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ABSTRACT
Major depressive disorder (MDD) is a leading world-wide psychiatric disorder 

with high recurrence rate, therefore, it is desirable to identify current MDD (cMDD) 
and remitted MDD (rMDD) for their appropriate therapeutic interventions. In the 
study, 19 cMDD, 19 rMDD and 19 well-matched healthy controls (HC) were enrolled 
and scanned with the resting-state functional magnetic resonance imaging (rs-fMRI). 
The Hurst exponent (HE) of rs-fMRI in AAL-90 and AAL-1024 atlases were calculated 
and compared between groups. Then, a radial basis function (RBF) based support 
vector machine was proposed to identify every pair of the cMDD, rMDD and HC groups 
using the abnormal HE features, and a leave-one-out cross-validation was used to 
evaluate the classification performance. Applying the proposed method with AAL-
1024 and AAL-90 atlas respectively, 87% and 84% subjects were correctly identified 
between cMDD and HC, 84% and 71% between rMDD and HC, and 89% and 74% 
between cMDD and rMDD. Our results indicated that the HE was an effective feature 
to distinguish cMDD and rMDD from HC, and the recognition performances with AAL-
1024 parcellation were better than that with the conventional AAL-90 parcellation.

INTRODUCTION

Major depressive disorder (MDD) is a common 
psychiatric disease, which is characterized by a low 
mood, worthlessness, anxiety and cognitive impairments 
[1, 2], and these symptoms are associated with the 
structural and functional impairments of some core 
brain regions [3]. By the year 2020, it will be the 
second leading global disease burden [4]. Besides, 
remitted MDD (rMDD) represents a not full recovery 
state of MDD, which also shows a tremendous effect 

on outcomes such as future relapse, morbidity and 
mortality [5]. Currently, no effective neurobiological 
markers or predictors are adopted to confirm the current 
MDD (cMDD) and rMDD in clinical practice, and the 
diagnosis of cMDD and rMDD are mainly based on the 
clinical symptoms and signs, and expert consensus. So 
it is desirable to develop effective brain imaging based 
diagnostic methods to identify cMDD and rMDD from 
healthy controls (HC), which could provide an objective 
perspective to recognize and understand the cMDD and 
rMDD.

                                         Clinical Research Paper



Oncotarget90453www.impactjournals.com/oncotarget

Magnetic resonance imaging (MRI) has attracted 
increasing attention for improving our understanding of 
the pathological mechanism and the underlying cognitive 
and affective dysfunctions in MDD [6]. A consistent 
finding is that MDD patients showed functional and 
structural abnormalities in limbic areas, prefrontal cortical 
regions and subcortical structures relative to HC [7–9], 
and the abnormalities in these brain regions may reflect 
the physiological characteristics of depressive patients. 
However, few studies have investigated the resting state 
brain abnormalities in rMDD patients. Yuan et al. reported 
that the remitted geriatric depression patients showed 
increased regional homogeneity (ReHo) in right median 
frontal gyrus, superior frontal gyrus and putamen, and 
decreased ReHo in parietal and temporal gyrus [10]. In 
our previous study, we found increased amplitude of low-
frequency fluctuation (ALFF)/fractional ALFF (fALFF) 
values in right putamen, and decreased ALFF/fALFF 
values in right precuneus and left lingual gyrus in remitted 
depression patients [11]. Though great progress has 
been made in cMDD and rMDD studies during the past 
decades, patient-specific diagnostic methods for cMDD 
and rMDD are still desperately needed.

In recent years, machine learning has been applied 
to identify MDD patients based on MRI signals. Fu 
et al. classified MDD patients from HC on the basis of 
their neural responses to the experiments of sad faces 
presentation, and accuracies of 74% and 76% were 
obtained with medium-intensity sad faces and high-
intensity sad faces respectively [1]. Hahn et al. used a 
Gaussian process classifier to identify MDD patients based 
on the integrating functional MRI (fMRI) data associated 
with affective and emotional processing, and acquired 
an accuracy of 83% [12]. Wei et al. adopted the Hurst 
exponent (HE) of twelve resting-state fMRI networks as 
the classification features, and achieved an accuracy of 
90% [13, 14]. Marquand et al. investigated the functional 
neuroanatomy of verbal working memory as a potential 
diagnostic biomarker for depressive disorders, and got 
an accuracy rate of 68% [15]. Costafreda et al. used the 
support vector machine (SVM) algorithm on anatomical 
MRI data of MDD patients with pharmacological 
treatment, and yielded an accuracy of 89% [16]. To the 
best of our knowledge, few studies have utilized the 
machine learning method to discriminate every pair of the 
cMDD, rMDD and HC groups.

Appropriate brain parcellations have become 
a pursuing goal since the widespread applications of 
multi-modal MRI imaging [17–20], and different scaling 
atlases have been reported to result in considerable 
variations in relative studies [21, 22]. Among the existing 
atlases, the Automated Anatomical Labeling (AAL-90) 
atlas is still the most popular atlas in the brain studies 
[23], and it has been widely used in the discriminative 
studies for different disorders [24–26]. Notably, some 

previous studies demonstrated that the structural-MRI 
characteristics based recognition rates were affected by 
the selection of brain atlases [27, 28]. However, to the 
best of our knowledge, few studies have explored whether 
the fMRI characteristics (e.g. HE) based identification 
accuracies were also dependent on the atlas choice. In 
this study, AAL-1024 atlas was selected to compare with 
the conventional AAL-90 atlas for the following reasons. 
First, unlike other atlases, the AAL-1024 atlas is generated 
from the AAL-90 atlas, so it is easy to interpret and 
compare the abnormal regions between these two atlases. 
Second, the AAL-1024 atlas has 1024 subregions with 
identical size (approximate 40 voxels), so the influences 
of different sizes of subregions are avoidable. Moreover, 
considering some regions in the AAL-90 atlas are large, 
it is most likely that the signals from these regions are 
derived from several different functional subregions, 
which may influence the between-group findings, but the 
AAL-1024 atlas may better overcome this shortage.

Existing studies have demonstrated that spontaneous 
brain activities display scale-free dynamics, suggesting 
that the resting-state blood oxygen level-dependent 
(BOLD) signals show fractal-like properties [29]. HE, as 
an index ranging from 0 to 1, could well display the scale-
free dynamics via describing the self-similarity of a time 
series [30, 31]. A HE bigger than 0.5 indicates a positively 
correlated or persistent behavior in the time series, and a HE 
smaller than 0.5 implies an anti-correlated time series, i.e., 
a decrease in time series will be generally followed by an 
increase in time series, while a HE equals to 0.5 indicating a 
random white-noise time series [32]. Recently, HE has been 
utilized widely to access pathological and physiological 
conditions. An increasing HE was reported to accompany 
with normal aging in bilateral hippocampus [33]. Besides, 
changes in HE were shown to be associated with autism 
spectrum disorders, cholinergic modulation and different 
personality traits [34–36]. However, the HE differences 
among cMDD patients, rMDD patients and HC groups still 
remain unknown, and it is also uncertain whether HE could 
be an effective feature to discriminate every pair of the 
cMDD patients, rMDD patients and HC groups. 

In this paper, a radial basis function (RBF) based 
SVM method was proposed to identify every pair of 
cMDD, rMDD and HC groups using HE index. First, 
the HE characteristics of three groups were calculated 
by means of a rescaled range (R/S) analysis, and then 
the mean HE values in two AAL atlases (AAL-1024 
and AAL-90) were computed and compared between 
groups. At last, the mean HE values of abnormal brain 
regions were served as classification features of the 
RBF based SVM algorithm to discriminate every pair of 
the three groups, and a leave-one-out cross-validation 
(LOOCV) was applied to evaluate the recognition 
performance.
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RESULTS

Demographic and clinical information

Table 1 summarized the demographic and clinical 
information about the cMDD patients, rMDD patients and 
HC groups. There were significant differences in Hamilton 
Depression Rating Scale (HAMD) scores between the 
cMDD and rMDD groups, but not in duration of illness 
and the number of episodes. No significant differences 
were observed in age and education level among three 
groups.

Classification performance with two AAL atlases

Applying the proposed method to the experimental 
MRI data with AAL-1024 atlas, 87% of the subjects 
were correctly classified between cMDD patients and 
HC, together with an accuracy of 84% between rMDD 
patients and HC, and an accuracy of 89% between cMDD 
patients and rMDD patients. The detailed results were 
listed in Table 2. Taking every subject’s predicted score 
as a threshold, the corresponding receiver operating 
characteristics (ROC) curves were acquired as shown 
in Figure 1, and the area under the ROC curves (AUCs) 
of the proposed method were 0.94, 0.91 and 0.92, 
respectively. Table 3 listed the number of features retained 
in the proposed method per fold. Utilizing the proposed 
method to the experimental MRI data with AAL-90 atlas, 
84% of the subjects were correctly classified between 
cMDD patients and HC, together with an accuracy of 
71% between rMDD patients and HC, and an accuracy 
of 74% between cMDD patients and rMDD patients. 
Table 4 summarized the detailed results, and three ROC 
curves were also acquired as shown in Figure 2, and 
the AUCs of the proposed method were 0.85, 0.64 and 
0.72, respectively. The number of features retained in the 
proposed method per fold was showed in Table 5. Besides, 
all P values of the permutation test were less than 0.01, 
indicating the classification accuracies were reliable, and 
the relevant statistical results were showed in Figure 3 and 
Figure 4.

Between-group differences in HE

The most discriminative brain regions for group 
separation with AAL-1024 atlas and AAL-90 atlas 
were showed in Figure 5. When classifying cMDD 
patients from HC, the most informative regions mainly 
contained left insula, bilateral cingulate gyrus, left middle 
temporal gyrus, left superior temporal gyrus, bilateral 
supplementary motor area and right superior parietal 
cortex. When classifying rMDD patients from HC, the 
brain regions with great discriminative power mostly 
included bilateral insula, right cingulate gyrus, left 
superior frontal gyrus and left superior temporal gyrus. 

While applying the proposed method to discriminate 
between cMDD patients and rMDD patients, the most 
informative brain regions were predominantly located in 
left middle frontal gyrus, bilateral middle occipital gyrus, 
right superior parietal cortex, and right inferior parietal 
lobule.  

DISCUSSION

In this paper, a RBF based SVM algorithm was 
proposed to discriminate every pair of the cMDD 
patients, rMDD patients and HC groups using the HE of 
resting-state fMRI. Compared with the AAL-90 atlas, the 
proposed method with AAL-1024 atlas obtained better 
recognition performances, and yielded an accuracy of 87% 
between cMDD patients and HC, 84% accuracy between 
rMDD patients and HC and 89% accuracy between cMDD 
patients and rMDD patients.

The proposed classification method has several 
advantages. First, the RBF kernel function is simple 
(less parameters), and it has few numerical problems  
(0 < K(X, Xi) < 1). Unlike linear kernel function, it 
can deal with the case when the relationship between 
features and labels is nonlinear [37]. Second, a grid 
search algorithm, which has a high learning accuracy 
and can be implemented with parallel processing, was 
utilized to optimize the two parameters of SVM, and it 
significantly improved the classification performance. 
Third, two-sample two-tailed t tests were used to select out 
the discriminative features, which also has an important 
impact on the final performance. Several existing studies 
have demonstrated that correctly reducing the number 
of features can not only improve the classification 
performance but also speed up the computation [38, 39]. 
Meanwhile, considering the feature selection process was 
only constrained on the training set of each LOOCV fold, 
it could reduce overfitting of the classifier [24]. Besides, 
the total 90 and 1024 HE classification features were also 
tested using our proposed method respectively, and the 
classification accuracies without feature selection between 
any two groups were lower than 70%, which were notably 
lower than that with feature selection. In addition, the 
split-half validation, which divided every pair of cMDD, 
rMDD and HC into two groups, one group for training 
(9 subjects in each category) and one group for testing 
(10 subjects in each category), and the model generated 
by the training set were used to classify the testing set. 
With AAL-90 and AAL-1024 atlas respectively, we 
obtained accuracies of 70% and 80% between cMDD 
and HCs, 80% and 90% between rMDD and HCs, 70% 
and 85% between cMDD and rMDD. At last, considering 
that using a well-diagnosed but heterogeneous group of 
patients with different severity levels of clinical symptoms 
while not excluding medicated patients could offer a more 
realistic estimation of the proposed classification method 
for MDD [12], therefore, we combined the cMDD and 
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rMDD patients as one group, and then discriminated the 
new combined group from HC. An accuracy of 75% was 
obtained using AAL-90 atlas, and 81% accuracy was 
achieved utilizing the AAL-1024 atlas, which reflected 
that our HE-based recognition method could effectively 
discriminate most MDD patients with heterogeneous 
symptoms and medication.

HE has become a widely used complexity index 
in recent resting-state fMRI studies. For example, 
it had been used as the diagnostic biomarkers for 
Alzheimer’s disease [30], Autism Spectrum Disorders 
and Schizophrenia [34, 40]. These studies implied the 
possibility of HE as an independent discriminative feature 
in other psychiatric diseases. In a previous study, the HE 

Table 1: Participant demographic and clinical characteristics
Variables (Mean ± SD) cMDD rMDD HC P Values
Number of subjects 19 19 19 —
Age (years) 34.84 ± 13.58 37.58 ± 12.69 36.84 ± 12.69 0.79a

Education (years) 12.84 ± 3.18 12.68 ± 2.93 13.74 ± 2.16 0.46a

Duration of illness (years) 6.90 ± 8.34 7.37 ± 5.53 0.84b

HAMD 21.65 ± 4.50 4.63 ± 2.57 0.00b

Number of depressive episodes 2.68 ± 1.95 2.39 ± 1.80 0.64b

Antidepressants 23 29
Mood-stabilizer 1 1
Antipsychotics 4 6
Benzodiazepines 2 1
Medication-free 3 1
SD: standard deviation; cMDD: current major depressive disorder; rMDD: remitted major depressive disorder; HC: healthy 
controls; HAMD: Hamilton Depression Rating Scale.
aThe P values were obtained by one-way ANOVA.
bThe P values were obtained by two-sample two-tailed t-tests.

Table 2: The classification performance in every pair of cMDD, rMDD and HC with AAL-1024 
atlas
Groups Accuracy Sensitivity Specificity
cMDD vs. HC 87% 84% 89%
rMDD vs. HC 84% 89% 79%
cMDD vs. rMDD 89% 84% 95%

Figure 1: The receiver operating characteristics (ROC) curves of the proposed method with AAL-1024 atlas.  
(A) Between cMDD patients and HC; (B) Between rMDD patients and HC; (C) Between rMDD patients and cMDD patients.
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was used to recognize the MDD patients from HC [13], 
and the mean HE values of twelve independent networks 
were selected as the discriminative features, but some 
networks (e.g. auditory, lateral visual network) that may 
be unrelated to MDD symptoms showed large weights 
among all features in the discrimination, which made the 

recognition rate seem not sound enough. By using the 
AAL-1024 atlas and AAL-90 atlas, our proposed method 
could find the more precise between-group features than 
the independent networks, and the reported regions may 
be more closely correlated with the MDD. Additionally, 
the physiological significance of HE is still uncertain, and 

Table 3: The number of features retained in the proposed method per fold with AAL-1024 atlas
Fold Between cMDD and HC Between rMDD and HC Between cMDD and rMDD

1 75 73 63
2 72 84 73
3 78 76 70
4 82 84 68
5 73 71 74
6 71 64 65
7 86 89 71
8 72 64 63
8 75 70 66
10 67 70 64
11 71 69 69
12 66 86 66
13 71 71 59
14 76 78 61
15 76 64 61
16 74 71 65
17 69 68 57
18 74 73 67
19 74 81 62
20 82 78 66
21 79 79 70
22 77 82 68
23 78 66 62
24 73 76 58
25 69 73 67
26 92 78 66
27 73 67 69
28 65 82 65
29 69 80 57
30 76 82 58
31 80 69 69
32 73 85 73
33 87 62 63
34 62 74 58
35 71 75 63
36 73 68 65
37 86 67 63
38 83 66 61
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Figure 2: The receiver operating characteristics (ROC) curves of the proposed method with AAL-90 atlas. (A) Between 
cMDD patients and HC; (B) Between rMDD patients and HC; (C) Between rMDD patients and cMDD patients.

Figure 3: The permutation distributions of accuracies with AAL-1024 atlas. (A) Between cMDD patients and HC;  
(B) Between rMDD patients and HC; (C) Between rMDD patients and cMDD patients.

Figure 4: The permutation distributions of accuracies with AAL-90 atlas. (A) Between cMDD patients and HC; (B) Between 
rMDD patients and HC; (C) Between rMDD patients and cMDD patients.
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Table 4: The classification performance in every pair of cMDD, rMDD and HC with AAL-90 atlas
Groups Accuracy Sensitivity Specificity
cMDD vs. HC 84% 84% 84%
rMDD vs. HC 71% 68% 74%
cMDD vs. rMDD 74% 74% 74%

Table 5: The number of features retained in the proposed method per fold with AAL-90 atlas
Fold Between cMDD and HC Between rMDD and HC Between cMDD and rMDD

1 8 5 3
2 9 7 3
3 9 5 5
4 7 6 5
5 7 7 4
6 8 3 4
7 11 8 6
8 8 4 4
8 8 5 6
10 8 3 4
11 8 5 7
12 9 7 5
13 8 5 3
14 10 7 5
15 8 4 3
16 8 4 5
17 10 7 3
18 7 4 4
19 7 6 6
20 9 5 6
21 9 9 4
22 8 5 4
23 8 4 3
24 9 5 3
25 8 3 4
26 7 3 4
27 10 7 5
28 8 9 4
29 8 6 4
30 9 6 3
31 9 6 4
32 8 8 8
33 8 3 6
34 7 4 3
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it is hard to interpret the between-group abnormalities 
definitely. Future studies should be conducted to confirm 
the physiological significance of HE through the multi-
modal imaging validations in the animal model.

In this paper, we separately discriminated every pair 
of cMDD patients, rMDD patients and HC groups with two 
AAL atlases, and found that the classification performance 
with AAL-1024 atlas was significantly better than that 
with AAL-90 atlas, which may arise from the differences 
in the discriminative features. To clearly elucidate the 
differences of the discriminative features between AAL-
1024 and AAL-90 atlas, three tables were added in the 
Supplementary Tables 1, 2, and 3 to list all the stable 
discriminative features in LOOCV for the between-group 
classifications. From the tables, two advantages could be 
found with AAL-1024 atlas: First, all abnormal regions 
reported by AAL-90 were also detected by AAL-1024, and 
the discriminative features could be further located into 
more precise position by AAL-1024 atlas. For example, 
AAL-1024 atlas could discover more than one abnormal 
subregion in the regions reported by AAL-90, and this may 
be attributed to the existence of functional heterogeneity 
in AAL-90 parcellation, especially for some large regions. 

Second, AAL-1024 atlas could also detect some abnormal 
regions overlooked by AAL-90 atlas, therefore, more 
discriminative features were obtained by AAL-1024 
than AAL-90. Moreover, these new features discovered 
by AAL-1024 mainly lied in the default mode network 
and the limbic system, which highly correlated with the 
pathology of major depressive disorder [11, 41, 42]. 
In addition, to further display the advantages of AAL-
1024 atlas, the Fisher score method [43] was applied to all 
candidate features to detect whether the features revealed 
by AAL-1024 atlas could provide more discriminative 
power over the AAL-90 atlas. To have a comprehensive 
and direct comparison, the rearranged 90 features from 
AAL-90 atlas and the prior 90 features from AAL-1024 
atlas were compared in Fisher score. From Figure 1 and 
Supplementary Figure 1 in Supplementary Material, the 
Fisher score of AAL-1024 was found significant larger 
than that of AAL-90, which again indicated the advantage 
of AAL-1024 atlas over AAL-90 atlas. Hurst exponent is 
a functional index for resting state fMRI, but the widely 
used AAL-90 atlas is generated based on anatomical 
information, therefore, AAL-90 atlas may be not sensitive 
to the functional abnormalities in local regions. Although 

35 8 4 6
36 8 5 5
37 9 3 4
38 8 3 5

Figure 5: The HE differences in every pair of cMDD patients and rMDD patients and HC. (A) Between cMDD patients and 
HC; (B) Between rMDD patients and HC; (C) Between rMDD patients and cMDD patients.
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AAL-1024 atlas is also not a functional brain atlas, it 
partitions the whole brain into 1024 subdivisions with 
relative small size, therefore, it could largely improve 
the sensitivity to the local functional anomaly but also 
incorporate the local anatomical information.

In this study, the abnormal regions detected by 
the HE analysis in cMDD and rMDD patients turned 
out to be informative. Compared with HC, both cMDD 
and rMDD patients showed abnormal HE values in left 
insula, right cingulate gyrus and left superior temporal 
gyrus, meaning that these brain regions may be the trait 
markers for MDD. The insula plays an important role in 
affective processing, and several studies found that the 
induced anxiety, retardation and agitation were associated 
with the insula [2, 44, 45]. The abnormality pattern in the 
left insula was also consistent with our previous voxel-
based morphometry (VBM) study, which reported that 
the left dorsal anterior insula volume was found atrophy 
in both cMDD and rMDD groups [42]. The cingulate 
gyrus is commonly considered as a critical node of default 
mode network (DMN) [6]. Yao et al. reported a significant 
correlation between cingulate gyrus and hopelessness, 
cognitive disturbance and retardation in MDD patients [2], 
and the cingulate gyrus was inferred to play a role in the 
modulation of memory by emotionally arousing stimuli 
[46]. Besides, the superior temporal gyrus exhibited 
weaker responses to effort-based decision in MDD 
patients in a recent study [47]. In a word, these regions 
showed the vulnerability to the MDD, and could be served 
as the trait markers for MDD.

Compared to rMDD patients, cMDD patients 
showed significantly abnormal HE value in middle frontal 
gyrus, inferior parietal lobule, middle occipital gyrus 
and superior parietal cortex, suggesting that these brain 
regions may be the state markers for MDD. The middle 
frontal gyrus and inferior parietal lobule belong to DMN, 
which supports the self-reflective process, rumination and 
brooding in depressive patients [48, 49]. The abnormal 
fluctuations of both regions could add a complementary 
evidence for the abnormalities of DMN in MDD patients. 
The middle occipital gyrus belongs to visual recognition 
circuit [4], and several previous studies reported aberrant 
functional activities of middle occipital gyrus in MDD 
patients [4, 50]. In addition, an altered superior parietal 
cortex–caudate correlation pattern was reported in MDD 
patients in a previous study [51]. All these evidences lead 
to the conclusion that the depressive state is associated 
with the functions of these brain regions.

The current study had the following limitations. 
First, although much information has been acquired 
through HE analysis, the HE cannot provide a complete 
understanding of the neurobiology of depressive disorders. 
Other measures of complexity are needed for further 
understanding the mechanisms of MDD in future studies. 
Second, a relatively small dataset was utilized to estimate 
the classification accuracy. In the next step, we will collect 

a larger dataset and incorporate more imaging features to 
evaluate and improve our method.

MATERIALS AND METHODS

Subjects

Participants included 19 cMDD patients, 19 rMDD 
patients and 19 healthy subjects, and all subjects were 
females. The cMDD and rMDD patients were confirmed 
by two expert psychiatrists using the Structured Clinical 
Interview for DSM-IV (SCID). Totally, the cMDD and 
rMDD patients were different in their clinical symptoms: 
the cMDD patients showed depressive state at present 
while the rMDD patients displayed remitted mental 
health currently but had past histories as MDD. All 
depressive patients were rated on 17-item HAMD on the 
day of scanning. The rMDD patients were defined with 
HAMD scored no more than 7, while the cMDD patients 
scored no less than 17 [42, 52]. Inclusion criteria for the 
MDD patients were as follows: (1) meeting the SCID for 
MDD; (2) between 18 and 65 years old; (3) no history 
or complication of other psychiatric disorders; (4) able to 
give voluntary informed consent. Among the participants, 
one rMDD patients and three cMDD patients were 
medication free, and other patients were on medication 
including sodiumvalproate, sertraline, citalopram, lithium 
and divalproex. Nineteen education level and age well 
matched healthy subjects were recruited from the local 
community by print advertisements, and screened with 
the Non-patient Version Structured Interview from the 
DSM-IV. The exclusion criteria applied to all subjects 
includes: contraindications for MRI; with histories of 
stroke, neurological disorders, major physical diseases, 
alcohol or drug abuse, and system diseases such as thyroid 
dysfunction, severe anemia, syphilis or acquired immune 
deficiency syndrome.

After a complete description of the study to all 
participants, written informed consent from all subjects 
was obtained, and this study was approved by Research 
Ethics Review Board of Beijing Anding Hospital, Capital 
Medical University and Beijing Normal University 
Imaging Center for Brain Research. The procedures were 
carried out in accordance with the approved guidelines.

Image acquisition

All images were collected on a Siemens 3.0 T 
8 channel MRI scanner. All subjects were instructed 
to keep their eyes open, relaxed and awake during the 
scanning. To minimize head motion and instrumental 
noise effect, a birdcage coil fitted with foam padding was 
used. Resting-state fMRI data were acquired by gradient 
echo-planar imaging (EPI) sequence with the following 
parameters: repetition time (TR) = 2000 ms, echo time 
(TE) = 30 ms, flip angle (FA) = 90°, slice thickness= 4 
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mm, slices number = 33, field of view (FOV) = 220 × 
220 mm2, matrix size = 64 × 64, and the scan lasted for 8 
minutes and 240 volumes were acquired. The structural 
T1-weighted images were acquired without gap, and TR 
= 2530 ms, TE = 3.39 ms, FA= 7°, slice thickness = 1.33 
mm, FOV = 256 × 256 mm2, and voxel dimension = 1 × 
1 × 1.33 mm3. 

Data preprocessing

Data preprocessing were performed via the 
statistical parametric mapping (SPM8) (http://www. fil.
ion.ucl.ac.uk/spm) and Data Processing Assistant for 
Resting State fMRI (DPARSF) (http://www.restfmri.net/
forum/DPARSF). The first 10 images were discarded in 
order to make the subjects adapted to the environment 
and the scanner to be stabilized. At first, the remaining 
230 volumes were corrected for the different acquisition 
time between slices. Then, all images were realigned to 
the first image to correct inter-scan head motions, and all 
subjects were included with the displacements less than 
2 mm in the x, y, z axis or the angular motion less than 
2°. The spurious covariates including the signals from the 
ventricular system, white matter and the six head motion 
parameters obtained from the rigid-body transform were 
regressed. Then, a temporal band-pass filter (0.01–0.10Hz) 
was applied to the time series to reduce the influences of 
respiratory and cardiac noise and the linear drift. Next, 
all resulting images were normalized to the Montreal 
Neurological Institute (MNI) template, and every voxel 
was re-sampled to 3 × 3 × 3 mm3. At last, all images 
were smoothed using a 4 mm full width at half maximum 
(FWHM) Gaussian kernel.

Estimation of HE

Rescaled Range analysis, i.e. R/S analysis, can 
effectively detect the temporal complexity of a time 
series. The detailed principle of R/S analysis is listed as 
follows: given a time series X and its length is M, the time 

series is divided into A intervals and the length of each 
interval is N (1 ≤ N ≤  A),  A × N = M . The a-th interval 
is marked with Ia and the k-th element in Ia is marked with  
xa, k, k = 1, 2, 3... N, and ea  is the average value in Ia 
interval, then
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Where c is a constant, and HE was defined as the 
slope of the line that fits the pairs ))ln(,(ln NS

RN  in a 
least-square sense.

Feature selection

The individual HE maps were partitioned into 
1024 brain regions and 90 brain regions according to 
AAL-1024 and AAL-90 atlases (Figure 6). After that, the 
mean HE values in each brain region corresponding to 
two kinds of AAL atlases were served as the candidate 
features, respectively. Given that some features are 
redundant and irrelevant for classification, selecting 
out the discriminative features will improve the final 
classification performance [53, 54]. Therefore, two-sample 
two-tailed t tests were performed on the mean HE values 
of every brain region in two AAL atlases to determine the 
significant between-group differences as the classification 
features, and the significance level was set at P < 0.05. It is 
worth noting that the feature selection was only performed 
on the training set of every LOOCV fold, which could 
reduce the overfitting of the classifier.

Figure 6: AAL-90 atlas and AAL-1024 atlas
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SVM based method

In this paper, a SVM based method was proposed 
to discriminate every pair of the cMDD patients, rMDD 
patients and HC groups. The SVM algorithms were 
proposed to find the hyperplane with maximum margin 
in the feature space. The minimal distance from the 
closest training samples to the separating hyperplane is 
called margin, and a larger margin corresponds to a better 
generalization. The training examples that lie on the 
margin are called support vectors, which determine the 
location of hyperplane and could be regarded as the most 
difficult data to classify. In this paper, LibSVM toolbox 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm) was used for 
SVM implementation.

The proposed method adopted a radial basis function 
(RBF) which is defined as 2||),(),( iXX

ii eXXKXX −=→ γ as 
the kernel function, and a grid search method to optimize 
two parameters: γ, the width of the RBF, and C, an 
input parameter for the SVM, which adjusts the trade-
off between having zero training errors and allowing 
misclassifications. The grid search method is referred to 
as the classification performed with (γ, C) varying along a 
grid with 85.775.7-8 2,...,2,2,2 −−=γ and 85.775.7-8 2,...,2,2,2 −−=C
. The input form for SVM is < x, y > where x represents 
classification features and y stands for the class labels. 
Here, x represents the mean HE values in the brain regions 
that showed significant differences between groups, and 
y is the predefined group label (1 or -1) in discriminating 
every pair of three groups. Classification performance was 
quantified with accuracy, sensitivity and specificity using 
LOOCV, and the pair (γ, C) with the highest accuracy 
rate on the 65 × 65 grid will be selected as the optimal 
parameters.

Permutation test

Permutation test was used to estimate whether 
the observed classification accuracy was statistically 
significant. All class labels were randomly permuted to 
form a new training set, and then the feature selection and 
the proposed classification method were performed on 
the new training set. The permutation test was repeated 
1000 times, and the 1000 classification accuracies 
formed the permutation distribution. The P value was 
calculated as the proportion of the classification accuracy 
with the randomized label no less than the accuracy 
with the original label. If P value was less than 0.05, it 
demonstrated that the actual accuracy was statistically 
significant.

Abbreviations

MDD: major depressive disorder; rMDD: remitted 
major depressive disorder; cMDD: current major depressive 
disorder; HC: healthy controls; MRI: Magnetic resonance 

imaging; ReHo: regional homogeneity; ALFF: amplitude 
of low-frequency fluctuation; fALFF: fractional amplitude 
of low-frequency fluctuation; fMRI: functional Magnetic 
resonance imaging; HE: Hurst exponent; SVM: support 
vector machine; AAL: Automated Anatomical Labeling; 
BOLD: blood oxygen level-dependent. RBF: radial basis 
function; LOOCV: leave-one-out cross-validation; HAMD: 
Hamilton Depression Rating Scale; ROC: receiver operating 
characteristics; AUCs: area under the curves; VBM: voxel-
based morphometry; DMN: default mode network; SCID: 
Structured Clinical Interview for DSM-IV; EPI: echo-planar 
imaging; TR: repetition time; TE: echo time; FA: flip angle; 
FOV: field of view; SPM: statistical parametric mapping; 
DPARSF: Data Processing Assistant for Resting State 
fMRI; MNI: Montreal Neurological Institute; FWMH: full 
width at half maximum.

Author contributions

Bin Jing, Zhuqing Long and Han Liu made 
substantial contributions to the conception, design, analysis 
and interpretation of data, and drafted the manuscript. Bin 
Jing and Huagang Yan made contributions to the revision 
of the manuscript. Jianxin Dong, Xiao Mo and Dan Li 
made contributions to the conception, design and revision 
of figures. Chunhong Liu made contributions to the data 
acquisition. Haiyun Li, the corresponding author, made 
contributions to conception and interpretation of data, and 
determined the final version to be submitted for publishing. 
All authors read and approved the final manuscript.

CONFLICTS OF INTEREST

There is no conflicts of interest.

FUNDING

This work was supported by Beijing Natural Science 
Foundation (No.7174282, 4122018), Medicine and Clinical 
Cooperative Research Program of Capital Medical University, 
Grant (No. 13JL04, No. 14JL80, No. 15JL18, No.15JL58, 
No. 16JL25), National Natural Science Foundation of China, 
Grant (No. 81471389) and the High level health technical 
personnel in Beijing, Grant (No. 2014-3-095), and the open 
project of Laboratory of Brain Disorders, Ministry of Science 
and Technology (No. 2015NZDJ04).

REFERENCES

 1. Fu CH, Mourao-Miranda J, Costafreda SG, Khanna A, 
Marquand AF, Williams SC, Brammer MJ. Pattern 
classification of sad facial processing: toward the 
development of neurobiological markers in depression. Biol 
Psychiat. 2008; 63:656–662.

 2. Yao Z, Wang L, Lu Q, Liu H, Teng G. Regional 
homogeneity in depression and its relationship with 



Oncotarget90463www.impactjournals.com/oncotarget

separate depressive symptom clusters: A resting-state fMRI 
study. J Affect Disorders. 2009; 115:430–438.

 3. Wang L, Hermens DF, Hickie IB,  Lagopoulos J. A systematic 
review of resting-state functional-MRI studies in major 
depression. J Affect Disorders. 2012; 142:6–12.

 4. Guo WB, Liu F, Xue ZM, Xu XJ, Wu RR, Ma CQ, 
Wooderson SC, Tan CL, Sun XL, Chen JD, Liu ZN, Xiao CQ, 
Chen HF, et al. Alterations of the amplitude of low-
frequency fluctuations in treatment-resistant and treatment-
response depression: a resting-state fMRI study. Prog 
Neuro-Psychoph. 2012; 37:153–60.

 5. Liu CH, Ma X, Song LP, Tang LR, Jing B, Zhang Y, Li F, 
Zhou Z, Fan J, Wang CY. Alteration of spontaneous 
neuronal activity within the salience network in partially 
remitted depression. Brain Res. 2015; 1599:93–102.

 6. Zhang YF, Han Y, Wang YZ, Zhang YF, Jia HX, Jin EH, 
Deng LG, Li L. Characterization of resting-state fMRI-
derived functional connectivity in patients with deficiency 
versus excess patterns of major depression. Complement 
Ther Med. 2015; 23:7–13.

 7. Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH, Huang XQ, 
Chan RC, Mechelli A, Gong QY. Voxelwise meta-analysis 
of gray matter reduction in major depressive disorder. Prog 
Neuro-Psychoph. 2012; 3:11–6.

 8. Gong Q, Wu Q, Scarpazza C, Lui S, Jia Z, Marquand A, 
Huang X, McGuire P, Mechelli A. Prognostic prediction 
of therapeutic response in depression using high-field MR 
imaging. Neuroimage. 2011; 55:1497–503.

 9. Strakowski SM, Adler CM, Almeida J, Altshuler LL, 
Blumberg HP, Chang KD, DelBello MP, Frangou S, 
McIntosh A, Phillips ML, Sussman JE, Townsend JD. The 
functional neuroanatomy of bipolar disorder: a consensus 
model. Bipolar Disord. 2012; 14:313–25.

10. Yuan Y, Zhang Z, Bai F, Yu H, Shi Y, Qian Y, Liu W, You J, 
Zhang X, Liu Z. Abnormal neural activity in the patients 
with remitted geriatric depression: A resting-state functional 
magnetic resonance imaging study. J Affect Disorders. 
2008; 111:145–52.

11. Jing B, Liu CH, Ma X, Yan HG, Zhuo ZZ, Zhang Y, Wang SH, 
Li HY, Wang CY. Difference in amplitude of low-frequency 
fluctuation between currently depressed and remitted 
females with major depressive disorder. Brain Res. 2013; 
1540:74–83.

12. Hahn T, Marquand AF, Ehlis AC, Dresler T, Kittel-
Schneider S, Jarczok TA, Lesch KP, Jakob PM, Mourao-
Miranda J, Brammer MJ, Fallgatter AJ. Integrating 
neurobiological markers of depression. Arch Gen Psychiat. 
2011; 68:361–8.

13. Wei M, Qin J, Yan R, Li H, Yao Z, Lu Q. Identifying major 
depressive disorder using Hurst exponent of resting-state brain 
networks. Psychiat Res-Neuroim. 2013; 214:306–312.

14. Wei M, Qin J, Yan R, Bi K, Liu C, Yao Z, Lu Q. Association 
of resting-state network dysfunction with their dynamics of 
inter-network interactions in depression. J Affect Disorders. 
2014; 174:527–534.

15. Marquand AF, Mourão-Miranda J, Brammer MJ, Cleare AJ, 
Fu CH. Neuroanatomy of verbal working memory as a 
diagnostic biomarker for depression. Neuroreport. 2008; 
19:1507–11.

16. Costafreda SG, Chu C, Ashburner J, Fu CH. Prognostic 
and Diagnostic Potential of the Structural Neuroanatomy of 
Depression. Plos One. 2009; 4:e6353.

17. Craddock RC, James GA, Holtzheimer PE, Hu XP, 
Mayberg HS. A whole brain fMRI atlas generated via 
spatially constrained spectral clustering. Hum Brain Mapp. 
2012; 33:1914–28.

18. Joliot M, Jobard G, Naveau M, Delcroix N, Petit L, Zago L, 
Crivello F, Mellet E, Mazoyer B, Tzourio-Mazoyer N. 
AICHA: An atlas of intrinsic connectivity of homotopic 
areas. J Neurosci Meth. 2015; 254:46–59.

19. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, 
Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, et al. The 
Human Brainnetcome Atlas: A New Brain Atlas Based 
on Connectional Architecture. Cereb Cortex. 2016; 26: 
3508–26.

20. Glasser MF, Coalson TS, Robinson EC, Hacker CD, 
Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, 
Jenkinson M, Smith SM, Van Essen DC. A multi-modal 
parcellation of human cerebral cortex. Nature. 2016; 536: 
171–8.

21. Fornito A, Zalesky A, Bullmore ET. Network Scaling 
Effects in Graph Analytic Studies of Human Resting-State 
fMRI Data. Front Syst Neurosci. 2010; 4:22.

22. Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, 
Pantelis C, Bullmore ET. Whole-brain anatomical networks: 
Does the choice of nodes matter? Neuroimage. 2010; 
50:970–83.

23. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, 
Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. 
Automated anatomical labeling of activations in SPM using 
a macroscopic anatomical parcellation of the MNI MRI 
single-subject brain. Neuroimage. 2002; 15:273–89.

24. Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, He Y. 
Discriminative analysis of early Alzheimer’s disease using 
multi-modal imaging and multi-level characterization with 
multi-classifier (M3). Neuroimage. 2012; 59:2187–95.

25. Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, 
Potter GG, Welsh-Bohmer KA, Wang L, Shen D. Identification 
of MCI individuals using structural and functional connectivity 
networks. Neuroimage. 2012; 59:2045–56.

26. Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, 
Li Y,  Hu D. Identifying major depression using whole-brain 
functional connectivity: a multivariate pattern analysis. 
Brain. 2012; 135:1497–507.

27. Ota K, Oishi N, Ito K, Fukuyama H. A comparison of three 
brain atlases for MCI prediction. J Neurosci Meth. 2014; 
221:139–150.

28. Lilia M, Benoit M, Olivier C, Marie S, Valérie HB, Bruno D, 
Patrick G, Stéphane L, Serge K. Identification of Atrophy 
Patterns in Alzheimer’s Disease Based on SVM Feature 



Oncotarget90464www.impactjournals.com/oncotarget

Selection and Anatomical Parcellation. LNCS. 2008; 
5128:124–132.

29. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. 
Scale-Free and Multifractal Time Dynamics of fMRI 
Signals during Rest and Task. Front Physiol. 2012; 3:186.

30. Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, 
Bullmore E. Fractional Gaussian noise, functional MRI, 
Alzheimer’s disease. Neuroimage. 2005; 25:141–58.

31. Park C, Lazar NA, Ahn J, Sornborger A. A multiscale 
analysis of the temporal characteristics of resting-state 
fMRI data. J Neurosci Meth. 2010; 193:334–342.

32. Gentili C, Vanello N, Cristea I, David D, Ricciardi E, 
Pietrini P. Proneness to social anxiety modulates neural 
complexity in the absence of exposure: A resting state fMRI 
study using Hurst exponent. Psychiat Res-Neuroim. 2015; 
232:135–44.

33. Wink AM, Bernard F, Salvador R, Bullmore E, Suckling J. 
Age and cholinergic effects on hemodynamics and functional 
coherence of human hippocampus. Neurobiol Aging. 2006; 
27:1395–404.

34. Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, 
Wheelwright SJ, Bullmore ET, Baron-Cohen S; MRC 
AIMS Consortium, Suckling J. A shift to randomness of 
brain oscillations in people with autism. Biol Psychiat. 
2010; 68:1092–9. 

35. Hahn T, Dresler T, Ehlis AC, Pyka M, Dieler AC, Saathoff C, 
Jakob PM, Lesch KP, Fallgatter AJ. Randomness of resting-
state brain oscillations encodes Gray’s personality trait. 
Neuroimage. 2012; 59:1842–5.

36. Lei X, Zhao Z, Chen H. Extraversion is encoded by scale-
free dynamics of default mode network. Neuroimage. 2013; 
74:52–7.

37. Hsu CW, Chang CC, Lin CJ. A practical guide to support 
vector classification. Available at: https://www.csie.ntu.
edu.tw/~cjlin/papers/guide/guide.pdf. 2003.

38. De MF, Valente G, Staeren N, Ashburner J, Goebel R, 
Formisano E. Combining multivariate voxel selection and 
support vector machines for mapping and classification of 
fMRI spatial patterns. Neuroimage. 2008; 43:44–58.

39. Pereira F, Mitchell T, Botvinick M. Machine learning 
classifiers and fMRI: a tutorial overview. Neuroimage. 
2009; 45:S199–209.

40. Sokunbi MO,  Gradin VB, Waiter  GD, 
Cameron GG, Ahearn TS,Murray AD, Steele DJ, Staff RT. 
Nonlinear Complexity Analysis of Brain fMRI Signals in 
Schizophrenia. Plos One. 2014; 9:e95146.

41. Sheline YI,  Barch DM, Price JL, Rundle MM, 
Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, 
Coalson RS, Raichle ME. The default mode network and 
self-referential processes in depression. P Natl Acad Sci 
USA. 2009; 106:1942–7.

42. Liu CH, Jing B, Ma X, Xu PF, Zhang Y, Li F, Wang YP, 
Tang LR, Wang YJ, Li HY, Wang CY. Voxel-based 
morphometry study of the insular cortex in female patients 

with current and remitted depression. Neuroscience. 2014; 
262:190–9.

43. Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. 
Application of advanced machine learning methods on 
resting-state fMRI network for identification of mild 
cognitive impairment and Alzheimer›s disease. Brain 
Imaging Behav. 2015; 10:799–817.

44. Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, 
Friston KJ, Yun LS, Chen K. Neuroanatomical correlates 
of externally and internally generated human emotion. 
Am J Psychiat. 1997; 154:918–925.

45. Graff-Guerrero A, González-Olvera J, Mendoza-Espinosa Y, 
Vaugier V, García-Reyna JC. Correlation between cerebral 
blood flow and items of the Hamilton Rating Scale for 
Depression in antidepressant-naive patients. J Affect 
Disorders. 2004; 80:55–63.

46. Maddock RJ. The retrosplenial cortex and emotion: new 
insights from functional neuroimaging of the human brain. 
Trends Neurosci. 1999; 22:310–6.

47. Yang XH, Huang J, Lan Y, Zhu CY, Liu XQ, Wang YF, 
Cheung EF, Xie GR, Chan RC. Diminished caudate and 
superior temporal gyrus responses to effort-based decision 
making in patients with first-episode major depressive 
disorder. Prog Neuro-Psychoph. 2016; 64:52–9. 

48. Yao Z, Wang L, Qing LU, Liu H. Altered default mode 
network functional connectivity in patients with depressive 
disorders: resting-state fMRI study. Chin J Nervous Mental 
Dis. 2008; 34:278–282.

49. Greicius MD, Kiviniemi V, Tervonen O, 
Vainionpää V, Alahuhta S, Reiss AL, Menon V. Persistent 
default-mode network connectivity during light sedation. 
Hum Brain Mapp. 2008; 29:839–47.

50. Cerullo MA, Eliassen JC, Smith CT, Fleck DE, Nelson EB, 
Strawn JR, Lamy M, DelBello MP,  Adler CM, 
Strakowski SM. Bipolar I disorder and major depressive 
disorder show similar brain activation during depression. 
Bipolar Disord. 2014; 16:703–12. 

51. Yang XH, Wang Y, Huang J, Zhu CY, Liu XQ, Cheung EF, 
Xie GR, Chan RC. Increased prefrontal and parietal cortical 
thickness does not correlate with anhedonia in patients with 
untreated first-episode major depressive disorders. Psychiat 
Res-Neuroim. 2015; 234:144–51.

52. Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng LL, Hu D. 
A Treatment-Resistant Default Mode Subnetwork in Major 
Depression. Biol Psychiat. 2013; 74:48–54.

53. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, 
Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-
Schlaggar CN, Barnes KA, Dubis JW, Feczko E, et al. 
Prediction of individual brain maturity using fMRI. Science. 
2010; 329:1358–61.

54. Guyon I, Elisseeff A. An Introduction to Variable Feature 
Selection. J Mach Learn Res. 2003; 3:1157–1182.


