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ABSTRACT

As the most common histologic subtype of lung cancer, lung adenocarcinoma 
(LUAD) contributes to a majority of cancer-related deaths worldwide annually. In 
order to find specific biomarkers of LUAD that are able to distinguish LUAD from 
other types of cancer so as to improve the early diagnostic and prognostic power in 
LUAD, we analyzed 10098 tumor tissue samples across 27 TCGA cancer types and 
identified 112 specific expressed genes in LUAD. Meantime, 8240 LUAD dysregulated 
genes in tumor and normal samples were identified. Combining with the results of 
specific expressed genes and dysregulated genes in LUAD, we found there were 70 
specific dysregulated genes in LUAD (LUAD-SDGs). Then ROC curve revealed six LUAD-
SDGs that may be of strong diagnostic value to predict the existence of cancer (area 
under curve[AUC] > 95%). Kaplan-Meier survival analysis was performed to identify 
6 LUAD-SDGs associated with patients’ prognosis (P-values < 0.001). Multivariate Cox 
proportional hazards regression was employed to demonstrate that the six LUAD-SDGs 
were independent prognostic factors. Then, we used the six overall survival (OS)-
related LUAD-SDGs constructing a six-gene signature. Multivariate Cox regression 
analysis suggested that the six-gene signature was an independent prognostic factor 
of other clinical variables (hazard ratio [HR] = 1.5098, 95%CI = 1.2996-1.7538, P < 
0.0001). Based on our findings, we first presented the LUAD-SDGs for LUAD diagnosis 
and prognosis. Our results may provide efficient biomarkers to clinical diagnostic and 
prognostic evaluation in LUAD.

INTRODUCTION

Lung cancer is one of the most frequently diagnosed 
cancers and contributes to the majority of cancer-related 
deaths. According to the latest statistics, there were 
about 1.8 million new lung cancer cases and 1.5 million 
people who died of lung cancer in the future [1]. As a 
subtype of lung cancer, lung adenocarcinoma (LUAD) is 

continuously growing in the proportion of lung cancer, 
which is presently the top diagnosed histological type in 
adult men and women [2]. Smoking is the leading cause 
of lung cancer, but LUAD is the histological type showing 
weakness associated with smoking, which occurs mainly to 
non-smokers and females [3, 4]. Oncogene aberrations are 
now the most popular study factors that contribute to the 
carcinogenesis of LUAD [5, 6]. Although there are lots of 
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contributions to individualized therapy of LUAD, patients 
with advanced-stage tumors have an overall survival of less 
than 2 years, which is mainly because they have lost the 
chance of surgery with a limiting selection of chemotherapy 
[7]. Besides, the molecular biomarkers that can effectively 
predict the outcome of LUAD patients have not been fully 
elucidated. Therefore it is of significant importance to figure 
out new LUAD special biomarkers for the diagnosis and 
prognosis of LUAD and to improve therapeutic effects.

In the genomics era, there emerge a lot of high 
throughput sequencing technologies and databases. They 
have contributed to the development of diagnostic and 
prognostic signatures of cancer. RNA-seq is a recently 
developed approach to deep-sequencing. It can identify 
unmapped genes, unrecognized non-coding RNAs and 
splice variants [8]. Iris H. Wei et al used RNA-seq data from 
international Cancer Genome Consortium and The Cancer 
Genome Atlas (TCGA) datasets conducting cancer-specific 
signatures. These signatures had high sensitivity and 
specificity and were able to identify metastatic cancer of 
unknown primary, including tumors originating from lung 
[9]. Besides, by using TCGA lung adenocarcinoma datasets, 
Anlin Feng et al found LUAD patients with high HMGB1 
expression had a poor overall survival [10]. These indicate 
that these newly developed genome sequencing databases 
and methods can develop clinical biomarkers for LUAD. 
And there are some signatures which have been investigated 
to involve in the pathogenesis of lung cancer and have 
clinical associations with LUAD. Tony et al used a loss-of-
function model to identify MALAT1 which was an active 
regulator of LUAD metastasis [11]. Ming et al. showed 
that decreased BANCER expression was associated with 
poor prognosis of lung cancer patients [12]. Gao et al found 
overexpression of serum miR-155 could be a diagnostic 
marker for the early detection of LUAD [13]. With the help 
of the next-generation sequencing biomarkers, we were 
able to detect the LUAD patients and predict the outcome 
of these patients in an early stage.

In this paper, in order to identify LUAD-SDGs, 
we analyzed large scale RNA-seq transcriptomes of 
10098 tumor samples across 27 cancer types containing 
LUAD from TCGA. Meanwhile, dysregulated genes in 
LUAD were identified. Combining with the diagnostic 
and survival analysis, we found robust diagnostic and 
prognostic LUAD-SDGs. By utilizing the prognostic 
LUAD-SDGs, we conducted a six-gene signature that 
could effectively predict patients’ survival.

RESULTS

Identification of specific dysregulated genes of 
lung adenocarcinoma (LUAD-SDGs)

To describe our study more clearly, we made a flow 
chart (Figure 1). We first identified the LUAD-SDGs. 
We found there were 112 specific expressed genes of 

LUAD compared with other 26 different types of cancer. 
The principal components analysis (PCA) demonstrated 
separation between LUAD and other 26 cancer types 
(Figure 2A). There were 8240 dysregulated expressed 
genes between LUAD tissues and normal tissues. PCA 
and hierarchical clustering showed clear separation and 
consistency in the expression profiles of the tumor and 
normal tissues of LUAD (Figure 2B, 2C). The dysregulated 
expressed genes of LUAD were shown with volcano plot 
(Figure 2D). We combined the results and demonstrated 
that there were 70 genes specifically dysregulated in LUAD 
(Figure 2E).

Diagnostic value of specific dysregulated genes of 
lung adenocarcinoma (LUAD-SDGs)

Next we analyzed the possible diagnostic power of 
LUAD-SDGs in LUAD and tried to find the LUAD-SDGs 
with high diagnostic value. To evaluate the prediction 
performance of LUAD-SDGs, we performed the receiver 
operative curves (ROC). LUAD-SDGs with an AUC of 
more than 0.95 were selected as genes that may serve as 
a biomarker in the diagnosis of LUAD (Figure 2F). As 
shown in Figure 3A, we demonstrated that there were 
great differences between LUAD patients and control 
groups. The sensitivity and specificity of MARCO, 
SFTPA2, SFPTA1, CHIPA2, SFTPC and RPL13AP17 
were 0.9749, 0.9525, 0.9715, 0.9519, 0.9988 and 0.9673 
respectively in the test group. We also showed the similar 
results in the validate group, whose sensitivity and 
specificity of MARCO, SFTPA2, SFPTA1, CHIPA2, 
SFTPC and RPL13AP17 were 0.9760, 0.9558, 0.9641, 
0.9564, 0.9972 and 0.9803 respectively (Figure 3B; Table 
1). We found that SFTPC ranked top in terms of AUC 
in both test and validate group with average sensitivity 
of 100% and 97.6% specificity. These six LUAD-SDGs 
showed high diagnostic power in predicting LUAD, 
which indicated they may serve as important biomarkers 
in identification of LUAD. We validated the expression 
of the six LUAD-SDGs in the same TCGA datasets using 
t-test. We found that the expression of the six LUAD-
SDGs was higher in LUAD than that of other tumors in 
26 cancer types (log2FC > 1, P < 0.001). Compared with 
the expression of normal lung tissues, the expression of 
the six LUAD-SDGs was lower (log2FC < 1, P < 0.001) 
(Figure 4A, 4B), which confirmed that these genes were 
specific dysregulated genes in LUAD and were able to 
serve as diagnostic biomarkers for the diagnosis of LUAD.

Prognostic role of specific dysregulated genes of 
lung adenocarcinoma (LUAD-SDGs)

Then we sought to investigate the correlation 
between all of the 70 LUAD-SDGs and overall survival 
of LUAD patients. We identified that there were six 
LUAD-SDGs whose expression were associated with 
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the overall survival of LUAD patients, including RP11-
513N24.11, RP11-206P5.2, SFTPB, CHIAP2, BMP5 
and MS4A15 (Table 1). The Kaplan–Meier curves 
demonstrated that LUAD patients with higher expression 
of the six LUAD-SDGs had better survivals than those 
with low expression of the six LUAD-SDGs (log-Rank 
test, P < 0.001) (Figure 5A–5F). In the univariate Cox 
regression analysis, we found that the six LUAD-SDGs 
were significantly associated with overall survival. Then 
we performed the multivariate Cox regression analysis to 
identify the independent prognostic role of the six LUAD-
SDGs by adjusting other significant covariates including 
gender, stage, smoke and age. The results showed that the 
six LUAD-SDGs were independent prognostic factors in 
overall survival and were protective genes (HR < 1) for 

LUAD (Figure 6A–6F; Table 2). Compared with other 26 
types of cancer, the expression level of the six LUAD-
SDGs in LUAD was the highest (log2FC > 1, P < 0.001). 
In non-cancer tissue of LUAD, the six LUAD-SDGs had 
higher expression level than the cancer tissue of LUAD. 
All the results suggested that the six LUAD-SDGs may 
act as special prognostic biomarkers for LUAD patients. 
(Figure 7A, 7B).

The predictive role of a six-gene signature in 
LUAD

We used the six OS-related LUAD-SDGs to 
construct a six-gene signature. A risk score was created 
based on a linear combination of the expression profiles 

Figure 1: Flow chart of identifying LUAD-SDGs as diagnostic or prognostic biomarkers across RNA-seq data of 27 
cancer types from TCGA.
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of prognostic genes weighted by estimated regression 
coefficient, a risk score was created as follows: Risk 
score = (-0.013*expression level of RP11-513N24.11) 
+ (-0.066*expression level of RP11-206P5.2) + 
(-0.029*expression level of SFTPB) + (-0.028*expression 
level of CHIAP2) + (-0.087*expression level of BMP5) 
+ (-0.029*expression level of MS4A15). Then, patients 
were divided into high-risk group (n = 131) and low-risk 
group (n = 392) using the 75th percentile risk score as 
the cutoff point to investigate the prognostic role of the 
six-gene signature in overall survival. We observed that 
patients in the high-risk group had lower expression of 
the six genes compared with low-risk group (Figure 8A). 
This was consistent with the results of multivariate Cox 
regression analysis of the six genes, which demonstrated 
that all of them were protective genes (Figure 6A–6F). 
The univariate analysis showed that the six-gene risk score 
was significantly related to prognosis of LUAD patients 

(Table 2). The multivariate analysis indicated that the risk 
score statistically significantly stratified the patients for 
overall survival (HR =1.5129, 95%CI = 1.2988-1.7624, 
P < 0.0001), independent of age, gender, smoke and 
pathological stage. (Figure 8B, 8C; Table 2). We also 
evaluated the six-gene prognostic signature in patients 
at pathological stage I-II, pathological stage IV-III,  
N0 (without lymph node metastasis), M0(without distant 
metastasis). As a result, the stratification analysis showed 
that the six-gene signature could predict patients with 
different prognosis in different subgroups including 
pathological stage I-II, pathological stage IV-III, N0, M0 
(Figure 8D–8G).

DISCUSSION

In our study, we first compared the expression 
of genes in 27 cancer types including LUAD between 

Figure 2: Identification of LUAD-SDGs with diagnostic or prognostic power.  (A) PCA of the full datasets for all tumor 
samples from 27 cancer types. LUAD samples were marked by red dots in the PCA. (B) PCA of the datasets for tumor and normal 
samples from LUAD. The tumor samples were marked by red triangles and the normal samples were marked by blue dots. (C) Heatmap of 
differentially expressed genes between tumor and normal of LUAD. The top 100 of the most differentially expressed genes were presented. 
(D) Volcano plot of the differentially expressed gene analysis. X-axis represented log2 fold change; Y-axis meant −1 × log10 of p-value for 
each gene. Genes with fold change >1 or <-1 and p-value < 0.05 were considered to be differentially expressed gene between tumor and 
normal tissues. (E) Venn diagram showing number of genes from differentially expressed genes (LUAD-DGs) and specifically expressed 
genes in LUAD (LUAD-SEGs). (F) Venn diagram showing the number of genes with strong diagnostic power or prognostic power among 
the differentially expressed genes (LUAD-DGs) and specifically expressed genes in LUAD (LUAD-SEGs). AUC-SIG(significant genes in 
AUC) and OS-SIG (significant genes in over survival) represented the specifically and differentially expressed genes in LUAD (LUAD-
SDGs) with diagnostic values(AUC> 95%) and prognostic values respectively(P < 0.001).
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tumor and normal. As a result, all 70 LUAD-SDGs were 
identified. As we know, there were several known cancer-
specific biomarkers that had already been translated into 
clinical diagnostic and prognostic signatures. For example, 
compared with other malignancies, alpha-fetoprotein 
(AFP) was specific expressed in hepatocellular carcinoma 
[14]. Besides, FUMIO et al showed hepatocellular 
carcinoma patients with normal AFP values had a better 
survival than those with high values, which indicated that 
AFP was a useful prognostic signature for hepatocellular 
carcinoma patients [15]. Welch et al showed prostate 
specific antigen (PSA) screening increased diagnosis of 
prostate cancer in patients younger than 50 years in the 
USA from 1986 to 2005 [16]. Inspired by these cancer-
specific biomarkers, we are interested in whether the 
LUAD-SDGs can serve as good biomarkers for patients’ 
diagnosis and prognosis.

In order to explore the above questions, we 
conducted the ROC to evaluate the diagnostic role of 
LUAD-SDGs. The cutoff point was selected (AUC > 
95%) and only six genes: MARCO, SFTPA1, SFTPA2, 
CHIPA2, SFTPC, and RPL13AP17 reached this condition. 

Among the six LUAD-SDGs, surfactant protein A 
including SFTPA1 and SFTPA2 were reported closely 
associated with lung cancer. It has been reported that 
SFTPA1 mutation was associated with familial idiopathic 
interstitial pneumonia and lung cancer, which shed light 
on the key role of SFTPA1 in the pathogenesis of several 
chronic respiratory diseases, especially in lung cancer 
[17]. Genetic defects in SFTPA2 were demonstrated 
closely related to lung cancer [18]. Surfactant protein 
A plays an important role in the maintenance of normal 
lung function, and the abnormal surfactant protein A may 
lead to the disorder of lung innate immunity and cause 
the occurrence of lung cancer. What’s more, SFTPA1, 
SFTPA2 and SFTPC , surfactant genes which have been 
reported to express exclusively in type II penumocytes, 
have showed their unique roles in LUAD [19]. Meanwhile, 
there are some reports approving that surfactant genes 
such as pro–surfactant protein B (pro-SFTPB) was a 
promising blood biomarker for non-small-cell lung cancer. 
Don D. Sin et al showed plasma levels of pro-SFTPB 
were associated with early-stage lung cancer, indicating it 
could be used in predicting early-stage NSCLC patients. 

Figure 3: Receiver operating characteristic (ROC) plot for diagnostic value of six LUAD-SDGs. (A) The sensitivity and 
specificity of MARCO, SFTPA2, SFTPA1, CHIPA2, SFTPC, and RPL13AP17 were 0.9749, 0.9525, 0.9715, 0.9519, 0.9988 and 0.9673 in 
the test group (n=267). (B) The sensitivity and specificity of MARCO, SFTPA2, SFTPA1, CHIPA2, SFTPC, and RPL13AP17 were 0.9760, 
0.9558, 0.9641, 0.9564, 0.9972 and 0.9803 in the validate group (n=268).



Oncotarget87297www.impactjournals.com/oncotarget

Figure 4: The expression (log2FPKM) of LUAD-SDGs(MARCO, SFTPA2, SFTPA1, CHIPA2, SFTPC, and 
RPL13AP17) with high diagnostic power in LUAD across 27 types of cancer. (A) Box plot showing the expression of the 
six LUAD-SDGs in tumor were lower than that in normal of LUAD (P < 0.001). (B) The expression (log2FPKM) distribution of the six 
LUAD-SDGs in 27 cancer types and the red box represented LUAD. Compared with other tumors in 26 cancer types, the expression level 
of the six LUAD-SDGs in LUAD was the highest (log2FC > 1, P < 0.001).

Table 1: The detailed information of 11 LUAD-SDGs with diagnostic or prognostic values

Ensemble ID Gene symbol Chromosomal position Gene type

ENSG00000019169 MARCO Chr2: 118,942,166-118,994,660 Protein coding

ENSG00000122852 SFTPA1 Chr10: 79,610,939-79,615,455 Protein coding

ENSG00000168484 SFTPC Chr8: 22,156,913-22,164,479 Protein coding

ENSG00000185303 SFTPA2 Chr10: 79,555,852-79,560,397 Protein coding

ENSG00000203878 CHIAP2 Chr1: 111,280,059-111,286,116 pseudogene

ENSG00000231322 RPL13AP17 Chr7: 78,347,142-78,359,458 pseudogene

ENSG00000260695 RP11-513N24.1 Chr16: 65,861,112-65,863,784 lincRNA

ENSG00000248608 RP11-206P5.2 Chr4: 25,504,997-25,506,675 pseudogene

ENSG00000168878 SFTPB Chr2: 85,657,314-85,668,741 Protein coding

ENSG00000112175 BMP5 Chr6: 55,753,645-55,875,564 Protein coding

ENSG00000166961 MS4A15 Chr11: 60,756,953-60,776,732 Protein coding
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Figure 5: Kaplan–Meier survival curves analysis of the six LUAD-SDGs for overall survival of LUAD patients.  
(A-F) The expression of six LUAD-SDGs including RP11-513N24.1,CHIAP2, RP11-206P5.2 ,BMP5 ,SFTPB and MS4A15 was positively 
associated with overall survival of LUAD patients (P < 0.001).
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Besides, William R. Wikoff et al found combination of 
pro-SFTPB and N1, N12-diacetylspermine had a high 
sensitivity and specificity in diagnosing NSCLC [20, 21]. 
It is a great inspiration to us, as some of the six LUAD-
SDGs may have the potential to become the diagnostic 
biomarkers for LUAD or to enhance the accuracy when 
combined with pathological diagnosis.

Then we explored the possible roles of LUAD-
SDGs in LUAD patients’ prognosis. Among the 70 
LUAD-SDGs, six of them were identified significantly 

associated with patients’ prognosis. In some studies, the 
expression of BMP5 demonstrated significantly lower in 
LUAD tissues than that in normal lung tissues, which was 
consistent with our result [22]. While there was no report 
about the prognostic function of BMP5, Pro–surfactant 
protein B (pro-SFTPB) was reported as a promising 
blood biomarker for non-small-cell lung cancer [20, 21]. 
Ayumu et al demonstrated that increasing concentration 
of plasma pro-SFTPB was associated with higher lung 
cancer risk, which confirmed that SFTPB might be a 

Figure 6: Multivariate analysis of the six OS-related LUAD-SDGs. (A-F) The expression of the six LUAD-SDGs including 
RP11-513N24.1, CHIAP2, RP11-206P5.2, BMP5, SFTPB and MS4A15 served as independent predict factors in LUAD.
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valuable biomarker in lung cancer risk prediction models 
[20, 23]. Besides, CHIAP2 was also reported associated 
with LUAD patients’ prognosis. JING SUI et al identified 
that CHIAP2 was a cancer specific lncRNA and was 
positively correlated with OS of LUAD [24]. However, 
except for CHIAP2 and SFTPB, other four LUAD-SDGs 
did not have any report about the relationship between 
their expressions and LUAD patients’ prognosis. Our 
study explored that the six LUAD-SDGs: BMP5, SFTPB, 
CHIAP2, RP11-513N24.1, RP11-206P5.2 and MS4A15 
which may be positively associated with survival. In 
order to explore whether the six LUAD-SDGs can serve 
as independent prognostic factors for overall survival 
in LUAD, the multivariate Cox regression analysis was 
performed. In conclusion, the results showed that the six 
LUAD-SDGs were protective genes (HR < 1) for LUAD 
and played independent prognostic roles in LUAD.

Finally, we used the six survival-related LUAD-
SDGs to construct a six-gene signature, which proved to 

be a prognostic biomarker for LUAD. We also performed 
Cox regression analyses to evaluate whether the prognostic 
power of the six-gene signature was independent of other 
clinical variables, such as tumor stage, smoking, age and 
gender. We demonstrated that the prognostic power of the 
six-gene signature was independent after taking other clinical 
variables into account. Besides, in the stratified analyses, 
patients were classified into high-risk and low-risk groups. 
Similar prognostic power was tested in the early patients 
(stage I-II), the advanced stage(III-IV), N0 (without lymph 
metastasis), M0 (without distant metastasis). In general, all 
the results suggested that the six-gene signature owned a 
good independent prognostic power even when other  clinical 
variables are taken into account. Sudhanshu Shukla et al first 
presented the RNA-seq prognostic signature consisting of 
four genes for LUAD [25]. However, in our work, we first 
demonstrated that LUAD-SDGs could also act as good 
prognostic signatures for LUAD, which could provide 
insights into new prognostic biomarkers exploration.

Figure 7: The expression (log2FPKM) of six OS-related LUAD-SDGs(RP11-513N24. 1, CHIAP2, RP11-206P5.2, 
BMP5, SFTPB and MS4A15) across 27 types of cancer. (A) Box plot showed the expression of the six LUAD-SDGs in tumor 
were lower than that in normal of LUAD. (B) The expression (log2FPKM) distribution of the six genes in 27 cancer types and the red box 
represented LUAD. Compared with other tumors in 26 cancer types, the expression level of the six LUAD-SDGs in LUAD was the highest 
(log2FC > 1, P < 0.001).
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Table 2: Univariate and multivariate Cox regression analysis of the six OS-related LUAD-SDGs and the six-gene 
signature

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

RP11-513N24.1 0.7601 0.6433—0.8982 0.0013 0.7733 0.6543—0.9140 0.0026

gender 1.0508 0.7569—1.4589 0.7672 0.991154 0.7089—1.3859 0.9586

stage 2.5857 1.8110—3.6919 1.71E-07 2.563875 1.7908—3.6707 2.72E-07

smoke 1.1947 0.9755—1.4631 0.0854 1.167386 0.9473—1.4385 0.1464

age 1.0686 0.9020—1.2660 0.4431 1.087631 0.9209—1.2845 0.3224

RP11-206P5.2 0.6963 0.5915—0.8198 1.38E-05 0.7008 0.5908—0.8313 4.47E-05

gender 1.0508 0.7569—1.4589 0.7672 0.8792 0.6243—1.2382 0.4612

stage 2.5857 1.8110—3.6919 1.71E-07 2.5147 1.7578—3.5974 4.48E-07

smoke 1.1947 0.9755—1.4631 0.0854 1.1448 0.9291—1.4104 0.2042

age 1.0686 0.9020—1.2660 0.4431 1.0796 0.9122—1.2778 0.3731

SFTPB 0.737 0.6346—0.8559 0.0001 0.7627 0.6529—0.8909 0.0006

gender 1.0508 0.7569—1.4589 0.7672 1.0336 0.7403—1.4432 0.8459

stage 2.5857 1.8110—3.6919 1.71E-07 2.4546 1.7147—3.5138 9.29E-07

smoke 1.1947 0.9755—1.4631 0.0854 1.1212 0.9008—1.3955 0.3058

age 1.0686 0.9020—1.2660 0.4431 1.1153 0.9412—1.3215 0.2077

CHIAP2 0.7585 0.6339—0.9075 0.0025 0.7845 0.6548—0.9399 0.0085

gender 1.0508 0.7569—1.4589 0.7672 1.0321 0.7392—1.4411 0.8529

stage 2.5857 1.8110—3.6919 1.71E-07 2.4762 1.7307—3.5427 6.99E-07

smoke 1.1947 0.9755—1.4631 0.0854 1.1744 0.9464—1.4572 0.1444

age 1.0686 0.9020—1.2660 0.4431 1.0878 0.9199—1.2863 0.3251

BMP5 0.6858 0.5925—0.7938 4.25E-07 0.7268 0.6243—0.8461 3.9E-05

gender 1.0508 0.7569—1.4589 0.7672 0.9943 0.7121—1.3883 0.9732

stage 2.5857 1.8110—3.6919 1.71E-07 2.3439 1.6316—3.3672 4.1E-06

smoke 1.1947 0.9755—1.4631 0.0854 1.0986 0.8883—1.3588 0.3857

age 1.0686 0.9020—1.2660 0.4431 1.0760 0.9110—1.2710 0.3882

MS4A15 0.7568 0.636—0.9007 0.0017 0.7801 0.6536—0.9312 0.006

gender 1.0508 0.7569—1.4589 0.7672 1.0126 0.7255—1.4133 0.9414

stage 2.5857 1.8110—3.6919 1.71E-07 2.4917 1.7418—3.5646 5.81E-07

smoke 1.1947 0.9755—1.4631 0.0854 1.1598 0.9359—1.4373 0.1755

age 1.0686 0.9020—1.2660 0.4431 1.0846 0.9190—1.2800 0.3367

Risk score 1.5815 1.3658—1.8313 9.02E-10 1.5129 1.2988—1.7624 1.05E-07

gender 1.0508 0.7569—1.4589 0.7672 0.9217 0.6595—1.2883 0.6333

stage 2.5857 1.8110—3.6919 1.71E-07 2.2685 1.5805—3.2558 8.87E-06

smoke 1.1947 0.9755—1.4631 0.0854 1.0906 0.8785—1.3539 0.4317

age 1.0686 0.9020—1.2660 0.4431 1.0922 0.9249—1.2898 0.2983
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Figure 8: The six-gene signature predicted overall survival of patients with LUAD. (A) The six genes’ expression and risk 
score distribution, with red indicating higher expression and blue indicating lower expression. The risk scores for all patients 
in LUAD were plotted in ascending order and marked as low risk (blue) or high risk (red). (B) Multivariate Cox regression 
analysis showing the risk score of the six-gene signature can serve as an independent prognostic factor in LUAD. (C) The 
Kaplan-Meier curves for all LUAD patients stratified by six-gene signature in high and low risk. (D-G) Kaplan-Meier curves 
of overall survival in the stage I-II, stage III-IV, N0 and M0 cohort stratified by six-gene signature in high and low risk.
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In conclusion, by analyzing the large scale RNA-
seq of 10098 tumor tissues across 27 TCGA cancer 
types, we identified six LUAD-SDGs which showed 
diagnosis power. Meanwhile, other six LUAD-SDGs were 
significantly associated with LUAD patients’ prognosis. 

Moreover, the six-gene signature could effectively predict 
patients’ prognosis and function as a new independent 
prognostic biomarker for LUAD. But we have to admit 
that there are limitations in our study. Firstly, the main 
limitation of the study is the lack of cross-validation 

Table 3: List of the 27 cancer types analyzed

Cancer types Abbreviation RNA-seq Reference
No. of normal No. of tumor

Adrenocortical Carcinoma ACC 2 185 NA
Bladder Urothelial Carcinoma BLCA 19 414 [26]
Breast Invasive Carcinoma BRCA 113 1109 [27]
Cervical Squamous Cell 
Carcinoma and Endocervical 
Adenocarcinoma

CESC 3 306 NA

Colon Adenocarcinoma COAD 41 480 [28]
Esophageal Carcinoma ESCA 11 162 NA
Glioblastoma Multiforme GBM 5 169 [29]
Head and Neck Squamous Cell 
Carcinoma HNSC 44 502 [30]

Kidney Renal Clear Cell 
Carcinoma KIRC 72 539 [31]

Kidney Renal Papillary Cell 
Carcinoma KIRP 32 289 NA

Acute Myeloid Leukemia LAML 0 151 [32]
Brain Lower Grade Glioma LGG 0 529 NA
Liver Hepatocellular Carcinoma LIHC 50 374 NA
Lung Adenocarcinoma LUAD 59 535 [33]
Lung Squamous Cell Carcinoma LUSC 49 502 [34]
Ovarian Serous 
Cystadenocarcinoma OV 0 379 [35]

Pancreatic Adenocarcinoma PAAD 4 178 NA
Pheochromocytoma and 
Paraganglioma PCPG 3 183 NA

Prostate Adenocarcinoma PRAD 52 499 [36]
Rectum Adenocarcinoma READ 10 167 [28]
Sarcoma SARC 2 263 NA
Skin Cutaneous Melanoma SKCM 1 471 [37]
Stomach Adenocarcinoma STAD 32 375 [38]
Testicular Germ Cell Tumors TGCT 0 156 NA
Thyroid Carcinoma THCA 58 510 NA
Thymoma THYM 2 119 NA
Uterine Corpus Endometrial 
Carcinoma UCEC 35 552 [39]

Total 699 10098
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cohort from other databases. Validating these genes in 
a larger cohort of LUAD patients can make the LUAD-
SDGs for diagnosis and prognosis more convincing. 
Secondly, the six LUAD-SDGs with diagnosis power 
should be validated in serums samples to own their true 
diagnosis value. But these limitations are certain to be 
solved in future investigation. [26–39]

MATERIALS AND METHODS

RNA-seq data collection and processing

Transcriptome data and clinical data were 
downloaded from The Cancer Genome Atlas (TCGA) 
data portal (https://cancergenome.nih.gov/). We chose 
27 cancer types, all of which included over 100 tumor 
samples. We collected and analyzed data from 10098 
tumor samples, which contained 535 tumor samples with 
related normal samples and clinical information in this 
study (Table 3). The transcriptomic correlation of RNA 
expression was determined by RNA-seq (Fragments Per 
Kilobase Million [FPKM]) and the expression profiles 
were normalized by log2 transformed. To ensure the 
reliability of the detection, we removed genes whose 
FPKM values over 50% of the samples is equal to 0.

Analysis of specific dysregulated genes in LUAD

Firstly the dysregulated genes in LUAD between 
tumor and normal were identified using t-test (P value< 0.05, 
log2FC > 1 or <-1). Then the specific expressed genes of 
LUAD were acquired by comparing the expression of the 
genes between LUAD and other tumors in 26 cancer types 
one by one (P< 0.05, log2FC > 1). Specific dysregulated 
genes in LUAD were selected, which were specific expressed 
in LUAD among 27 cancer types and dysregulated expressed 
between tumor and normal of LUAD.

Diagnosis and survival analysis

All 535 LUAD patients data were randomly divided 
into test group (n=267) and validate group (n=268). The 
receiver operator characteristic (ROC) curves were used 
to evaluate the specificity and sensitivity of the LUAD-
SDGs. The genes with high diagnostic power were 
selected (AUC > 95%). Meanwhile, for overall survival 
analysis, Kaplan-Meier survival and log-rank test were 
used to compare significant differences between subgroups 
with univariate analysis.

Construction of a prognostic signature

Univariate and multivariate Cox proportional hazards 
regression were used to assess the LUAD-SDGs whose 
expressions were significantly associated with patients’ 
survival. Hazard ratios (HRs) from multivariable cox 

regression analysis were used to identify protective (HR 
< 1) or risky genes (HR > 1). Subsequently, a prognostic 
signature was constructed based on a linear combination of 
the expression profiles of prognostic genes weighted by the 
estimated regression coefficient [25, 40–42].

i iExp * CoeRisk Score i
N 1( )∑= =

N was the number of prognostic genes, Expi was the 
expression of genes and Coei was the coefficient value. A 
risk score was constructed with the regression coefficients 
from this model and 75th percentile was chosen as the 
threshold.

Statistical analysis

T-test was used to compare the dysregulated genes in 
LUAD between tumor and normal. Besides, it was also used 
to analyze specific expressed genes in LUAD compared 
with other tumors in 26 cancer types. The receiver operating 
characteristic (ROC) curve was performed using R package 
“pROC”[43]. The Kaplan–Meier method with a log- rank 
test was used to assess patients’ survival using the R 
packages “survival”[44]. The univariate and multivariable 
Cox proportional hazards regression were performed using 
the R packages “BhGLM”[45]. Heatmaps were generated 
with z-score normalization with each column using R 
packages “gplots”[46]. All analyses were performed 
using R software (version 3.2.2). A statistically significant 
difference when P value < 0.05 was considered.
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