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ABSTRACT
LncRNAs are emerging as integral functional and regulatory components of normal 

biological activities and are now considered as critically involved in the development 
of different diseases including cancer. In this review, we summarized recent findings 
on maternally expressed gene 3 (MEG3), a noncoding lncRNA, locates in the imprinted 
DLK1–MEG3 locus on human chromosome 14q32.3 region. MEG3 is expressed in normal 
tissues but is either lost or decreased in many human tumors and tumor derived 
cell lines. Studies have demonstrated that MEG3 is associated with cancer initiation, 
progression, metastasis and chemo-resistance. MEG3 may affect the activities of TP53, 
MDM2, GDF15, RB1 and some other key cell cycle regulators. In addition, the level of 
MEG3 showed good correlation with cancer clinicopathological grade. In summary, 
MEGs is an RNA-based tumor suppressor and is involved in the etiology, progression, 
and chemosensitivity of cancers. The alteration of MEG3 levels in various cancers 
suggested the possibility of using MEG3 level for cancer diagnosis and prognosis.

INTRODUCTION

Cancer is one of the main causes of death worldwide. 
A number of independent studies have demonstrated 
the involvement of noncoding RNAs, such as small 
nucleolar RNAs (snoRNAs), microRNAs (miRNAs), 
as well as long noncoding RNAs (lncRNAs) in cancer 
development [1–3]. LncRNAs are located in both 
intergenic and intronic regions of protein coding genes, 
and are frequently regulated and transcribed independently 
from the surrounding protein coding genes [4, 5]. Studies 
have shown that lncRNAs play an important role in 
transcriptional regulations by modulating promoter 
accessibility through chromatin reorganization by affecting 
processes like histone modification [6]. LncRNAs also 
affect the activity of miRNA, the subcellular localization of 
proteins and the production of endogenous siRNA [7–10]. 

Recent studies suggest some lncRNAs such as 
GAS5, p21, H19, HOTAIR and PTENP1 may play a role in 
tumor suppression by affecting cell proliferation, invasion 
and metastasis [11–16]. In addition, the expression of 
some lncRNAs is also associated with the effectiveness 

of cancer chemotherapy [2, 17, 18]. Therefore, some 
lncRNAs may be used as potential therapeutic targets for 
cancer treatment and biomarkers for the diagnosis and 
prognosis of cancers [19–23]. Maternally expressed gene 
3 (MEG3) is an lncRNA which expresses in many normal 
tissues. However, it is frequently either lost, mutated or 
decreased level in many human tumors and tumor derived 
cell lines [22, 24, 25]. Restoring proper MEG3 expression 
level inhibits tumor cell proliferation and induces tumor 
cell apoptosis as well as autophagy [26, 27]. These 
findings suggest MEG3 is one of the lncRNAs with tumor 
suppressor activity [28].

In this review, we summarized recent studies on 
MEG3 associated aberrant expression and its effects in 
cancers, and explored the potential of using MEG3 as 
biomarker for cancer diagnosis and prognosis.

The correlation of MEG3 expression with 
cancers 

MEG3 is located in the chromosome 14 DLK1–
MEG3 imprinting region, containing multiple imprinted 

                                                                                Review



Oncotarget73283www.impactjournals.com/oncotarget

genes [25, 29, 30]. Besides MEG3, this region has a number 
of snoRNAs and miRNAs (Figure 1). Transcripts in this 
region are tightly regulated through methylation at the 
imprinting control regions [24, 25, 31]. The DLK1-MEG3 
region has two key differentially methylated regions (DMRs) 
on the paternal allele, one called intergenic DMR (IG-DMR) 
located about 13kb upstream of the MEG3 transcription 
start site and the other, MEG3-DMR, overlapped with the 
MEG3 promoter region [32, 33]. The IG-DMR is the major 
imprinting control element and MEG3-DMR is responsible 
for the maintaining of proper allelic expression of transcripts 
in this region. The mature MEG3 RNA consists of ten exons 
with a length of about 1,600 nt [25]. Abundant levels of 
MEG3 have been shown in various tissues including brain, 
adrenal gland, placenta, testes, ovary, pancreas, spleen, 
mammary gland, and liver [25]. 

Recent studies demonstrated decreased MEG3 levels 
in a variety of primary human cancers (Supplementary 
Table 1) [16, 18, 24, 25, 31–73] and cancer derived 
cell lines (Table 1) [16, 18, 24, 31, 32, 34–36, 38, 41, 
44, 46–54, 56, 57, 59, 60, 62–64, 74–77]. For example, 
MEG3 expression level is decreased in lung cancer [38], 
hepatocellular cancer [34], prostate cancer [37], multiple 
myeloma [33], meningioma [65], gastric cancer [35], 
and glioma [36]. In addition, loss of MEG3 expression 
was observed in the majority of nonfunctioning pituitary 
adenomas (NFPAs) [40, 45], neuroblastoma [31] and renal 
cell carcinoma [46]. Similar changes in MEG3 levels have 
also been found in various brain, bladder, bone marrow, 
breast, cervix, colon, liver, lung, meninges, and prostate 
cancers-derived cell lines (Table 1). Studies also reported 
that deletion of the MEG3 locus usually led to more 
aggressive cancers and MEG3 expression level correlated 
with tumor grade and prognosis in meningiomas [25], 
colorectal cancer (CRC) [54], NFPA [45], gastric cancer 
(GC) and cervical cancer [23, 49, 50]. For examples, Yin et 
al. analyzed 62 CRC cases and demonstrated that a lower 
MEG3 level correlates with lower pathological grade, 
deeper tumor invasion, and advanced TNM (tumor node 
metastasis) stage [54]. Li et al. found MEG3 expression 
level is significantly lower in invasive NFPAs compared 
to noninvasive NFPAs [45]. Sun et al. reported that down-
regulated MEG3 is associated with poor prognosis and 
promotes cell proliferation in gastric cancer [50]. These 
findings suggest the level of MEG3 not only contributed to 
cancer development but also associated with pathological 
grade of the cancer and prognosis of the cancer patients. 
Recent meta-analysis studies also demonstrate the 
association of MEG3 level with cancer stages and survival 
outcome [22, 78]. 

MEG3 inhibits cell proliferation and induces 
apoptosis in cancer

Restoring the expression of MEG3 impedes cancer 
cell proliferation in vitro. For example, MEG3 inhibits 

proliferation and induces apoptosis in cancer cell lines 
including MG63, OS-732, SaOS, G292, and 143B 
(osteosarcoma) [79], OVCAR3 and A2780 [26], MDA-
MB-231, MCF-10A and MCF7 (breast) [27], HeLa 
(cervix), C-33A (cervix) [49], A549/DPP (lung) [38], 
PRC/PRF/5 (liver) [41], U251 (brain) U87MG (brain) 
[36], HCT116 (colon) and DLD1 (colon) [54] (Table 1). 
There is also ample evidence showing MEG3 may affect 
the growth and differentiation of cells in vivo (Table 2). 
For example, studies have shown that restoring the 
expression of MEG3 suppresses tumor growth in nude 
mice (Table 2) [34, 38, 44, 46, 54, 60, 62, 80–82]. 

Several Meg3 knockout (KO) mouse models have 
been used to study the function of MEG3 in vivo. The KO 
mouse model created by Zhou et al. carries a deletion of a 
5 kb genomic region containing the first five exons and a 
small portion of the Meg3 promoter [81]. Mice carrying 
the paternal allele deletion are alive and normal. However, 
mice with deletion at the maternal allele died perinatally 
with major skeletal muscle defects, and the expression of 
both Meg3 and the downstream Meg8 was not detectable. 
Takahashi et al. created another Meg3 KO mouse with 
a 10 kb deletion of the genome containing the MEG3-
DMR and the first five exons of the Meg3 gene [83]; the 
mice with deletion on the maternal allele died 4 weeks 
after birth. Surprisingly, mice with homozygous deletion 
survived and grew to fertile adults [83]. In Takahashi’s 
KO mice, it did not affect the methylation status of the IG-
DMR [83], but in Zhou’s KO mice the IG-DMR region 
is hypermethylated [81]. This suggests MEG3-DMR 
may affect the methylation status of IG-DMR and once 
Meg3-DMR is deleted the IG-DMR will be methylated. 
Therefore, one of the possible functions of Meg3-DMR is 
to maintain an active (unmethylated) status in the IG-DMR 
region which allows the expression of downstream MEGs. 
A Meg3 KO generated by Gordon et al. showed an increase 
of brain microvessel formation in the Meg3 null embryos. 
This finding suggests MEG3 may affect the activities of 
genes involved in VEGF angiogenic pathway [81, 84].

Epigenetic regulation of transcripts in the MEG3 
region

MEG3 and DNA methylation

Different mechanisms may contribute to the 
decrease or loss of MEG3 expression in cancers, including 
hypermethylation of the regulatory regions and deletions 
of the gene, as well as post translational degradation via 
miRNAs. Among them the hypermethylation in the MEG3 
promoter and IG-DMR regions probably play the most 
important role for the decrease of MEG3 expression in 
cancers [32, 33]. The MEG3 promoter region is GC-rich 
and overlaps with the MEG3-DMR. The expression of 
MEG3 can be modulated by changing the methylation 
state of its promoter and MEG3-DMR regions [85, 86]. 
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For example, in human NFAPs the methylation levels 
in both the IG-DMR and MEG3 promoter regions are 
higher than in normal pituitary [32, 40]. Astuti et al. also 
showed that the MEG3-DMR is completely methylated 
in neuroblastoma cell lines and hypermethylated MEG3 
promoter is associated with down regulation of MEG3 and 
upregulation of DLK1 expression [31]. In neuroblastoma 
and pheochromocytoma tissues, the aberrant methylation 
of the MEG3 promoter correlated with decreased MEG3 
level in 25% and 10% of the cases, respectively [31]. The 
silenced MEG3 expression in ovarian cancer is also due 
to promoter region hypermethylation which may also 
contribute to the progression of cancer development [33, 
48]. Increased methylation in IG-DMR was also found in 
ovarian cancer and NSCLC (non-small cell lung cancer) 
derived cell lines [44, 48].

The degree of IG-DMR methylation showed a 
positive correlation with tumor grade and overall survival 
(OS) [25]. For example, the percentages of methylated 
CpG in IG-DMR are 50.1, 56.4, 61.0 and 68.8% in normal 

meninges, grade I, grade II, and grade III meningiomas 
respectively [25]. The level of MEG3 promoter region 
(MEG3-DMR) methylation is associated with OS of acute 
myeloid leukemia (AML) patients with myelodysplastic 
syndrome (MDS). The MEG3-DMR hypermethylation 
can be detected in 50% of patients with AML with 
MDS compared to only 34.9% of the patients with just 
MDS [85]. These studies suggest aberrant methylation 
of the MEG3 locus may be accentuated during cancer 
progression and the degree of MEG3 suppression is 
associated with the overall aggressiveness of cancers. 

snoRNAs

SnoRNAs are involved in post-transcriptional 
modifications and maturation of ribosomal RNAs and 
transfer RNAs. It can be divided into two large families: 
C/D box containing snoRNAs and H/ACA box snoRNAs. 
The C/D box snoRNAs are mainly responsible for 
methylation (2′-O-methylation) and H/ACA snoRNAs 

Figure 1: Genomic organization and schematic illustration on the involvement of MEG3 on cancer development. The 
genes, mRNA and snoRNAs are indicated and the transcription orientations are indicated by arrows. The red dots represent differentially 
methylated regions. The schematic interactions of MEGs with key genes involved in cell proliferation and apoptosis are indicated. The 
arrows indicate activation. The doted lines are putative interactions.



Oncotarget73285www.impactjournals.com/oncotarget

Table 1: Changes of MEG3 expression level in different cancer cell lines
Reference Cancer type Cell lines MEG3 Level Methods Potential function and mechanism 

Li et al., 2017 [68] AML THP-1, HL-60, CCL-240 and 
CRL-1582 Down qRT-PCR MEG3 down regulates miR-184 expression in Leukemia

Lyu et al., 2017 [69] AML K562, TF-1, MOLM-13, U937, 
NB4, Kasumi-1, KG-1 and HL-60 Down qRT-PCR

Dysregulation of MEG3 expression correlates with WT1 
or TET2 mutations status, which probably plays an 
important role in AML pathogenesis.

Zhang et al., 2017 [71] BC MDA-MB-231, MCF-10A and 
MCF-7 Down qRT-PCR

MEG3 expression associated with TNM stage and lymph 
nodes metastasis. Lower MEG3 predicted a poor DFS and 
OS for patients

Zhang et al., 2017 [23] CC HeLa and CaSki Down qRT-PCR The low expression of MEG3 is likely due to promoter 
hypermethylation.

Hu et al., 2016 [74] Pancreatic 
cancer PANC-1 and SW1990 cells Down RT–PCR Fenofibrate inhibits pancreatic cancer cells proliferation 

mediated by upregulation of MEG3

Li et al., 2016 [56] Glioma U251, U87 and A172 Down qRT-PCR
DNMT1-mediated MEG3 hypermethylation causes the 
loss of MEG3 expression, followed by the inhibition of 
the p53 pathways

Zhang et al., 2016 [63] CC HeLa and CaSki Down qRT-PCR MEG3 may interact with miR-21-5p to affects the post-
transcriptional network

Zhou et al., 2015 [57] GC MKN45 and 7901 Down qRT-PCR miR-141 could interact with MEG3 and target E2F3

Peng et al., 2015 [59] GC HGC-27,MGC-803, MKN-45, 
SGC-7901, BGC-823 and AGS Down qRT-PCR MEG3 could up-regulated Bcl-2 via its competing 

endogenous RNA activity on miR-181a

Luo et al., 2015 [60] PC PC3 and DU145 Down qRT-PCR
MEG3 inhibited the expression of cell cycle regulatory 
protein Cyclin D1 and induced cell cycle arrest in G0/G1 
phase

Yin et al., 2015 [54] CRC HCT-116 and DLD-1 cell lines Down qRT-PCR MEG3 inhibits cell proliferation through TP53 activation.

Wang et al., 2015 [51] RCC RCC cell lines 786-0 and SN1 Down qRT-PCR MEG3 induces apoptosis by inhibiting the BCL-2 
expression and activating the mitochondrial pathway.

Gao et al., 2015[77] RB Retinoblastoma cell Down qRT-PCR

Decreased expression of MEG3 contributes to 
retinoblastoma progression and affects retinoblastoma 
cell growth by regulating the activity of Wnt/β-catenin 
pathway.

Zhuo et al., 2015 [34] HCC HCC cell lines Down qRT-PCR UHRF1 regulates MEG3 level via DNMT1 and TP53

Xia et al., 2015 [18] LC Lung cancer cell lines A549/DDP Down qRT-PCR
MEG3 regulates TP53, β-catenin and survivin expression. 
Cisplatin treatment decreases the expression levels of 
MEG3.

Liu et al., 2015 [38] LAD A549/DDP cells Down Microarray MEG3 induces the activation of TP53 and Bcl-xl in LAD 
cells.

Zhuang et al., 2015 [52] MM MSCs cells Down qRT-PCR
MEG3 played an essential role in osteogenic 
differentiation of the bone marrow MSCs, partly by 
activating BMP4 transcription.

Wang et al., 2015 [16] PTC TPC-1 and HTH83 cells Down qRT-PCR
RAC1 was negatively regulated by MEG3 at the post-
transcriptional level, through a specific target site within 
the 3΄UTR .

Modali et al., 2015 [62] PNT Mouse insulinoma cell lines Down qRT-PCR DNA demethylating drugs reduce mouse insulinoma cell 
proliferation and restore MEG3 expression.

Parekh et al., 2015 [75] MEN1 Menin-deficient fat-cell Down Microarray
Menin deficiency could result in fat cell hypertrophy and 
differential gene expression from the methylated MEG3 
locus.

Qi et al., 2015 [76] CRC Colorectal cancer cell Down qRT-PCR Decreased expression of MEG3 is associated with cell 
invasion and metastasis.

Yan et al., 2014 [35] GC SGC-7901 and BGC-823 Down qRT-PCR
The suppression of miR-148a may contribute to the down-
regulation of MEG3 in gastric cancer by modulating the 
activity of DNMT1.

Sun et al., 2014 [50] GC GC cell lines Down qRT-PCR MEG3 may function as a tumor suppressor by activating 
TP53 in gastric cancer.

Sheng et al., 2014 [48] EOC Ovarian cancer cell lines Down qRT-PCR Decreased expression of MEG3 in EOC is due to promoter 
hypermethylation.

Greife et al., 2014 [24] UC Urothelial cancer cell lines Down qRT-PCR Down regulation of DLK1 and MEG3 is caused by DNA 
hypermethylation.

Jia et al., 2014 [47] TSCC SCC-15 and CAL27 Down qRT-PCR Antitumor effects of MEG3 are mediated by TP53 
activation in TSCC.

Qin et al., 2013 [49] CC CC lines HeLa and C-33A Down qRT-PCR MEG3 induces G2/M cell cycle arrest and apoptosis.



Oncotarget73286www.impactjournals.com/oncotarget

are for pseudouridylation of ribosomal RNAs [87, 88]. 
The MEG3 genomic region contains a cluster of C/D 
box snoRNAs - member of the SNORD112 (1 copy), 
SNORD113 (9 copies) and SNORD114 (31 copies) 
families [89, 90] (Figure 1). The SNORD112 and some 
of the SNORD113 members are located in the intron of 
MEG8 gene. Like what has been observed in MEG3, some 
snoRNA expression levels were also decreased in AML 
and ALL cells compared to normal cells [91]. Opposite 
to the effect of MEG3, over-expressing SNORD114 
member induces K562 and HCT116 cell proliferation [92] 
and suppressing the snoRNA induces cell death. Further 
studies revealed that SNORD114 promotes cell cycle 
progression through G0/G1 to S phase transition [91]. 
The level of SNORD114-3, one of the snoRNAs in the 
DLK1-MEG3 snoRNAs cluster showed good correlation 
with MEG3 expression, which suggests the SNORD114-3 
and MEG3 probably are co-regulated by the IG-DMR and 
MEG3-DMR regions. These findings indicate some of the 
snoRNAs in the region may have similar involvement in 
cell proliferation and tumor progression as MEG3. 

microRNAs

MiRNAs are involved in the regulation of all 
aspects of cellular function including cytokine signaling 
cascades, DNA methylation, oncogenic kinase expression, 
and others that are important for the development and 
progression of cancers [61, 93–95]. Besides snoRNAs, the 
MEG3 region contains a number of miRNAs and some 
of these are located in the intron of MEG3, MEG8 and 
RTL1 (retrotransposon-like 1) transcripts (Figure 1). Some 
miRNAs in the locus are probably derived from the MEG3 
primary transcript and under MEG3 promoter control [96–
98]. Like MEG3, the levels of these miRNAs have also 
been shown to affect cancer development and influence 

cancer cell chemosensitivity, which is directly linked to 
the prognostic outcome of different cancers. For example, 
Shih et al. reported 29 miRNAs that were associated with 
disease outcome in advanced ovarian cancer patients and 
11 of the 29 miRNAs are located in the DLK1-MEG3 
cluster [99]. Nine of those 11 miRNAs including miR-433, 
miR-127, miR-381, miR-377, miR-299-3p, miR-409-3p, 
miR-154, miR-382, and miR-376c are associated with 
OS. In a separate study, the increase of miR-376c level in 
ovarian cancer cells was found to inhibit cisplatin induced 
cell death [100]. The miRNAs in this region have also been 
shown to be involved in the progression of esophageal 
squamous cell carcinoma (ESCC) and hepatocellular 
carcinoma (HCC) [101–105]. In addition, miR-495, miR-
134, miR-409-3p, miR-496, miR-379, miR-369-3p in the 
cluster are linked to the tumor invasion depth in gastric 
cancer [104, 106]. Besides that miR-376c has been shown 
to be associated with nodal metastasis in gastric cancer 
and miR-494 is significantly correlated with gastric cancer 
stage. The study also indicated that miR-495, miR-433, 
and miR-410 levels can be used to predict both disease 
free survival (DFS) and OS in gastric cancer patients 
[104]. The methylation pattern in the MEG3 DMR as well 
as the expression profile of miRNAs in the region can 
distinguish high-aggressiveness versus low-aggressiveness 
osteosarcoma cell lines, and the levels of miR-495, miR-
329, miR-487b, miR-410, and miR-656 can predict the 
outcome of patients with osteosarcoma [107]. In addition, 
the expression pattern of miRNAs in the MEG3 region can 
also identify previously unrecognized distinct molecular 
subtypes of osteosarcoma. These findings suggest the 
possible therapeutic implications of miRNAs in the region. 

LncRNAs play crucial roles in epigenetic 
regulation of gene expression through interactions with 
miRNAs, mRNAs and proteins [108]. MiRNAs can 
directly or indirectly affect the lncRNA expression level. 

Lu et al., 2013 [44] NSCLC NSCLC cell lines Down qRT-PCR
Decreased MEG3 level in NSCLC tissues could be 
affected by DNA methylation. MEG3 regulates cell 
proliferation and apoptosis via activation of TP53.

Ying et al., 2013 [53] BC Bladder cancer cells Down qRT-PCR Downregulated MEG3 activates autophagy and increases 
cell proliferation in BC.

Wang et al.,2012 [36] Glioma U251 and U87 MG cells Down qRT-PCR MEG3 expression is decreased in glioma cell lines and 
effects TP53 and genes required for TP53 activation.

Braconi et al., 2011 [41] HCC HCC cell lines (PLC/ PRF/5) Down qRT-PCR Deregulated miR-29a level in HCC affects MEG3 
expression through promoter hypermethylation.

Kawakami et al., 2006 [46] RCC Human renal cells Lost  RT–PCR Gain of methylation upstream of MEG3 leads to down 
regulation of DLK1 in RCC.

Astuti et al., 2005 [31] NB Neuroblastoma cell Lost RT-PCR The loss of MEG3 expression is associated with MEG3-
DMR hypermethylation. 

Zhao et al., 2005 [32] PT MCF7 and HeLa cells Lost qRT-PCR Hypermethylation of the promotor region is associated 
with the loss of MEG3 expression.

Zhang et al., 2003 [64] NFPA HeLa, MCF-7, Neuroglioma H4 Lost RT-PCR MEG3 has a strong ability to inhibit proliferation of 
several carcinoma cell lines and NFPA.

Abbreviations: CRC, Colorectal cancer; CC, cervical cancer; RCC, Renal Cell Carcinoma; RB, Retino-blastoma; HCC, Hepatocellular Carcinoma; LC, lung cancer; LAD; lung 
adenocarcinoma; MM, Multiple Myeloma; PTC, papillary thyroid carcinoma; MEN1, multiple endocrine neoplasia type 1; GC, gastric cancer; EOC, epithelial ovarian cancer; 
UC, urothelial carcinoma; TSCC, tongue squamous cell carcinoma; BC, bladder cancer; NSCLC, Non-small cell lung cancer; NB, neuroblastoma; PT, Pituitary Tumors; PNT, 
pancreatic neuroendocrine tumor; DNMT1, DNA (cytosine-5-)-methyltransferase 1; M-PCR, Methylation-Specific Polymerase Chain Reaction; DLK1, delta-like 1 homolog; 
UHRF1, ubiquitin-like with PHD and ring finger domains 1; MSCs, Mesenchymal stromal cells.
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Therefore, besides the changes of protein coding genes, 
it is necessary to investigate the epigenetic regulation 
of noncoding RNAs and the inter-relationship between 
miRNAs and lncRNAs to understand the underlying 
molecular processes involved in cancer development 
and progression. In a recent study, the down-regulated 
MEG3 in cervical cancer has been shown to affect cell 
proliferation and apoptosis through modulating the 
level of miR-21-5p [63]. In another study, the levels of 
miR-141 and MEG3 have been found to be significantly 
reduced in GC patients. Furthermore, E2F3 was 
identified as a target of miR-141, and its expression level 
was also found to be negatively associated with both 
MEG3 and miR-141 [57]. These findings may indicate 
the interaction between miR-141 and MEG3 to inhibit 
GC cell proliferation. Studies also showed that miR-
29 may involve in the regulation of MEG3 level which 
correlates with a poor prognosis of HCC [41, 109]. These 
data suggest the involvement of miRNAs on tumor 
progression may be in part mediated through MEG3 
activity. 

Loss of imprinting/methylation changes in the 
14q32 non-coding region defines reproducible previously 
unrecognized osteosarcoma subtypes with distinct 
transcriptional programs and biologic and clinical 
behavior. Future studies will define the precise relationship 
between 14q32 imprinting, non-coding RNA expression, 

genomic enhancer binding, and tumor aggressiveness, 
with possible therapeutic implications for both early- and 
advanced-stage patients.

MEG3 involved in key cancer associated 
signaling pathways 

p53 pathway

The p53 (TP53) gene encodes a transcription 
factor, TP53, which has been associated with tumor 
development and growth [110]. The activation of TP53 
leads to cell cycle arrest, replicative senescence, and/or 
apoptosis [111]. TP53 interacts with and affects other 
tumor suppressor activities including CDKN2A (cyclin-
dependent kinase inhibitor 2A) [112], BRCA1 [113], and 
PTEN (phosphatase and tensin homolog [114] (Figure 1). 
Over-expressing MEG3 induces a significant increase of 
TP53 protein levels in HCT116 (colorectal cancer) and 
U2OS (osteosarcoma) cancer cell lines [115]. Further 
investigation demonstrated that over-expression of MEG3 
promotes apoptotic cell death and induces G2/M cell 
cycle arrest in cervical cancer (HeLa) and retinoblastoma 
(C33A) derived cell lines [49] through the decrease of 
CDK1 (cyclin-dependent Kinase 1) and CCNB1 (cyclin 
B1) levels [49, 63]. Abnormal expression of MEG3 
induces apoptosis in HCC derived cell line – PRC/PRF/5 

Table 2: Changes of MEG3 expression level in different mouse models
Reference Cancer Type Country Samples Number of samples 

case/control
MEG3
Level Methods Potential function and mechanism 

Chunharojrith et al.,  
2015 [80] NFAs USA Nude mice 5/5 Down RT-PCR MEG3 causes cell cycle arrest at the 

G1 phase

Luo et al., 2015 [60] PC China Nude mice 5/5(pCDNA /
pCDNA-MEG3) Down qRT-PCR

MEG3 inhibits the expression of cell 
cycle regulatory protein Cyclin D1 and 
induced cell cycle arrest in G0/G1 phase

Yin et al., 2015 [54] CRC China Nude mice 3/3 Down qRT-PCR

The proliferation index ki-67 is 
significantly decreased in the MEG3-
transfected tumor cells. In addition, the 
cleaved caspase-3 level is increased.

Zhuo et al., 2015 [34] HCC China Nude mice 5/5 Down qRT-PCR
MEG3 inhibits proliferation and induces 
apoptosis through the accumulation of 
TP53.

Liu et al., 2015 [38] LAD China Nude mouse xenograft 
model

6/6 (pCDNA-MEG3/ 
empty vector + 
cisplatin)

Down qRT-PCR
MEG3 overexpression increases the in 
vivo chemosensitivity of LAD cells to 
cisplatin.

Modali et al., 2015 [62] Insulinomas USA Mice 7/6 Down qRT-PCR
DNA demethylating drugs reduce mouse 
insulinoma cell proliferation and restore 
MEG3 expression.

Lu et al., 2013 [44] NSCLC China Nude mice 5/5 Down qRT-PCR Overexpression of MEG3 could inhibit 
tumor growth in vivo.

Lempiäinen et al., 2013 [82] LT UK PB treatment Mice 5 Pairs Down qRT-PCR
PB induces MEG3 expression 
in glutamine synthetase positive 
hypertrophic hepatocytes.

Gordon et al., 2010 [81] PA USA Nude mice 5 Pairs Lost qRT-PCR Increased expression of angiogenic 
genes in the brains of MEG3-null mice.

Kawakami et al., 2006 [46] RCC Japan Nude mice 5 Pairs Lost qRT-PCR
Reintroduction of DLK1 into DLK1-null 
RCC cell suppresses tumor growth in 
nude mice.

Abbreviations: CRC; Colorectal cancer; HCC, Hepatocellular Carcinoma; LAD; lung adenocarcinoma, PA, pituitary adenomas; RCC, Renal Cell Carcinoma; LT, Liver Tumor; 
NSCLC, Non-small cell lung cancer.; NFAs, non-functioning pituitary adenomas.
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and glioma derived cell lines – U251 and U87 through 
interaction with TP53 directly by MEG3. MEG3 also 
affects caspase 3 (CASP3) and p21 (CDKN1A) levels 
through the activation of TP53 [44, 49]. These findings 
suggested that the inhibition of tumor cell proliferation by 
MEG3 is partially due to the induction of G2/M cell cycle 
arrest and apoptosis by interacting with genes including 
CCNB1, CDK1 CDKN1A, CASP3 and TP53.

MDM2 pathway

MEG3 mitigates TP53 activation and can also be 
mediated through changing the activity of mouse double 
minute 2, human homolog (MDM2) (Figure 1). MDM2 
encodes a nuclear E3 ubiquitin ligase that mediates 
ubiquitination of proteins including tumor suppressor 
proteins, such as TP53 for degradation [116, 117]. 
Recently, it has been reported that MDM2 expression 
is suppressed by MEG3. Inhibition of MDM2 through 
phosphorylation, acetylation, and sumoylation has an 
impact on TP53 activity [118–120]. The decreased 
MEG3 level down-regulates MDM2 expression which 
leads to an increase of TP53 protein level and enhances 
TP53 binding to its targeted promoters to stimulate p53-
dependent transcriptions [44, 115, 121]. In addition, it has 
been shown in a mouse model, the increase of MEG3 level 
up-regulates Tp53 by suppressing Mdm2 [81, 115]. 

MDM2 itself is also regulated by TP53 at 
transcription level; therefore, MDM2 and TP53 form 
an auto-regulatory feedback loop that may be needed to 
maintain a critical MDM2/TP53 ratio within a cell (Figure 
1). Factors that differentially regulate the activities of 
MDM2 and TP53 may affect cell fate profoundly as they 
can change the ratio between MDM2 and TP53 [117]. 
These findings indicated the down-regulation of MDM2 is 
one of the mechanisms for MEG3 to affect TP53 dependent 
transcription. Therefore, MEG3 induced apoptosis and anti-
proliferative activities in cells may be mediated through the 
suppression of MDM2 and subsequent activation of TP53 
signaling pathway [115, 122].

MEG3 and GDF15

MEG3 also enhances a TP53 dependent expression 
of growth differentiation factor 15 (GDF15), an 
inhibitor of cell proliferation, which is a member of 
the transforming growth factor-β (TGFB) superfamily 
(Figure 1) [123]. Studies reported that GDF15 inhibits 
proliferation of several cancer cell lines in vitro as well 
as suppresses tumor formation in vivo [124, 125]. Zhou 
et al. demonstrated that GDF15 can be directly affected 
by MEG3 since re-expression of MEG3 in HCT116 cells 
induces GDF15 expression level and suppresses cell 
proliferation [115]. In addition, stimulation of GDF15 
expression by MEG3 is through interaction with the 
GDF15 promoter region [115]. These findings showed 

that MEG3 not only regulates TP53 but also some TP53 
targeted genes such as GDF15. 

pRb pathway

Retinoblastoma 1 (RB1) protein is an important tumor 
suppressor which is involved in cancer cell related processes 
including cell cycle, cell differentiation and apoptosis 
[126, 127]. RB1 often inhibits tumor cell proliferation by 
regulating genes required for G to S phase transition and 
causes G1 cell cycle arrest [128, 129]. Phosphorylation 
of RB1 by cyclin D (CCND1)/cyclin dependent kinases 
(CDK4, CDK6) and cyclin E (CCNE1)/CDK2 complexes 
is necessary to restore the progression of cell cycle [130]. 
This process is balanced by negative cell cycle regulators, 
cyclin-dependent kinase inhibitors (CDKNs) which inhibit 
the G1 phase cyclin–CDK complexes [131]. RB1 can also 
regulate the stability and the apoptotic function of TP53 
via MDM2 [132]. Since MEG3 affects the activities of 
MDM2 and TP53, it may indirectly affect RB1 mediated 
tumor suppressing function. In addition, MEG3 may activate 
RB1 directly by RNA–protein interactions or indirectly by 
activating CDKN4A, which in turn activates the RB1 to 
suppress cell proliferation and tumor formation [133].

Other MEG3 associated pathways

MEG3 has also been found to suppress cell 
proliferation and promote apoptosis through the VEGF 
pathway, Wnt/β-catenin pathway and TGF-β pathway 
in some cancers. For example, Gordon et al. observed a 
significantly increased microvessel formation in the brain 
together with the elevated expression of genes involved 
in VEGF angiogenic pathway in a MEG3 KO mice brain 
compared with normal wild type [81]. The increase of 
VEGF pathway activity in MEG3 KO mice brain suggests 
that MEG3 may play an important role in the progression 
for tumors like meningioma. In addition, one recent study 
showed that overexpression of MEG3 suppresses cell 
proliferation and promotes apoptosis by reducing the Wnt/
β-catenin pathway activity in retinoblastoma cell lines. 
Treating the cells with a Wnt/β-catenin pathway activator 
reverses MEG3 over-expression induced anti-proliferation 
activity in retinoblastoma cell lines [77]. Using a modified 
chromatin oligo affinity precipitation method , Mondal et 
al. found some of the genes involved in TGF-β pathway 
interact directly with MEG3 [134]. It has been suggested 
that MEG3 regulates the expression of its target genes 
through the formation of RNA–DNA triplex structures 
[134], which may be a general mechanism for gene 
regulation mediated by lncRNAs. 

MEG3 and drug resistance in cancers

Many studies have shown that processes related 
to drug resistance are modulated by lncRNAs [17]. For 
example, Yang et al. showed a significant decrease of 
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MEG3 level in cisplatin-resistant A549/DDP lung cancer 
cells [18]. Furthermore, inducing the expression of MEG3 
was able to re-sensitize the A549/DDP cells to cisplatin  
in vitro. The same study also demonstrated MEG3-
mediated chemosensitivity was associated with the 
induction of cell cycle arrest and increased apoptosis 
through genes in the WNT/βcatenin signaling pathway 
such as TP53, β-catenin, and survival [18, 77]. Similar 
to what has been observed in vitro, a decrease of MEG3 
level has been found in cisplatin-resistant human lung 
adenocarcinoma (LAD) tissues accompanied with 
decreased TP53 and increased Bcl-xl protein levels [38]. 
Therefore, the level of MEG3 could be used as a potential 
biomarker to gauge the response to cisplatin based 
chemotherapy in lung cancer.

Future prospect of MEG3 in human cancer

Based on findings described in literatures, MEG3 
is an RNA-based tumor suppressor and is involved in the 
etiology, progression, and chemosensitivity of cancers 
[2, 19, 20, 28, 106, 135–137]. Its activity is mediated 
through both TP53-dependent and TP53-independent 
processes (Figure 1). MEG3 interacts with a number 
of well characterized tumor-related genes including 
TP53, MDM2, GDF15, RB1 and TGFB. Differential 
expression of MEG3 between normal and different 
grades of cancers offers the possibility of using MEG3 
to assess the stage and prognosis of cancer [2, 138, 139]. 
The spectrum of lncRNAs including MEG3 in tissue 
samples can be measured by various profiling methods 
including microarray, next generation sequencing, and 
qPCR [140–142]. This may lead to a noninvasive, 
inexpensive and reliable method to monitor cancer 
progression and assess the prognosis of disease [138, 
139, 143]. 

Modulating the levels of lncRNAs such as MEG3 
through methods including over-expression, RNAi 
mediated gene silencing, or by small molecule inhibitors 
for cancer therapy looks promising in in vitro. Even 
though attempts have been made to improve the delivery 
system; to use lncRNA as a therapeutic target in vivo is 
still challenging, especially in reducing the off-targets 
effect and delivering the expressing vector or RNAi into 
specific cells [136, 138, 139, 144]. 

In summary, some lncRNAs like MEG3 are strongly 
associated with the clinicopathological outcome of various 
cancers. Lost or decreased expression of MEG3 is common 
in human cancers. The effects of MEG3 expression on 
cancer development are well-documented and MEG3 
has been attributed as a tumor suppressor based on its 
involvement in tumor development. MEG3 can be used 
as a promising target for cancer diagnosis, prognosis and 
treatment; however, more fundamental work such as efforts 
to reduce immune response, minimize off-targets effects, 
and develop more effective targeted deliver system is needed 
in order to further develop possible clinical applications. 
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