RB. Mapping in vivo protein-RNA 
interactions at single-nucleotide resolution from HITS-
CLIP data. Nat Biotechnol. 2011; 29:607–614. 

45. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, 
often flanked by adenosines, indicates that thousands of 
human genes are microRNA targets. Cell. 2005; 120:15–20. 

46. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, 
Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, 
Stoffel M, Rajewsky N. Combinatorial microRNA target 
predictions. Nat Genet. 2005; 37:495–500. 

47. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The 
role of site accessibility in microRNA target recognition. 
Nat Genet. 2007; 39:1278–1284. 

48. Betel D, Koppal A, Agius P, Sander C, Leslie C. 
Comprehensive modeling of microRNA targets predicts 
functional non-conserved and non-canonical sites. Genome 
Biol. 2010; 11:R90. 

49. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, 
Thomson AM, Lim B, Rigoutsos I. A pattern-based method 
for the identification of MicroRNA binding sites and their 
corresponding heteroduplexes. Cell. 2006; 126:1203–1217. 

50. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: 
decoding miRNA-ceRNA, miRNA-ncRNA and protein-
RNA interaction networks from large-scale CLIP-Seq data. 
Nucleic Acids Res. 2014; 42:D92–D97. 

51. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, 
Boutselakis H, Ding M, Bamford S, Cole C, Ward S, 
Kok CY, Jia M, De T, et al. COSMIC: exploring the 
world's knowledge of somatic mutations in human cancer. 
Nucleic Acids Res. 2015; 43:D805–D811.

52. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, 
Hamosh A. OMIM.org: Online Mendelian Inheritance in 
Man (OMIM(R)), an online catalog of human genes and 
genetic disorders. Nucleic Acids Res. 2015; 43:D789–D798. 

53. Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic 
association database. Nat Genet. 2004; 36:431–432. 

54. Yu W, Clyne M, Khoury MJ, Gwinn M. Phenopedia and 
Genopedia: disease-centered and gene-centered views of 
the evolving knowledge of human genetic associations. 
Bioinformatics. 2010; 26:145–146. 

55. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q. HMDD 
v2.0: a database for experimentally supported human 
microRNA and disease associations. Nucleic Acids Res. 
2014; 42:D1070–D1074. 

56. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, 
Wang G, Liu Y. miR2Disease: a manually curated database 
for microRNA deregulation in human disease. Nucleic 
Acids Res. 2009; 37:D98–D104. 

57. Yang Q, Qiu C, Yang J, Wu Q, Cui Q. miREnvironment 
database: providing a bridge for microRNAs, 
environmental factors and phenotypes. Bioinformatics. 
2011; 27:3329–3330. 

58. Wang D, Gu J, Wang T, Ding Z. OncomiRDB: a database for 
the experimentally verified oncogenic and tumor-suppressive 
microRNAs. Bioinformatics. 2014; 30:2237–2238. 

59. Chen X. Predicting lncRNA-disease associations and 
constructing lncRNA functional similarity network based 
on the information of miRNA. Sci Rep. 2015; 5:13186. 

60. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, 
Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, 
Weinstock GM, Wilson RK, Gibbs RA, et al. Evolutionarily 
conserved elements in vertebrate, insect, worm, and yeast 
genomes. Genome Res. 2005; 15:1034–1050. 

61. Kamoun A, Idbaih A, Dehais C, Elarouci N, Carpentier C, 
Letouze E, Colin C, Mokhtari K, Jouvet A, Uro-Coste 
E, Martin-Duverneuil N, Sanson M, Delattre JY, et al. 
Integrated multi-omics analysis of oligodendroglial 
tumours identifies three subgroups of 1p/19q co-deleted 
gliomas. Nat Commun. 2016; 7:11263. 

62. Li Y, Xu J, Chen H, Bai J, Li S, Zhao Z, Shao T, Jiang T, 
Ren H, Kang C, Li X. Comprehensive analysis of the 
functional microRNA-mRNA regulatory network identifies 
miRNA signatures associated with glioma malignant 
progression. Nucleic Acids Res. 2013; 41:e203. 

63. Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, Liu D, 
Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID 
Knowledgebase: a gene-centered database integrating 
heterogeneous gene annotation resources to facilitate high-
throughput gene functional analysis. BMC Bioinformatics. 
2007; 8:426.


