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ABSTRACT
The human kinome is gaining importance through its promising cancer therapeutic 

targets, yet no general model to address the kinase inhibitor resistance has emerged. 
Here, we constructed a systems biology-based framework to catalogue the human 
kinome, including 538 kinase genes, in the broader context of the human interactome. 
Specifically, we constructed three networks: a kinase-substrate interaction network 
containing 7,346 pairs connecting 379 kinases to 36,576 phosphorylation sites in 1,961 
substrates, a protein-protein interaction network (PPIN) containing 92,699 pairs, 
and an atomic resolution PPIN containing 4,278 pairs. We identified the conserved 
regulatory phosphorylation motifs (e.g., Ser/Thr-Pro) using a sequence logo analysis. 
We found the typical anticancer target selection strategy that uses network hubs as 
drug targets, might lead to a high adverse drug reaction risk. Furthermore, we found 
the distinct network centrality of kinases creates a high anticancer drug resistance 
risk by feedback or crosstalk mechanisms within cellular networks. This notion is 
supported by the systematic network and pathway analyses that anticancer drug 
resistance genes are significantly enriched as hubs and heavily participate in multiple 
signaling pathways. Collectively, this comprehensive human kinome interactome map 
sheds light on anticancer drug resistance mechanisms and provides an innovative 
resource for rational kinase inhibitor design.

INTRODUCTION

The human kinome has become one of the most 
important classes of drug targets in the pharmaceutical 
industry [1-3]. So far, more than 20 drugs targeting one 
or more kinases have been approved for clinical use in 
a variety of cancers, including lung, breast, melanoma, 
colorectal, pancreatic, and prostate cancers [1,4,5]. 
Moreover, as of 2012, more than 500 kinase inhibitors 
have been used as therapeutic drugs, approximately 
a third of which are undergoing clinical trials [4,6]. 
However, patients treated with those kinase inhibitors 
eventually develop resistance, and their prolong survivals 
are typically only a few months [5,7-12]. One reason 

for resistance is that kinases are extensively involved 
in complex biological mechanisms through adaptive 
crosstalk or feedback within cellular networks.

Most kinases are proteins, while others are lipids or 
small molecules. There are more than 600 putative kinase 
genes that account for ~3% of human protein-coding genes 
[13]. The kinases catalyze the reversible phosphorylation 
of ~500,000 phosphorylation sites in ~20,000-22,000 
human proteins, playing critical roles in human cells as 
well as other eukaryotic cells. Furthermore, kinases are 
involved in various key cellular signaling pathways, 
including transcription, cancer cell metabolism, cell cycle 
progression, apoptosis, and differentiation [2,4,13]. It has 
been estimated that more than 400 human diseases are 
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caused by kinase signaling pathway defects (http://www.
kinasenet.ca/). So far, more than 80% of kinases have been 
investigated as drug targets for therapeutic development. 
However, a quantitative network measurement of 
functional relationships among drugs, kinases, and 
the human protein interactome at the kinome level 
remains largely unknown. Constructing a global human 
kinase phosphorylation network and the human kinome 
interactome resource is therefore essential to further 
explore the relationship among drug responses, network 
properties, and cellular functions, thereby accelerating 
rational kinase inhibitor design for cancer therapy.

In this study, we developed a systems biology-
based framework to construct a global human kinome 
interactome map by integrating the kinase-substrate 
interaction network (KSIN), kinase-drug interaction 
network (KDIN), physical protein-protein interaction 
network (PPIN), and atomic resolution three-dimensional 
structural PPIN (3DPPIN). We systematically examined 
and compared the network topological and functional 
properties of several important gene or protein sets in this 
global human kinome interactome. These sets include 
kinase genes, Mendelian disease genes (MDGs), orphan 
disease-causing mutant genes (ODMGs), Cancer Gene 
Census (CGC) genes, essential genes, anticancer drug 
sensitivity genes, drug target proteins, and adverse drug 

reaction-associated proteins (ADRPs). We identified the 
conserved regulatory phosphorylation motifs (e.g., Ser/
Thr-Pro) using a sequence logo analysis, which provides 
the evidence that the proline direction of kinases is a 
crucial mechanism in the conserved phosphorylation 
signaling pathways. We found that the distinct network 
centrality (e.g., hubs) of kinases creates a high risk 
for the evasion of single kinase target inhibition by 
feedback or crosstalk mechanisms. This notion is further 
supported by the systematic network and pathway 
analyses that anticancer drug resistance genes are 
significantly enriched as hubs and heavily participate 
in multiple cancer signaling pathways. Furthermore, 
we provided the statistical evidence that the typical 
anticancer target selection strategy, which uses network 
hubs as drug targets, might lead to a high risk for adverse 
drug reactions. Collectively, this study sheds light on 
kinase inhibitor resistance mechanisms and provides an 
innovative systems biology resource for rational kinase 
inhibitor design in individualized cancer therapy.

RESULTS

We developed a systems biology-based framework 
(Figure 1) and used it to construct a global human 

Figure 1: Diagram of systems biology-based framework for the human kinome interactome map building. This human 
kinome interactome map across 538 kinase genes includes five components: (i) kinase-substrate interaction network, (ii) physical protein-
protein interaction network (PPIN) and an atomic resolution three-dimensional structural PPIN, (iii) drug-target interaction network, (iv) 
disease gene annotations, and (v) network, pathways, and bioinformatics analyses.
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kinome interactome map. The current version of the 
human kinome [13] includes 637 genes categorized into 
10 groups: tyrosine kinases (TK), tyrosine kinase-like 

kinases (TKL), casein kinases (CK1), PKA/PKG/PKC-
family kinases (AGC), calcium/calmodulin-dependent 
kinases (CAMK), sterile homologue kinases (STE), 
CDK/MAPK/GSK3/CLK-family kinases (CMGC), 
receptor guanylate cyclases (RGC), atypical protein 
kinases (Atypical), and kinases that did not belong to 
any group above (Other). After mapping them to the 
GeneCards and the National Center for Biotechnology 
Information (NCBI) [14] databases, 538 genes had official 
gene symbols and Entrez IDs (Supplementary Table S1). 
Figure 2A shows the distribution of these 538 kinase 
genes in 10 groups. Starting with these 538 kinase genes, 
we systematically constructed a global human kinome 
interactome map using the following data: a KSIN with 
7346 pairs, a PPIN with 92,699 pairs, an atomic resolution 
3DPPIN with 4278 pairs, and a drug-target interaction 
network with 13,582 pairs (Supplementary Table S1 and 
Figure 1). The collection of the human kinome and four 
networks is available at http://bioinfo.mc.vanderbilt.edu/
kinomenetworkX/. Next, we systematically examined the 
topological features and functional relationships of these 
networks to better understand kinase inhibitor responses 
and molecular networks of the human kinome.

Functional mapping of the human kinome

We compared the 538 kinase genes with each of the 
following gene sets: 487 CGC genes, 1,855 known drug 
target proteins (genes), 2,123 ODMGs, 2,714 MDGs, and 
2,721 essential genes (Supplementary Table S1). Within 
the current human kinome, 422 kinase genes (78.4%) are 
found in at least one of these five gene sets, including 
45 CGC genes, 126 drug target proteins (genes), 101 
MDGs, 85 ODMGs and 386 essential genes (Figure 2). 
This observation indicated that kinase genes tended to 
be CGC genes more often as compared to MDGs (odds 
ratio=2.6, p=1.3×10-6, Fisher’s exact test) or ODMGs 
(p=8.3×10-6). Among the 45 CGC kinase genes, 28 kinases 
have been approved by the United States Food and Drug 
Administration (FDA) for molecularly targeted cancer 
treatment. In order to further our understanding of the 
biological functions of the human kinome, we examined 
the cellular component features of 538 kinases using the 
ClueGO [15]. We found kinases tended to locate in the 
plasma membrane integral region (p=9.0×10-9, two-sided 
hypergeometric test), plasma membrane (p=6.1×10-8), 
cytoskeletal region (p=3.5×10-5), cytoskeleton (p=3.5×10-

4), or cleavage furrow (p=4.5×10-3) (Supplementary 
Table S2). It is not surprising that kinases are enriched 
in membrane components, as the cell membrane is 
a key location for signal transduction and cell-cell 
communications.

Figure 2: Functional annotations of the human kinome. 
(A) Pie chart of 538 kinase genes grouped by 10 different kinase 
groups: tyrosine kinases (TK), tyrosine kinase-like kinases 
(TKL), casein kinases (CK1), PKA/PKG/PKC-family kinases 
(AGC), calcium/calmodulin-dependent kinases (CAMK), sterile 
homologue kinases (STE), CDK/MAPK/GSK3/CLK-family 
kinases (CMGC), receptor guanylate cyclases (RGC), atypical 
protein kinases (Atypical), and kinases that did not belong to any 
groups above (Other). (B) The Venn diagram of overlaps among 
538 kinase genes, 1,855 drug target proteins, 487 Cancer Gene 
Census (CGC) genes, and 2,721 essential genes. (C) The Venn 
diagram of overlaps among 538 kinase genes, 2,714 Mendelian 
disease genes (MDGs), 2,123 orphan disease-causing mutant 
genes (ODMGs), and 2,721 essential genes.
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Kinase-substrate interaction network

We constructed a high-resolution KSIN using 
a systems biology-based framework in Figure 1. The 
current version of KSIN includes 7,346 experimentally 
validated or literature-curated kinase-substrate interaction 
(KSI) pairs connecting 379 kinases and 1,961 non-
kinase substrate proteins (Supplementary Table S1). 
The details of kinase genes categorized by each kinase 
group are shown in Supplementary Figure S1. We further 
collected high-resolution in vivo phosphorylation sites 
from dbPTM3 [16] and PhosphositePlus [17], and used 
the data to annotate each protein kinase and its substrate 
protein. In total, we collected 173,460 non-redundant 
phosphorylation sites in 18,610 proteins (Supplementary 
Table S2). This collection included 94,693 phosphoserine 
(pS) sites (54.6%), 44,023 phosphothreonine (pT) 
sites (25.4%), and 34,744 phosphotyrosine (pY) sites 
(20.0%) (Supplementary Figure S1C). Among these 
phosphorylation sites, 10,374 sites were found in a total 
of 490 kinases (91.1% of kinome), including 5,364 pS 
sites (51.7%), 2,581 pT sites (24.9%), and 2,429 pY 
sites (23.4%) (Supplementary Figure S1D). Next, we 
compared the kinases and substrates in KSIN with their 

phosphoproteome sites. In total, 36,576 phosphorylation 
sites were found in 1,919 non-kinase substrate proteins in 
KSIN, including 21,184 pS sites (57.9%), 8,812 pT sites 
(24.1%), and 6,580 pY sites (18.0%) (Supplementary 
Figure S1E).

Topological characteristics of KSIN

We visualized KSIN in Cytoscape and examined 
its network topological characteristics in Figure 3. In 
this network, 379 kinases were denoted by circles, and 
1,961 non-kinase substrate proteins were denoted by 
squares. A straightforward exploration of the network 
revealed several major hubs, including PRKACA 
(connectivity=333), CDK2 (255), AKT1 (234), CSNK2A1 
(227), PRKAC (223), MAPK1 (194), SRC (163), MAPK3 
(141), MAPK3 (124), and GSK3B (123), all of which were 
involved in multiple substrate protein phosphorylation 
reactions. An examination of the connectivity distribution 
of KSIN showed that it follows a power-law distribution 
(y=axb, a=380.1, b=-1.3), with an average connectivity of 
6.3 and an average shortest path of 3.5 (Supplementary 
Figure S1F).

Figure 3: Kinase-substrate interaction network (KSIN). The size of each node reflects its degree of connectivity in KSIN. 
Abbreviations of kinase groups (circles) are provided in the Figure 2 legend. Non-kinase substrate nodes (squares) are color-coded according 
to their phosphorylation sites, including phosphoserine (pS), phosphothreonine (pT), and phosphotyrosine (pY).
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Modularity characteristics

Network modules, also known as network 
communities, represent groups of interconnected nodes 
that typically have similar biological functions. We used 
CFinder [18] to identify functional modules of KSIN. 
A total of 21 functional modules (Supplementary Table 
S2) were generated by CFinder (k-clique, k=4). The giant 
module included 733 KSI pairs connecting 110 kinases 
and 140 substrate proteins. Modules were further analyzed 
for overlaps and correlations using the ModuLand 
algorithm [19,20]. In total, we identified 89 overlapped 
modules (Supplementary Figure S2A). The correlation of 
89 modules is shown in Supplementary Figure S2B.

Substrate specificity of the human kinome

We examined sequence motifs of phosphorylation 
site using a sequence logo analysis tool [21]. 

Supplementary Table S2 shows the results for the targeted 
phosphorylation sites of the top 12 kinases that have 
the highest connectivity in KSIN. We found kinases 
recognized distinct sequence motifs (Figure 4A). For 
example, a serine or threonine residue preceding a proline 
(Ser/Thr-Pro) is a major regulatory phosphorylation motif 
that plays crucial functions in a diverse array of cellular 
processes.[22] Figure 4A showed several important 
functional hubs, including CDK2, MAPK1, MAPK3, 
and MAPK8 that harbored the conserved Ser/Thr-Pro 
motif. Similarly, glycogen synthase kinase-2 (GSK3B) 
is more likely to recognize and phosphorylate the first 
serine in the conserved motif Ser-X-X-X-Ser-Pro [23]. 
The Ser/Thr-Pro-directed kinases play crucial roles in cell 
cycle, transcription, and diverse signaling transduction 
pathways as well as in Alzheimer’s disease and various 
cancers [24]. For CSNK2A1, its +1 position has an Asp/
Glu (Figure 4A), confirming that CSNK2A1 is a Ser-
Asp/Glu-directed kinase [25]. The -3 and -2 positions of 
PRKACA, AKT1, PAK1, PRKCA, and PRKCD form 

Figure 4: Sequence motif analysis of kinase phosphorylation sites. (A) Logo analysis of target phosphorylation site sequence 
motifs (four amino acids before and after the phosphorylation residues) for 12 kinases that have the strongest connectivity in kinase-
substrate interaction network. The amino acids are labeled according to their chemical properties: green for polar amino acids (G, S, T, Y, 
C, Q, N), blue for basic amino acids (K, R, H), red for acidic amino acids (D, E), and black for hydrophobic amino acids (A, V, L, I, P, W, 
F, M). (B) A substrate peptide binding pocket of CDK2 (PDB ID: 1QMZ). (C) Another substrate peptide binding pocket of CDK2 (PDB 
ID: 1GY3). B and C were prepared using the software PyMOL (http://www.pymol.org/).
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conserved phosphorylation consensus motifs, such as Arg-
Arg-X-Ser/Thr and Arg/Lys-X-X-Ser/Thr [26]. Moreover, 
distinct regulatory phosphorylation motifs were verified 
by kinase-substrate co-crystal structures. The pocket of 
phospho-CDK2-cyclinA3-peptide complex [27,28] tended 
to accommodate proline at the +1 position (Figure 4B,C). 
However, it should be noted that analyses here are limited 
due to the incompleteness and inaccuracy of existing data.

Kinase-drug interaction network

We searched drugs that target any of the 538 kinases 
from DrugBank [6] and Therapeutics Target Database 
(TTD) [29] and found a total of 567 drugs targeting 126 
kinases (Supplementary Table S2, as of April 30, 2013). 
Then, we used these drugs and their target kinases to build 
a bipartite graph of the kinase-drug interaction network 

(KDIN) in Figure 5. The bipartite graph analysis of KDIN 
could provide a useful survey of the current status of kinase 
inhibitor discovery and clinical applications. In KDIN, a 
drug (square) and a kinase (circle) are linked if the kinase 
is a known target of the drug (Figure 5). The average 
connectivity (4.6) of 11 FDA approved small molecularly 
targeted kinase inhibitors is significantly stronger than 
that of 527 experimental drugs (1.2, p=1.6×10-8, Wilcoxon 
test). The bipartite graph analyses showed that most FDA-
approved kinase inhibitors often target the cancer kinome 
through polypharmacology. For instance, dasatinib is an 
oral dual ABL1 and SRC family tyrosine kinase inhibitor 
for chronic myelogenous leukemia treatment. As shown 
in Figure 5, dasatinib targets 9 protein kinases, including 
ABL1, ABL2, EPHA2, KIT, PDEGFRB, FYN, SRC, 
YES1, and LCK. Furthermore, a kinase may be targeted 
by multiple drugs. For example, CDK2 binds 142 
experimental drugs in DrugBank and TTD. Since most 

Figure 5: Kinase-drug interaction network. In this network, a drug node (square) and a target kinase node (circle) are connected 
to each other by a grey edge if the target is annotated as a known interaction with the drug. The size of each node reflects its degree of 
connectivity. Drug nodes (circles) are green (experimental drugs) or gold (FDA approved drugs). Kinase nodes (circles) are color-coded 
according to the kinase groups (see Figure 2 legend).
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tumors could evade the inhibition of any single kinase [5], 
development of a polypharmacological inhibitor would 
be a promising strategy to improve clinical benefits for 
cancer therapy [5,30,31]. The two-dimensional chemical 
structures, detailed annotation data, and FDA-approved 
clinical usages of 11 small molecular kinase inhibitors are 
provided in Supplementary Figure S3.

Topological properties of the human kinome 
interactome

Do hubs in the protein interactome tend to be 
drug targets? In KSIN, 468 proteins within the top 20% 
of connectivity were selected as hubs. After manually 
mapping, we found 116 target kinases in KSIN, of which 
90 were hubs (p=3.6×10-43, Fisher’s exact test, Table 1). In 
PPIN, 2,602 proteins within the top 20% of connectivity 
were selected as hubs. After manual mapping, we found 
125 target kinases, among which 90 target kinases were 
hubs (p=2.5×10-35, Table 1). This target kinase enrichment 
in hubs was observed in 3DPPIN as well (p=1.5×10-22).

Furthermore, we compiled 13,582 drug-target 
interactions to construct a complementary drug target 
protein network (DTPN). In DTPN, nodes are target 
proteins, and two target proteins are connected if they 
are both targeted by at least one common FDA-approved 
or experimental drug [32]. This DTPN included 28,989 
pairs connecting 1,811 target proteins. Statistical analysis 
showed that DTPN target proteins were more likely KSIN 
hubs (p=2.8×10-7, Table 1). There were 1,550 target 

proteins shared by DTPN and PPIN. Within these proteins, 
438 (28.3%) were hubs, indicating a significant enrichment 
of DTPN target proteins in PPIN hubs (p=1.3×10-14). The 
same enrichment was found when 3DPPIN was compared 
to DTPN (p=3.2×10-12). Collectively, drug target proteins 
(e.g., target kinases) were more likely to be hubs in KSIN, 
PPIN, and 3DPPIN.

The emerging use of network hubs as drug targets 
has the following rationale [33]. Perturbation of hubs 
by a drug would create cascading effects, leading to 
functional changes in a major segment of the network. In 
contrast, peripheral nodes (non-hubs) that are blocked by a 
molecule would likely have only limited effects. However, 
our analyses below revealed that selecting network hubs as 
drug targets lead to a high risk of adverse drug reactions. 
We compiled 527 ADRPs that are involved in adverse drug 
reactions. When 527 ADRPs were manually matched to 
PPIN, 441 proteins were found, among which 122 proteins 
were hubs in PPIN (p=3.1×10-4, Table 1). In addition, the 
ADRPs were significantly enriched as network hubs in 
KSIN (p=2.0×10-5) and 3DPPIN (p=5.4×10-5). Therefore, 
there is a high risk for adverse drug reactions when using 
the hubs in the human protein interactome as drug targets.

To further investigate whether targeting a signaling 
pathway is more effective, we used the ClueGO [15] to 
identify KEGG pathways enriched with the 126 target 
kinases. Three important signaling pathways were 
identified: MAPK signaling pathway (including EGFR, 
BRAF, PDGFR, MAPK1, TGFBR1, and RAF1, p=2.3×10-

15, two-sided hypergeometric test, Supplementary Table 

Table 1: The network topological analysis for five gene sets in human protein interactome.

Network Gene sets Number of 
hubs

Number of non-
hubs Odds ratio p-value

KSIN

Kinome 277 152 16.4 1.2×10-119

Drug target kinases 90 26 16.9 3.6×10-43

Drug target proteins 121 288 1.9 2.8×10-7

ADRPs 54 105 2.2 2.0×10-5

Drug sensitivity genes 40 84 2.0 1.1×10-3

PPIN

Kinome 209 253 3.4 5.9×10-34

Drug target kinases 90 35 10.2 2.5×10-35

Drug target proteins 438 1112 1.6 1.3×10-14

ADRPs 122 319 1.5 3.1×10-4

Drug sensitivity genes 137 245 2.2 3.0×10-12

3DPPIN

Kinome 117 154 3.0 2.1×10-15

Drug target kinases 68 33 7.8 1.5×10-22

Drug target proteins 162 293 2.2 3.2×10-12

ADRPs 47 75 2.2 5.4×10-5

Drug sensitivity genes 58 75 2.8 3.2×10-8

KSIN: kinase-substrate interaction network (468 hubs versus 1,872 non-hubs). PPIN: protein-protein 
interaction network (2,602 hubs versus 10,041 non-hubs). 3DPPIN: three-dimensional structural PPIN 
(591 hubs versus 2,018 non-hubs). ADRPs: adverse drug reaction-associated proteins. The p-value was 
calculated using Fisher’s exact test.
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S3), VEGF signaling pathway (including SRC, PRKCA, 
MAPK, and KDR, p=1.3×10-12), and mTOR signaling 
pathway (including BRAF, AKT1, RPS6KA1, and mTOR, 
p=1.7×10-7).

Do kinases tend to be hubs in the human protein 
interactome?

We manually matched 538 kinases to PPIN and then 
constructed a kinase-protein interaction subnetwork. This 
subnetwork included 14,238 pairs connecting 462 kinases 
and 4,414 non-kinase proteins (Supplementary Table 
S4). Among the 462 kinases, 209 were hubs in PPIN, 
indicating a significant enrichment of kinases in PPIN hubs 
(p=5.9×10-34, Table 1). The average connectivity of the 
462 kinases was 33.2, which is significantly stronger than 
that of the 12,181 non-kinases in PPIN (14.0, p<2.2×10-

16, Wilcoxon test, Supplementary Table S4). We further 
matched 538 kinases in 3DPPIN and found 271 kinases, 
including 117 hubs (p=2.1×10-15, Table 1). The average 
connectivity (6.0) of the 271 kinases is significantly 
stronger than that of the 2,338 non-kinases in 3DPPIN 
(3.0, p<2.2×10-16). Collectively, kinases are significantly 
enriched as network hubs in the protein interactome.

Do hubs in KSIN tend to be hubs/bottlenecks in 
the protein interactome?

We manually matched 2,340 proteins in KSIN to 
PPIN. A total of 2,213 proteins (including 361 kinases 
and 1,852 non-kinase substrates) were found, among 
which 1,119 proteins (including 194 kinases and 925 non-
kinases) were hubs in PPIN (p=3.6×10-275, Supplementary 
Table S4). In addition, 965 proteins (including 169 
kinases and 796 non-kinases) were bottlenecks in PPIN 
(p=1.1×10-166). The average connectivity (9.8) of the 965 
bottleneck proteins is significantly stronger than that of the 
1,248 non-bottleneck proteins in KSIN (3.8, p<2.2×10-16). 
These findings revealed that proteins in KSIN tended to be 
bottlenecks in PPIN.

Network topology of anticancer drug response-
associated genes

A systematic identification of anticancer drug 
response markers in cancer cells is highly promising 
for individualized cancer therapy [34]. In this study, 
we sought to determine the network topology of drug 
resistance genes in the protein interactome. We compiled 
458 genes that are involved in sensitivity or resistance to 
130 anticancer drugs from a previous work [35]. Among 
the 458 drug resistance genes, 82 were CGC genes and 
144 were essential genes (Supplementary Figure S4A). 
We found 124 among the 458 drug resistance proteins 

(genes) in KSIN, 40 of them were hubs, suggesting a 
significant enrichment of drug resistance proteins in 
KSIN hubs (p=1.1×10-3, Fisher’s test, Table 1). The 
average connectivity (10.5) of the 124 drug resistance 
proteins was significantly stronger than that of the 2,216 
remaining proteins in KSIN (6.1, p=2.6×10-4, Wilcoxon 
test, Supplementary Table S5). Furthermore, we found 
a significant enrichment of anticancer drug resistance 
proteins in PPIN hubs (137 hubs, p=3.0×10-12) and 
3DPPIN hubs (58 hubs, p=3.2×10-8).

Next, we constructed a drug resistance network to 
investigate the detailed molecular mechanisms of drug 
responses to specific FDA-approved small molecular 
kinase inhibitors (Supplementary Figure S3). The 
calculation of a p-value for each drug-gene association 
was described in a previous work [35]. Three kinase 
inhibitors are approved for renal cell carcinoma treatment 
by the FDA, including sunitinib, sorafenib, and pazopanib 
(Figure 6A). The kinase inert domain receptor (KDR) is 
involved in resistance or sensitivity to sunitinib (p=1.9×10-

4), sorafenib (p=1.0×10-3), and pazopanib (p=1.0×10-3) 
(Supplementary Table S5). The cyclin-dependent kinase 
inhibitor 2A gene (CDKN2A), which encodes the CDK 
inhibitory protein p16, was reported to be significantly 
associated with sensitivity to five kinase inhibitors 
(Supplementary Table S5): dasatinib (p=1.3×10-13), 
erlotinib (p=4.1×10-8), imatinib (p=8.2×10-5), sunitinib 
(p=5.0×10-3), sorafenib (p=6.0×10-3), and lapatinib 
(p=7.0×10-3). Gefitinib, a classical EGFR tyrosine kinase 
inhibitor, is approved to treat advanced or metastatic non-
small cell lung cancer. Recent work showed genes NRAS, 
BRAF, KRAS, and PIK3R1 are involved in gefitinib 
resistance (Figure 6B) [36]. In Figure 6C, most gefitinib 
resistance genes are located on the EGFR signaling 
pathway through the RAS/MEK/ERK or PI3K/PDK1/
AKT downstream pathways [34]. Collectively, selecting a 
network hub as the drug target in the protein interactome 
might create a high anticancer drug resistance risk.

DISCUSSION

Resistance to chemotherapy and molecularly 
targeted kinase inhibitor therapeutics is a major obstacle 
facing current cancer research [37]. Crosstalk and feedback 
that are poorly understood in most cellular networks are 
main contributors to resistance. Systems biology-based 
modeling on the human kinome level might provide a 
powerful network perspective and innovative tools to 
address this challenge. In this study, we systematically 
investigated the relationship between kinase inhibitors 
and the gene products of the human kinome in the broader 
context of the human kinase phosphorylation network 
and the protein interactome. We focused on addressing 
two questions. First, do kinases occupy a distinct 
network topology in the human interactome? Second, 
from a systems biology perspective, why do most tumors 
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escape from any single kinase inhibition? We found 
kinases significantly tended to be central hubs rather than 
peripheral nodes in the protein interactome. The distinct 
network centrality of kinases creates a high risk for the 
evasion of single kinase target inhibition through adaptive 
feedback or crosstalk within dynamic signaling networks. 
Moreover, this hypothesis is further supported by the 
systematic network and pathway analyses that anticancer 
drug sensitivity proteins are significantly enriched as 
hubs in the protein interactome. We further revealed that 
the typical anticancer drug target selection strategy that 
uses hubs as drug targets, might lead to a high risk for 
adverse drug reactions. In summary, these findings provide 
systems view of the human kinase interactions and kinase 
inhibitor resistance mechanisms.

Phosphorylation-mediated signaling networks 
play crucial roles in cellular physiology. Recent 

protein microarray experiments have provided high-
throughput data and facilitated the analyses of protein 
phosphorylation networks [38]. Here, we constructed 
a global and high-resolution kinase phosphorylation 
network using an integrative computational framework. 
We identified conserved regulatory phosphorylation 
motifs, e.g., Ser-X-X-X-Ser-Pro, using a sequence logo 
analysis. These conserved regulatory phosphorylation 
motifs were verified by the kinase-substrate co-crystal 
structures. Thus, we provided the evidence that the 
proline direction of kinases is a common mechanism for 
the conserved phosphorylation signaling pathways. The 
data size used in this study is reasonable and includes 
the data we were able to collect to date. However, some 
important properties might not be captured among this 
data due to knowledgebase incompleteness as well as the 
standard static networks that are prevalent in this field. 

Figure 6: Network analysis of kinase inhibitor response. (A) Drug sensitivity network of 11 molecularly targeted kinase inhibitors 
(Supplementary Figure S5). This network includes four types of edges: kinase-drug interaction (gold solid line), drug-cancer association 
(red solid line), gene-drug sensitivity associations (purple solid line with arrow), and target gene-drug sensitivity associations (blue solid 
line with arrow). Color codes of nodes: drug (gold square), target gene or target protein (green circle), drug sensitivity genes (cyan-blue 
circle), drug target and sensitivity gene (red circle), and cancer (purple hexagon). (B) Volcano plot of sensitivity response to Gefitinib, 
an epidermal growth factor receptor (EGFR) inhibitor. The calculation of a p-value for each drug-gene association was described in 
a previous work [35]. The data was from the Genomics of Drug Sensitivity (http://www.cancerrxgene.org). (C) The simplified EGFR 
signaling pathways involving Gefitinib sensitivity through the RAS/MEK/ERK and PI3K/PDK1/AKT pathways.
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Biological systems, e.g., the phosphorylation network, 
are highly dynamic profiles that continuously respond to 
a host of physical or physiological environments. So far, 
the completeness and accuracy of the human interactome 
is still a major obstacle. For example, the perturbation 
dynamics of signaling networks have been extensively 
investigated, including ~10,000 phosphorylation 
reactions in yeast cells [39]. The size of the whole human 
interactome was estimated to have ~650,000 interactions 
[40]. Although two large networks were constructed 
in this study, we still have a long way to decipher 
the complexity of the human kinome interactome. 
Advances in experimental measurement technologies 
and computational methods would enable large-scale 
screenings to fill in much of our missing knowledge in 
the future.

Here, we systematically examined the kinase-drug 
interaction network using a bipartite graph analysis. We 
found target kinases are significantly enriched as central 
hubs in the protein interactome. An inhibition or blocking 
of hub nodes may lead to cascading effects compromising 
the function of a major segment of the signaling networks 
[33]. The development of high efficacy kinase inhibitors 
that target hubs of the signaling networks is a typical 
strategy for cancer drug discovery [41]. However, 
network centrality of target kinases might create a high 
risk of drug resistance, as hub proteins easily provide the 
adaptive crosstalk or feedback within cellular networks. 
In addition, we found the current selection of hubs 
as drug targets might create a high risk for the adverse 
drug reactions. Many promising drug candidates fail in 
the last clinical trial phases due to a poor understanding 
of the signaling pathways or drug-target interactions 
that are involved in the mechanisms-of-action [42]. To 
overcome this challenge, we urge researchers to expand 
the knowledge of systems pharmacology through the 
construction of network models [5,43]. Here, we found 
most of the successful kinase inhibitors primarily target 
the cancer kinome through polypharmacology. The 
polypharmacology of kinase inhibitors would improve 
clinical efficiency by inhibiting multiple kinases in the 
signaling networks [5,33]. Thus, network-based modeling 
potentially opens a new avenue for rational kinase inhibitor 
discovery, e.g., “Allo-network drugs” development 
[33,34]. The human kinome interactome we constructed 
in this study, named Kinome NetworkX, is available 
at http://bioinfo.mc.vanderbilt.edu/kinomenetworkX/. 
This comprehensive data source would serve as a useful 
resource for the research community. Collectively, the 
global human kinome interactome map provide a systems 
biology perspective for the human kinome, and this map 
is a useful resource for rational kinase inhibitor design in 
individualized cancer therapy.

MATERIAL AND METHODS

Construction of the human interactome

Kinase-substrate interaction network (KSIN)

In KSIN, a node denotes a kinase or its substrate 
protein, and an edge denotes a phosphorylation reaction 
between a kinase and its substrate protein. We collected 
high-resolution KSI pairs from four databases: Phospho.
ELM [44], Human Protein Resource Database (HPRD) 
[45], PhosphoNetworks [38,46], and PhosphoSitePlus 
[17]. All genes were mapped to their Entrez ID based on 
the NCBI [14] as well as their official gene symbols based 
on GeneCards (http://www.genecards.org/). Duplicated 
KSI pairs and self-loops were removed. As a result, we 
compiled 7,346 unique KSI pairs connecting 379 kinases 
and 1,961 non-kinase substrate proteins. In addition, we 
collected human phosphorylation site information from 
the PhosphoSitePlus [17] and dbPTM3 [16] databases. In 
total, we obtained 173,460 non-redundant phosphorylation 
sites in 18,610 proteins.

Protein-protein interaction network (PPIN)

We downloaded human protein-protein interaction 
(PPI) pairs from the Protein Interaction Network 
Analysis (PINA) platform. PINA (v2.0, May 1, 2013) is 
a comprehensive PPI database that integrates six large-
scale, manually curated public databases: IntAct, MINT, 
BioGRID, DIP, HPRD, and MIPS MPact [47]. All protein-
coding genes were mapped to the NCBI database. Genes 
without an Entrez ID, duplicated PPI pairs, and self-loops 
were excluded. In total, we obtained 92,699 unique PPI 
pairs connecting 12,643 proteins.

Three-dimensional structural protein-protein 
interaction network (3DPPIN)

We downloaded three-dimensional structural PPI 
(3DPPI) pairs from the Instruct database [48]. The original 
Instruct database contained 6,534 human 3DPPI pairs. 
After excluding genes without Entrez IDs and 2,293 self-
loops, we collected 4,278 3DPPI pairs connecting 2,609 
proteins.

Drug-target interaction network We collected 
the drug-target interactions from two famous drug 
pharmacological databases: DrugBank [6] and TTD [29]. 
In total, we collected 13,582 drug-target interaction pairs 
connecting 2,716 target proteins and 3,779 FDA-approved 
and experimental drugs.
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Gene set categories

Mendelian disease genes (MDGs)

We downloaded 2,714 MDGs from the Online 
Mendelian Inheritance in Man (OMIM) database 
(December 2012) [49]. The OMIM contained 4,132 gene-
disease association pairs connecting 2,716 disease genes in 
3,294 Mendelian diseases or disorders (December 2012).

Orphan disease-causing mutant genes (ODMGs)

We collected 2,123 ODMGs from a previously 
published work [50]. According to the United States Rare 
Disease Act of 2002, an orphan disease is defined as a rare 
disease that affects fewer than 200,000 inhabitants, which 
is equivalent to approximately 6.5 patients per 10,000 
inhabitants [51].

Cancer Gene Census (CGC) genes

We collected 487 cancer genes from the Cancer 
Gene Census (CGC, http://cancer.sanger.ac.uk/
cancergenome/projects/census/). CGC genes are well-
curated and have been widely used as a reference cancer 
gene set in many cancer-related projects [52,53].

Essential genes

We downloaded 2,721 essential genes from the 
Online GEne Essentiality (OGEE) database [54]. Essential 
genes, whose knockouts result in cell inviability or 
embryonic lethality, are a crucial component to the study 
of biological systems robustness and effective drug target 
identification [54].

Adverse drug reaction-associated proteins 
(ADRPs)

We compiled 546 ADRPs from a previously 
published work [55]. ADRPs are proteins that mediate 
adverse drug reactions or toxicity by binding to drugs 
or their reactive metabolites. Duplicated proteins and 
genes without Entrez IDs were excluded, resulting in 527 
ADRPs.

Anticancer drug response-associated genes

We collected 458 genes that were involved in 
the sensitivity or resistance to 130 anticancer drugs 
from a previous work [35]. In this study, Mathew et al. 

systematically identified drug-sensitivity biomarkers 
(genes) on 639 human tumor cell lines, which provided a 
useful resource to probe drug sensitivity genes.

Measurement of network topology

We calculated connectivity (degree) and 
betweenness centrality values using the Cytoscape 
(v3.0) [56]. We defined “hubs” as those nodes that were 
ranked at the top 20% of the connectivity distribution 
and “bottleneck” as those nodes that were ranked at the 
top 20% of the betweenness centrality value distribution 
[50,57]. We identified network modules and communities 
using CFinder [18] (k-clique, k=4) and the ModuLand 
algorithm [19,20]. CFinder was used to locate and 
visualize overlapping, densely interconnected groups of 
nodes in undirected graphs [18]. The ModuLand algorithm 
was used to identify hierarchical layers of overlapping 
network modules and community centrality [19,20].

Functional enrichment analysis

We used ClueGo [15], a user-friendly Cytoscape 
plug-in, for the enrichment analysis of genes in Gene 
Ontology cellular components or KEGG canonical 
pathways. A two-sided hypergeometric test was performed 
to estimate statistical significance.

Statistical analysis and network visualization

All statistical tests (e.g., Fisher’s exact test and 
Wilcoxon’s test) were performed on the R platform (v3.01, 
http://www.r-project.org/). All network visualization and 
related network topological parameters were presented 
using Cytoscape (v3.0) [56].
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