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ABSTRACT

The poor prognosis associated with advanced age in patients with glioblastoma 
remains poorly understood. Glioblastoma in the elderly has been particularly 
associated with vascular endothelial growth factor (VEGF)-dependent angiogenesis, 
and early uncontrolled studies suggested that the anti-angiogenic agent bevacizumab 
(BEV), an antibody to VEGF, might be preferentially active in this patient population.

Accordingly, we explored host age-dependent differences in survival and benefit 
from radiotherapy (RT) or BEV in syngeneic mouse glioma models. Survival was 
inferior in older mice in the SMA-540 and and less so in SMA-560, but not in the 
SMA-497 or GL-261 models. Detailed flow cytometric studies revealed increased 
myeloid and decreased effector T cell population frequencies in SMA-540 tumors 
of old compared to young mice, but no such difference in the SMA-497 model. Bone 
marrow transplantation (BMT) from young to old mice had no effect, whereas survival 
was reduced with BMT from old to young mice. BEV significantly decreased vessel 
densities in gliomas of old, but not young mice. Accordingly, old, but not young SMA-
540 tumor-bearing mice benefited from BEV alone or in combination with RT. End-
stage tumors of old BEV- and BEV/RT-treated mice exhibited increased infiltration of 
T helper and cytotoxic T cells compared to tumors of young mice.

The SMA-540 model may provide a valuable tool to evaluate the influence of host 
age on glioblastoma progression and treatment response. The biological host factors 
that modulate glioma growth in old as opposed to young mice remain to be identified.

INTRODUCTION

Glioblastomas are the most common malignant 
primary brain tumors. The incidence increases with age, 
and higher age is an important predictor of poor survival. 

More than 40% of glioblastoma patients are older than 
65 years of age [1]. Yet, it has remained unclear why 
elderly people develop such tumors more frequently, and 
more importantly, it remains incompletely understood 
why elderly glioma patients benefit less from the current 
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treatment options of radiotherapy and concomitant 
and maintenance temozolomide (TMZ) chemotherapy 
(TMZ/RT→TMZ) [2, 3]. Isocitrate dehydrogenase 
(IDH) mutations, which confer a better prognosis, are 
virtually absent in glioblastomas of the elderly. While 
this may contribute to differential outcome between 
younger and older glioblastoma patients, age remains a 
negative prognostic factor even if an analysis of outcome 
by age is restricted to patients with IDH wildtype 
glioblastoma [4]. At the transcriptomic level, age-specific 
hypermethylation in polycomb group protein target genes 
and the upregulation of angiogenesis-related genes have 
been identified, but no fundamental differences compared 
with tumors from younger patients [5].

Glioblastoma-associated angiogenesis is a hallmark 
of malignancy and thought to be highly dependent on 
VEGF. BEV, an antibody to VEGF, has been approved 
for the treatment of recurrent glioblastomas in various 
countries. Interestingly, unlike all other treatment 
modalities previously assessed, early uncontrolled studies 
indicated that BEV may provide relatively more benefit to 
elderly patients both in the recurrent [6, 7] and in the newly 
diagnosed setting [8]. In a retrospective study of recurrent 
glioblastoma patients treated with BEV without or with 
chemotherapy, most often irinotecan, a subgroup analysis 
based on median age (aged > 55 or < 55 years), revealed 
that there was only a significant difference in PFS and OS 
between the BEV-treated and control groups in the older 
age group [6]. In a single agent study of BEV in recurrent 
glioblastoma, the median PFS for patients aged above the 
median 53 years was 30 weeks versus a median PFS of 
11 weeks for younger patients [7]. Finally, an analysis of 
a cohort study of newly diagnosed glioblastoma patients 
exposed to BEV in the first-line setting indicated worse 
outcome in younger patients [8]. However, subsequent 
phase III trials that assessed the addition of BEV to TMZ/
RT→TMZ in patients with newly diagnosed glioblastoma 
reported an increase in progression-free survival, but not 
overall survival [9, 10]. In these controlled studies, there 
was only a trend for more benefit in the patient population 
with an unfavourable prognostic profile, that is, elderly 
patients with tumors lacking O6-methylguanine DNA 
methyltransferase (MGMT) promoter methylation. Yet, it 
is likely that the elderly patients enrolled in the phase III 
trials [9, 10] possessed favorable prognostic factors and 
do not fully reflect the large population of elderly patients 
with glioblastoma since they were considered eligible for 
the triple combination of RT, TMZ and BEV in the context 
of a clinical trial.

There are various hypotheses regarding the 
molecular mechanisms underlying constitutive or acquired 
resistance to anti-angiogenic agents such as BEV, e.g., 
primary or induced up-regulation of compensatory 
proangiogenic pathways by glioma cells [11]. Recent data 
also suggest a role of host inflammatory cell infiltration 
in this regard [12]. Here we explored host age-dependent 

differences in syngeneic mouse models regarding natural 
course of disease, benefit from RT or BEV or both, and 
host responses under these conditions.

RESULTS

Age-related survival differences in mouse glioma 
models

We first explored whether the age of recipient 
mice modulated the morphology and growth kinetics of 
syngeneic murine gliomas. For this purpose, we compared 
mice below 3 months of age with mice above 8 months 
of age. SMA-497, SMA-560 and GL-261 glioma cell 
lines were comparably tumorigenic in young and aged 
mice whereas there was reduced tumorigenicity in young 
compared to old mice for SMA-540. There was no 
survival difference in the SMA-497 or GL-261 models 
between young and old mice. In contrast, survival was 
inferior in older mice in the SMA-540 and less so in 
the SMA-560 model (Figure 1A), Table 1. Histological 
analysis of tumors harvested from mice when the first 
clinical symptoms occurred (early-stage) revealed 
densely packed masses of pleomorphic cells with similar 
tumor volumes in young and old mice in all models 
(Supplementary Figure 1A, 1E). Proliferation assessed by 
Ki-67 labeling was similar in tumors derived from young 
and old animals and restricted to tumor cells and not 
seen in non-neoplastic cells of the brain (Supplementary 
Figure 1B, 1E). Microvessel density (MVD), assessed by 
CD31 labeling, was similar in tumors of all cell lines in 
all groups, with SMA-560 tumors being the most highly 
vascularized (Supplementary Figure 1C, 1E) [13]. Based 
on histological analysis, CD45-positive leukocytes were 
found in similar numbers with the lowest infiltration 
density in SMA-560 gliomas (Supplementary Figure 1D, 
1E). Tumor-infiltrating leukocyte subpopulations were 
analyzed in more detail by flow cytometry in syngeneic 
mouse glioma models of young and old mice with (SMA-
540) and without (SMA-497) a survival difference by 
host age (Figure 1B, 1C, Supplementary Figure 1F-1K). 
Sham operated mice served as a control that leukocyte 
infiltration was tumor-related (Supplementary Figure 
1L). We observed a relative increase in frequencies, 
normalized to leukocytes, of myeloid cells, paralleled 
by a relative decrease in lymphoid cell frequencies, in 
early-stage SMA-540 tumors of old compared to young 
mice (Figure 1B). No such differences were detected in 
SMA-497 gliomas derived from old versus young mice 
(Supplementary Figure 1H). Of note, only one tumor stage 
was analyzed in the SMA-497 model due to homogenous 
onset of neurological symptoms. In the SMA-540 model, 
there were lower ratios of lymphoid (T cells) versus 
myeloid (myeloid-derived suppressor cells (MDSC), 
monocytes, neutrophils, macrophages, M2 macrophages) 
cell populations in early-stage tumors of old versus young 
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mice. There was also a decrease in this ratio during 
progression from early- to end-stage disease in young, but 
not old mice. Further, detailed analysis of subpopulations 
revealed that ratios of T cells to M2 macrophages or 
MDSC were lower in old than in young mice in early-
stage disease, but also decreased in younger mice in end-
stage disease (Figure 1C). A similar analysis of SMA-497 
tumors revealed no lymphoid to myeloid differences, but 
also not in subpopulation cell ratios of tumors of young 
and old animals (Supplementary Figure 1I).

Next, we interrogated publically available data from 
The Cancer Genome Atlas (TCGA) to assess differential 
expression of genes annotated with the gene ontology term 

biological process: immune_response (GO:0006955) in 
elderly versus younger glioblastoma patients, defined as age 
65 years or older versus younger than 65 years. Established 
cell surface markers of distinct immune cell populations 
or master regulator transcription factors that modulate 
immune responses were not identified by this search (data 
not shown). However, among genes encoding cytokines and 
their receptors, we identified lower gene expression values 
in tissue samples from elderly versus younger patients for 
interleukin-18 receptor (IL18R1), interleukin-1 receptor 
(IL1R2), chemokine (C-X-C motif) ligand 6 (CXCL6) and 
chemokine (C-X-C motif) ligand 13 (CXCL13), whereas the 
expression of CX3C chemokine receptor 1 (CX3CR1) was 

Figure 1: Survival in syngeneic experimental mouse glioma models: modulation by host age. (A) Glioma cells were 
implanted in a minimum of seven young (< 3 months) or old (> 8 months) VM/Dk (SMA-497, -540, -560) or C57BL/6 (GL-261) mice. 
Kaplan-Maier survival curves of glioma-bearing mice are shown for all four syngeneic models. (B) Relative frequencies of myeloid 
(CD45+/CD11b+) and lymphoid (CD45+/CD11b-) cells normalized to total leukocytes in three to five young and old SMA-540 early- and 
end-stage tumors were analyzed by flow cytometry. Data are expressed as mean and SEM (**p<0.01, unpaired Student’s t-test, old versus 
young mice). (C) Flow cytometric studies of brain-infiltrating host immune cells in three to five young and old SMA-540 tumor-bearing 
mice. Different ratios of lymphoid versus myeloid subpopulation frequencies were calculated in early- and end-stage tumors. Data are 
expressed as mean and SEM (*p<0.05, **p<0.01, one-way ANOVA followed by Tukey’s post hoc test with a confidence interval of 95%, old 
versus young mice, +p<0.05, ++p<0.01, young end- versus early-stage).
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higher in glioblastomas of elderly patients (Supplementary 
Figure 2A). Utilizing median gene expression values to 
segregate younger glioblastoma patients with high versus 
low expression of this age-associated immune signature 
determined overall survival times of 13.1 vs 15.6 months 
(Supplementary Figure 2B).

Modulation of glioma growth by the age of the 
recipient bone marrow (BM)

To dissect which component of the aging mouse 
determined a less favorable outcome in the SMA-540 
model, we performed BMT, grafting BM from young 
mice into old mice, and vice versa. The efficacy of 
BMT was confirmed by detection of the Y chromosome-
specific gene zinc finger Y-chromosomal protein (Zfy1) 
by quantitative real-time polymerase-chain-reaction (qRT-
PCR) [14] in female recipient mice and by differential 
blood count six weeks after BMT (Supplementary Figure 
2C, 2D). We noted that BMT from young to old mice did 
not enhance survival whereas BMT from old to young 
mice decreased survival (Figure 2A), Table 2. Tumors 
were harvested for histological analysis on the day when 
the first mice developed neurological symptoms. No 
significant increase in tumor volumes was observed in 
old compared to young mice irrespective of the age of 
the grafted BM (Figure 2B, Supplementary Figure 2E). 
There was no difference in tumor cell proliferation (Ki-67) 
in young versus old animals, irrespective of which BM 
was transplanted (Figure 2C, Supplementary Figure 2F). 
MVD and leukocyte infiltration rates were also similar 
in all groups (Figure 2D, 2E, Supplementary Figure 2G, 
2H). Also, we observed no significant differences in the 
infiltration of absolute numbers of myeloid and lymphoid 
cells per tumor-bearing hemisphere in the different groups 
at early-stage of old compared to young mice (Figure 2F).

Age-related survival differences in response to 
RT or anti-VEGF therapy

The SMA-540 model was also chosen to explore 
potential synergy of RT and VEGF pathway inhibition 

using the monoclonal anti-mouse VEGF antibody 
B20-4.1.1 (B20) in young versus old mice. There was 
no survival benefit from either monotherapy or from 
combination therapy in young mice. In contrast, median 
survival was prolonged with RT or BEV, although not 
significantly, in old tumor-bearing mice. Furthermore, 
BEV/RT co-treatment was superior to solvent controls in 
old mice (Figure 3A, Supplementary Figure 3A, Table 3).

Immunohistochemical analysis of early-stage 
tumors revealed that MVD was significantly decreased 
in the monotherapy and combination therapy groups 
only in old mice (Figure 3B, Supplementary Figure 3B). 
The extent of CD45+ leukocyte infiltration upon mono- 
and co-treatment was unchanged in early-stage tumors 
analysed histologically (data not shown). However, 
flow cytometric analysis of subpopulations of tumor-
infiltrating lymphocytes identified increased percentages 
of T cell populations (T helper cells and cytotoxic T 
cells) in end-stage tumors from all treatment compared 
to solvent groups in old mice, whereas we observed a 
decrease in these populations in young mice (Figure 3C 
and Supplementary Figure 3C). Accordingly, ratios of 
lymphocyte subpopulations of treatment versus solvent 
groups confirmed that treatment caused a relative increase 
in lymphocyte infiltration in end-stage tumors of old 
but not young mice (Figure 3D). Furthermore, myeloid 
subpopulations also differed in old compared to young 
mice upon treatment. At early tumor stages, anti-VEGF 
mono-treatment led to significantly reduced MDSC and 
monocyte infiltration rates; furthermore, anti-VEGF 
mono- and co-treatment regimens caused a significant 
reduction of (M2) macrophage infiltration in tumors of 
old but not young mice (Figure 3C, 3D, Supplementary 
Figure 3C). Conversely, neutrophil-to-lymphocyte ratios 
(NLR), as a marker of inflammation [15, 16], revealed that 
mono- and co-treatment regimens reduced the NLR in old 
but not young animals (Figure 3E).

DISCUSSION

There is growing evidence that the interaction 
of tumor and non-neoplastic cells within the 

Table 1: Survival in young versus old tumor-bearing mice1

Median survival young mice 
(days)

Median survival old mice 
(days) Young mice versus old mice

SMA-497 13 12 p=0.2722

SMA-540 undefined 39 *p=0.0433

SMA-560 14 12 ***p=0.0008

GL-261 21 21 p=0.8365

1Comparison of survival curves of Figure 1A (*p<0.05, ***p<0.001, Gehan-Breslow-Wilcoxon Test, young (< 3 months) 
versus old (> 8 months) mice).



Oncotarget87128www.impactjournals.com/oncotarget

Figure 2: Bone marrow transplantation (BMT) modulates age-dependent survival in the SMA-540 glioma models. 
Glioma cells were implanted in young (< 3 months) or old (> 8 months) female VM/Dk mice. Before surgery, young and old mice were 
BM-reconstituted receiving young (< 3 months) or old (>8 months) male BM. On day 22, when the first mouse became symptomatic, 
three tissue samples per group, selected per prerandomization, were harvested for histological analysis and volumetric measurements. (A) 
Kaplan-Maier survival curve of 8-13 mice per group. (B) Tumor volumes. (C) Proliferation by Ki-67 labeling. (D) CD31+ capillaries. (E) 
CD45+ leukocytes. Data are expressed as single values and means of the four ROI per tumor. Groups of tumors were compared (p>0.05, 
one-way ANOVA followed by Tukey’s post hoc test with a confidence interval of 95%, relative to young mice/young BM). (F) Absolute 
numbers of myeloid (CD45+/CD11b+) and lymphoid (CD45+/CD11b-) cells per tumor-bearing hemisphere in young, three to seven BM-
reconstituted mice bearing SMA-540 early- and end-stage tumors were analyzed by flow cytometry. Data are expressed as mean and SEM 
(p>0.05, unpaired Student’s t-test, old versus young myeloid cells, p>0.05, old versus young lymphoid cells).
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microenvironment of numerous solid tumors, including 
glioblastoma, determine their growth characteristics and 
likely also responses to non-surgical treatments like RT or 
pharmacotherapy [17]. Glioblastoma is characterized by a 
considerable quantity of infiltrating immune cells mainly 
consisting of tumor-associated macrophages, which can 
contribute up to 30% of the tumor mass [18–21]. Many 
of these host cells may support rather than limit tumor 
growth in glioblastoma [22–25] and help to maintain 
an immune suppressive micromilieu. This observation 
might be of more relevance in supporting tumor growth 
in brains of elderly patients where local changes in the 
microenvironment lead to a state resembling chronic 
inflammation [26].

In the present study, we tried to better understand 
why old age is such a dominant prognostic factor in 
glioblastoma and whether the age of the host determines 
in part the response to therapeutic interventions, 
notably VEGF antagonism. To address these questions 
experimentally, we focused on age-related host 
differences in tumor progression using four syngeneic 
mouse gliomas as model systems [13]. In addition, we 
characterized the glioma microenvironment in young 
and old mice, including changes during RT and anti-
VEGF treatment.

Survival was inferior in older mice in two out of 
four models (SMA-540, SMA-560). An age-dependent 
survival benefit was not observed in the SMA-497 
or GL-261 models. Differences in survival were not 
explained by altered tumor cell proliferation rates, 
vessel densities or total leukocyte infiltration rates, 
at least when assessed histologically at the timepoint 
when the first mice developed symptoms in each model 
(Figure 1, Supplementary Figure 1). Detailed flow 
cytometric analysis in one model with and in another 
without a survival difference between young and old 

mice revealed that lymphoid cell frequencies were 
lower in the SMA-540 early-stage tumors of old mice 
(Supplementary Figure 1). Furthermore, the ratios of 
lymphoid to myeloid cells and of total T cells to MDSC 
and to M2 macrophages were not only lower in old 
versus young early-stage, but also in young end-stage 
versus early-stage tumors (Figure 1, Supplementary 
Figure 1). Such ratios of effector to suppressor cell 
populations can have a significant impact on tumor 
growth [27, 28] and might be important factors for a 
pro- or anti-tumoral effect of the microenvironment 
[29, 30]. All these differences were seen only in the  
model with an age-dependent survival (SMA-540), but 
not in a model without an impact of age on survival 
(SMA-497).

Decreased survival of old mice might be also 
related to other factors such as elevated, non-favorable 
cytokine levels in old animals, e.g. VEGF or the the C-C 
motif chemokine ligand 2 (CCL2), which increase with 
normal aging [6, 31]. That systemic rather than local 
brain-specific aging factors account for poorer survival 
in old mice was strongly suggested by the unexpected 
observation that BMT from old to young mice 
decreased the survival of young recipient mice when 
challenged with SMA-540 cell implantation (Figure 2, 
Supplementary Figure 2).

The results of co-treatment studies indicate superior 
activity of the combination of VEGF inhibition and RT 
in old mice (Figure 3, Supplementary Figure 3, Table 
3). This would be in agreement with two earlier reports 
indicating that BEV is relatively more effective in elderly 
than in young patients with recurrent glioblastoma [6, 7]. 
Yet, such an age effect was less prominent in the large 
randomized phase III trials in the newly diagnosed setting 
[9, 10], which may have had a priori selected for better 
prognosis patients.

Table 2: Effect of BM transplantation on survival in the SMA-540 model1

Median survival (days)

Young mice/young BM Undefined

Young mice/old BM 71

Old mice/old BM 29

Old mice/young BM 31

Young mice/old BM Old mice/old BM Old mice/young BM

Young mice/young BM *p=0.0452 ****p<0.0001 ****p<0.0001

Young mice/old BM **p=0.0011 ****p< 0.0001

Old mice/old BM p=0.4930

1Comparison of survival curves (*p<0.05, **p<0.01, ****p<0.0001, Gehan-Breslow-Wilcoxon Test) of young (< 3 month) and 
old (> 8 month) syngeneic SMA-540-glioma-bearing and BM transplanted mice.
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Figure 3: Efficacy of RT and B20 VEGF antibody therapy: modulation by age. SMA-540 gliomas were established in 
young or old mice. The mice were then randomized to either a solvent group or received B20 i.p. (5 mg/kg) twice weekly starting day 10, 
or a single application of RT (12 Gy) at day 14 to the skull, or both. On day 28, when the first mouse became symptomatic, three to five 
tumors per group, selected per pre-randomization, were harvested for histological analysis and volumetric measurements. The other five 
to eight mice per group were monitored for survival. (A) Kaplan-Meier survival curves of glioma-bearing young (left) and old mice (right) 
receiving solvent, RT+solvent, B20 or both. (B) Vessel density was determined by counting CD31+ capillaries in four regions of interest 
(ROI) per tumor. Data are expressed as single values and means of the four ROI per tumor. Groups of tumors were compared (**p<0.01, 
***p<0.001, one-way ANOVA followed by Tukey’s post hoc test with a confidence interval of 95%, treatment versus solvent). (C) Isolated 
tumor-infiltrating leukocyte subpopulations of early-stage and end-stage tumors in three to six young (upper row) or old (lower row) mice 
per group were analysed by multicolor flow cytometry. Frequencies of different myeloid and lymphoid subpopulations normalized to 
leukocytes. (D) Ratios of different tumor-infiltrating leukocyte subpopulations of early-stage (left) and end-stage (right) of solvent versus 
B20, RT, or BEV/RT were calculated in young (upper row) and old mice (lower row). A value of -2 indicates a reduction to 2-2 ≡ 0.25. A 
value of 2 indicates an increase to 22 ≡ 4. (E) NLR of early- and end-stage tumors of young (upper row) and old (lower row) mice.
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Similar to recurrent glioblastomas in the elderly, 
SMA-540 mouse gliomas in old animals might be more 
VEGF-dependent than in young mice based on their 
response to anti-VEGF therapy. MVD was decreased 
upon B20 treatment regimens only in old mice, 
consistent with the stronger response to B20 in old 
mice, indicating also that VEGF-independent pathways 
may maintain angiogenesis in gliomas of younger 
mice. Furthermore, flow cytometric studies of tumor-
infiltrating immune cell subpopulations revealed that 
end-stage tumors in old but not young mono- and co-
treated mice exhibited increased infiltration of lymphoid 
cells in relation to myeloid subpopulations, namely T 
helper and cytotoxic T cells, (Figure 3, Supplementary 
Figure 3), reflecting an immune activated, anti-tumor 
microenvironment. This finding was confirmed by lower 
NLR in the tumors of old compared to young mono- and 
co-treated mice, reflecting a treatment-related decrease 
of inflammation, which is considered to be of prognostic 
significance in several human solid tumors [15, 32], 
including glioblastoma [16].

Our study highlights the biological host-related 
and age-induced heterogeneity of murine glioma 
models. At least for subsets of syngeneic mouse gliomas 
in old animals, inhibition of VEGF in combination 
with irradiation results in increased tumor infiltration 
by lymphoid cells, which in turn might prolong tumor 
control. Yet, these observations remain preliminary, and 
further experiments are needed to translate this concept 
into the human setting of glioblastoma in the elderly 
where innovative treatment approaches are urgently 
needed.

MATERIALS AND METHODS

Reagents and cell lines

The monoclonal anti-mouse VEGF antibody B20-
4.1.1 (B20) was kindly provided by T. R. Schwartz 
(Genentech, South San Francisco, CA). Murine SMA-
497, SMA-540 and SMA-560 glioma cells were kindly 
provided by D.D. Bigner (Durham, NC). GL-261 
cells were received from the National Cancer Institute 
(Frederick, MD). These cell lines have been characterized 
extensively in our laboratory [13] and are commonly 
cultured as adherent monolayers in Dulbecco's modified 
Eagle medium (DMEM) (Gibco, Life Technologies, Zug, 
Switzerland) supplemented with 10% heat-inactivated 
fetal calf serum (FCS) (Biochrom KG, Zug, Switzerland) 
and 2 mM glutamine (Biochrom KG).

Animal experiments

C57BL/6 mice were purchased from Charles River 
Laboratories (Sulzfeld, Germany). VM/Dk mice were 
obtained from in house breeding. 5’000 SMA-497, SMA-
540 and SMA-560 or 20’000 GL-261 cells in a volume 
of 2 μl of phosphate-buffered saline (PBS) (Gibco, Life 
Technologies) were injected into the right striatum of 
young mice (aged < 3 months) or old mice (aged > 8 
months) anesthetized and placed in a stereotaxic fixation 
device (Stoelting, Wood Dale, IL). A burr hole was 
drilled in the skull 2 mm lateral and 1 mm posterior to 
the bregma. The needle of a Hamilton syringe (Bonaduz, 
Switzerland) was introduced to a depth of 3 mm. The mice 

Table 3: Comparison of survival of SMA-540 tumor-bearing mice treated with RT or B201

Median survival (days) Young mice Old mice

Solvent 51 37

RT + solvent Undefined 42

B20 52 48.5

RT + B20 56 59

Young mice RT + solvent B20 RT + B20

Solvent p=0.3041 p=1.0000 p=0.5488

RT + solvent p=0.1397 p=0.5398

B20 p=0.3541

Old mice RT + solvent B20 RT + B20

Solvent p=0.1322 p=0.1496 *p=0.0362

RT + solvent p=0.7757 p=0.1590

B20 p=0.2008

1Comparison of survival curves (*p<0.05, Gehan-Breslow-Wilcoxon Test) of young (< 3 months) and old (> 8 months) 
syngeneic SMA-540-glioma-bearing mice treated with BEV or RT alone or in combination.
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employed had body weights > 20 g. Using a customized 
shielding device, mice were given a strictly locoregional 
(whole brain) radiotherapy of 12 Gy with 200 kV X-Ray 
unit at 100 cGy/min whereas systemic treatment was 
performed by i.p. injections of B20 (5 mg/kg body weight 
2 times per week) or PBS. The mice were observed daily 
and euthanized when neurological symptoms developed or 
at defined time points for histological or flow cytometric 
analysis as indicated. Three to five mice per group were 
commonly euthanized using a pre-randomization list 
when any mouse in the experiment became symptomatic 
in order to perform histological or flow cytometric studies 
to assess tumor growth and tumor immune cell infiltration 
at an early stage. The remaining five to ten mice were 
euthanized when displaying neurological symptoms 
to obtain survival or flow cytometric data (end-stage). 
Where indicated, mice brains were explanted for snap-
frozen samples for histology and immunohistochemistry. 
Accordingly, brains were collected upon euthanization, 
embedded in cryomoulds in Shandon Cytochrome 
yellow (Thermo Scientific, Waltham, MA) and frozen 
in liquid nitrogen. Tumor incidences and sizes were 
determined using hematoxylin and eosin stained 8 μm 
thick cryosections using a Microm HM560 (Microchom 
HM560, Thermo Scientific).

Generation of BM–chimeric mice

For BM chimeras, male donor VM/Dk mice 
were euthanized. BM cells from the femurs and tibias 
were isolated by flushing with PBS containing 2% 
FCS and 1% penicillin/streptomycin (Invitrogen, Life 
Technologies, Zug, Switzerland) and filtered through 
a 70 μM mesh to remove bone spicules or muscle. BM 
cells (106/ml) were incubated in Hematopoietic Stem 
Cell Media (Sigma, St. Louis, MO) plus 10% FCS, 1% 
penicillin/streptomycin (Invitrogen), 20 ng/ml mIL-3, 
50 ng/ml mIL-6 and 50 ng/ml murine stem cell factor 
(mSCF) (Peprotech, London, UK) for up to four days 
at 37°C with 5% CO2 in a humidified chamber. After 
incubation, BM cells were injected intravenously into 
congenic recipient male and female mice (6-week-old, 
lethally myeloablatively irradiated with 10.5 Gy 1-2 
hours earlier). Blood chimerism was tested by a qRT-
PCR-based technique [14] in female recipient mice. 
Briefly, genomic DNA was isolated from peripheral blood 
samples and the Y chromosome specific gene, Zfy1, was 
amplified. Additionally, differential blood counts of BM-
reconstituted or only lethally irradiated, non-transplanted 
and wild-type (WT) mice were obtained.

Histology and immunohistochemistry

Primary antibodies were monoclonal rat anti-CD3 
(BD Pharmingen, Allschwil, Switzerland, 555273, 1:100), 
monoclonal rat anti-CD31 (BD Pharmingen, BD550274, 

1:50), monoclonal rat anti-CD45 (Biolegend, San Diego, 
CA, 103102, 1:1000), and polyclonal rabbit anti-Ki67 
(Epitomics, Burlingame, CA, 4203-1, 1:100). For 
conventional histology, 8 μm cryosections were stained 
with haematoxylin and eosin. For immunohistochemistry, 
cryosections were pretreated with 1% H2O2 and blocked 
in 10% rabbit serum or blocking solution (Candor 
Biosciences, Wangen, Germany). Biotinylated secondary 
antibodies, streptavidin and diaminobenzidine were 
obtained from Dako (Baar, Switzerland). Histofine Simple 
Stain Mouse MAX PO secondary-labelled antibody system 
was obtained from Nichirei (Tokyo, Japan). Secondary 
antibodies were used according to standard procedures. 
For each experiment, three randomly selected animals per 
group were euthanized and brains were harvested on the 
day the first animal developed neurological symptoms.

Immunohistological scores for proliferating cells 
(Ki-67), blood vessels (CD31), leukocytes (CD45) and 
T cells (CD3) were obtained from 4 regions of interest 
(ROI) from 2-3 tumors per group. Within tumor tissue, 
percentages of CD3-, CD45- and Ki-67-positive cells 
were determined. MVD was calculated by counting 
CD31+ capillaries. Tumor volumes were calculated using 
an approximation based on ellipsoid geometric primitive 
[33].

Flow cytometry

The following antibodies were used for flow 
cytometric analysis: monoclonal rat anti-CD4 (clone 
Gk1.5, BD, 563232, 1:100), monoclonal rat anti-CD8 
(clone 53-6.7, BD, 563332, 1:100), monoclonal rat anti-
CD11b (clone M1/70; BD, 557657, 1:100), monoclonal 
rat anti-CD45 (clone 30-F11, BioLegend, 103126, 1:400), 
monoclonal rat anti-CD204 (Lifespan Biosciences, Seattle, 
WA, LS-C130606, 1:50), monoclonal rat anti-F4/80 (clone 
Cl:A3-1, AbD Serotec, Kidlington, UK, MCA497PET, 
1:50), monoclonal rat anti-Ly6C (clone AL-21, BD, 
563011, 1:400), monoclonal rat anti-Ly6G (clone 1A8, 
BD, 560602, 1:100) and monoclonal mouse anti-NK1.1 
(clone PK136, BD, 560515, 1:50). Zombie Aqua fixable 
viability kit (BioLegend) was used to exclude dead cells. 
Doublets were excluded based on SSC-A/SSC-H.

Flow cytometry of brain-infiltrating leukocytes 
was performed as described [34]. Briefly, mice were 
anaesthesized and then cardially perfused using ice-cold 
PBS. Subsequently, tumor bearing hemispheres were 
dissected removing the olfactory bulb and cerebellum, cut 
into small pieces and incubated with DNaseI (0.5 mg/ml, 
Sigma) and collagenase D (0.4 mg/ml, Roche, Rotkreuz, 
Switzerland) for 30-45 min at 37°C. Thereafter, the tissue 
was homogenized, filtered through a 100-μm nylon filter 
(BD) and washed with PBS. Following centrifugation at 
350 g for 5 min at 4°C, the pellet was resuspended in 30% 
Percoll (Sigma) and centrifuged again at 15,000 g for 30 
min at 4°C. The myelin topping was removed and the 
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remaining solution containing brain-infiltrating immune 
cells was collected and washed with PBS. Flow cytometry 
was performed according to standard protocols followed 
by analysis on a LSR II Fortessa (BD). Data analysis was 
performed using FlowJo Version 10.0.7 (Tree Star).

TCGA analyses

The TCGA GBM dataset was accessed utilizing 
cancer browser (https://genome-cancer.ucsc.edu). Illumina 
HiSeq percentile normalized gene expression data of 
samples derived from newly diagnosed, non-glioma CpG 
island methylator phenotype (G-CIMP) glioblastoma 
samples were analyzed for differential expression of any 
genes annotated with the gene ontology term biological 
processs: immune_response (GO:0006955).

Statistical analysis

Statistical analysis was done using GraphPad Prism 
5.0 software. Survival analysis for the in vivo studies and 
the TCGA dataset were done using the Log-rank (Mantel-
Cox) test and the Gehan-Breslow-Wilcoxon test. Statistical 
significance of immunohistochemical, flow cytometry and 
gene expression data was tested using the unpaired and 
paired Student t-test or one-way ANOVA with Tukey’s 
post hoc test for multiple analysis. A p value below 0.05 
was considered significant.
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