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ABSTRACT

Despite constant improvement in existing therapeutic efforts, the overall 
survival rate of lung cancer patients remains low. Enzyme activities may identify 
new therapeutically targetable biomarkers and overcome the marked lack of 
correlation between cellular abundance of translated proteins and corresponding 
mRNA expression levels. We analysed tyrosine kinase activities to classify lung 
adenocarcinoma (LuAdCa) resection specimens based on their underlying changes 
in cellular processes and pathways that are agents of or result from malignant 
transformation. We characterised 71 same-patient pairs of early-stage LuAdCa and 
non-neoplastic LuAdCa resection specimen lysates in the presence or absence of a 
tyrosine kinase inhibitor. We performed ex vivo multiplex tyrosine phosphorylation 
assays using 144 selected microarrayed kinase substrates. The obtained 76 selected 
phosphotyrosine signature peptides were subsequently analysed in terms of follow-up 
treatments and outcomes recorded in the patient files. For tumour, node, metastasis 
(TNM) stage 1 LuAdCa patients, we noticed a larger tyrosine kinase inhibitor-induced 
decrease in tyrosine phosphorylation for long-term as opposed to short-term disease 
survivors, for which 26 of 76 selected peptides were significantly (p < 0.01, FDR 
< 3%) more inhibited in the long-term survivors. Using statistical class prediction 
analysis, we obtained a 'prognostic-signature' for long- versus short-term disease 
survivors and correctly predicted the survival status of 73% of our patients. Our 
translational approach may assist clinical disease management after surgical resection 
and may help to direct patients for an optimal treatment strategy.

INTRODUCTION

Adenocarcinoma, squamous cell carcinoma and 
large cell carcinoma represent the main subtypes of non-
small cell lung cancer (NSCLC), the leading cause of 
lung cancer-related deaths [1]. At present, the extent of 
NSCLC is assessed using the tumour, node, metastasis 

(TNM) staging system, based on anatomical criteria 
including tumour size, lymph node status and awareness 
of the presence of metastasis [2]. The TNM staging system 
assists clinicians in evaluating a prognosis and formulating 
treatment modalities [2]. Unfortunately, even with existing 
therapeutic efforts, the 5-year relative survival rate varies 
markedly depending on the stage at diagnosis, from 
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49% to 16% to 2% for patients with local, regional, and 
distant-stage disease, respectively [3]. For lung cancer 
patients with regional- or distant-stage diseases, the poor 
prognosis reflects the lack of therapeutic options available 
to treat this disease. Smoking prevention and cessation 
programmes have been implemented and new screening 
efforts such as low-dose helical computed tomography 
are proposed to increase the detection rate of high-risk 
patients or patients with local disease, respectively [4–6]. 
Nonetheless, even with an improved detection rate of 
local-stage disease amenable to surgery, the predicted and 
real outcomes vary substantially with similarly stratified 
lung cancer status. To improve the discriminative power 
of the TNM staging system both in terms of reliability 
and accuracy at sub-classifying high- versus low-risk 
patients, a thorough search for new prognostic and 
predictive molecular biomarkers is of utmost importance. 
For TNM stage 1 NSCLC patients, surgery is the current 
standard of care, but guidelines also suggest a benefit of 
adjuvant chemotherapy in some high-risks patients with 
primary tumour ≥4 cm [7]. After surgery, biomarkers that 
molecularly characterise stage 1 lung adenocarcinoma 
(LuAdCa) resection specimens may identify high–risk 
patients for either adjuvant chemotherapy or radiotherapy 
[8], and reciprocally may select for low-risk patients who 
qualify to safely avoid adjuvant therapies.

Despite tremendous efforts, the search for such 
reliable lung cancer-specific molecular biomarkers for 
local stage NSCLC has remained unsuccessful, which 
may be attributed to a lack of correlation between mRNA 
expression levels and the cellular abundance of their 
corresponding protein [9, 10]. Moreover, protein- and 
gene-expression profiling methods may fail to detect 
important modulations of enzyme activities caused either 
by posttranslational events during tumour progression 
and/or treatment response [11, 12]. To circumvent these 
limitations, we have developed Activity-Based Protein 
discovery platforms with LuAdCa resection specimens to 
search and identify enzymatic activities as prognostic and 
predictive biomarkers [13–15].

In both eukaryotic and prokaryotic biological 
systems, protein phosphorylation is a ubiquitous and 
reversible post-translational modification. More than 
500 protein kinase-coding motifs have been identified 
in humans [16]. Ninety are unique tyrosine kinase genes 
[17] and, as key regulators of cell functions, are directly 
involved in numerous signal transduction cascades 
[18]. Related protein kinases may have many common 
substrates, and subtle differences in protein kinase 
activities may determine, in vivo, the triggering of relevant 
signalling pathway [19]. Since the discovery of high 
tyrosine kinase activities in cancer [20], pharmaceutical 
companies have been conducting intense research to 
develop highly selective protein tyrosine kinase inhibitors 
(PTKI). PTKI such as erlotinib (Tarceva) or gefitinib 
(Iressa) are prescribed for subsets of NSCLC patients 

with regional stage disease and with enhanced tumour 
tyrosine kinase activities, but they are not the primary 
approved standard of care for early stage LuAdCa patients 
[21]. PTKI provide only temporary relief for molecularly 
unselected NSCLC patients. This high rate of treatment 
failure [22] is due both to the high plasticity of lung cancer 
to develop secondary resistance [23] and to an incomplete 
understanding of the molecular mechanisms involved in 
lung carcinogenesis.

By employing a same-patient set of lung resection 
specimens, we measured the tyrosine kinase activities in 
non-neoplastic and adenocarcinoma lysates, in addition 
to adenocarcinoma lysates containing gefitinib with a 
multiplex profiling approach using well-characterised 
tyrosine kinase substrates [24]. The gefitinib added to the 
tumour lysates was not intended to select for patients who 
may be sensitive to this PTKI. In this exploratory study, 
gefitinib was used as an assay tool applied in combination 
with clinical follow-up to test the discriminative power 
of our molecular signature for low-risk versus high-risk 
patients with respect to treatment response and survival. 
This molecular prognosis signature based on tyrosine 
kinase activity differences found in LuAdCa resection 
specimens may also lead to the identification of novel 
targets for future anti-lung cancer therapies.

RESULTS

Patient characteristics

We have summarized the clinical parameters 
of 49 TNM stage 1 and 22 TNM stage 2 LuAdCa 
patients enrolled in this study (Table 1, groups A to H). 
Supplementary Table 1 provides the detailed clinical 
characteristics of the patients. The TNM stage 1 training 
cohort contained 10 short-term survivors with a median 
disease-specific survival (DSS) of 34.6 months (group A, 
range 10.4-52.9 months) and 10 long-term survivors with 
a median patient DSS of 73.9 months (group B, range 
62.9-99.3 months). The TNM stage 1 validation cohort 
contained 3 short- and 14 long-term disease-specific 
survivors including two patients receiving adjuvant 
chemotherapy. The median DSS time for the validation 
cohort was 59.6 months (group C, range 11.7-99.2 
months). To evaluate the class prediction model for the 
TNM stage 1 signature, we omitted 12 patients from the 
validation cohort that were still alive at the time of the 
analysis but with a follow-up time shorter than the cut-off 
time set at 53.6 months of survival (see calculation of cut-
off time in Material and Methods, group D, range 0.7-42.2 
months).

The TNM stage 2 LuAdCa training cohort contained 
either 5 short-term survivors with a median DSS of 12.2 
months (group E, range 8.1-23.3 months) or 5 long-term 
survivors with a median DSS of 36.9 months (group F, 
range 30.6-73.5 months). The TNM stage 2 validation 
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Table 1: Patient characteristics

 

TNM 1 
short term 
survivors 
training

set Group 
A (n=10)

TNM 1 
long term 
survivors 
training

set Group 
B (n=10)

TNM 1

validating

set Group 
C (n=17)

TNM 1

short 
follow up

setGroup 
D (n=12)

TNM 2 
short term 
survivors 
training 

set Group 
E (n=5)

TNM 2 
long term 
survivors 
training 

set Group 
F (n=5)

TNM 2

validating

set Group 
G (n=7)

TNM 2 

short 
follow up

set Group 
H (n=5)

Gender         

 Male n(%) 6 (60) 5 (50) 8 (47) 1 (8) 2 (40) 2 (40) 4 (57) 2 (40)

 Female n(%) 4 (40) 5 (50) 9 (53) 11 ( 92) 3 (60) 3 (60) 3 (43) 3 (60)

Age         

  Median years 
at surgery 
(range)

65.5  
(46-74)

64  
(54-75)

64  
(28-80)

64.5  
(41-84)

67  
(52-70)

80  
(48-88)

65  
(56-76)

61  
(49-68)

  Median 
months 
survival 
(range)

34.6  
(10.4-52.9)

73.9  
(62.9-99.3)

59.6  
(11.7-99.2)

24.3  
(0.7-42.2)

12.2  
(8.1-23.3)

36.9  
(30.6-73.5)

29.6  
(23.3-98.2)

19.1  
(1.3-23.5)

TNM         

  Stage 1A n(%) 4 (40) 5 (50) 5 (29) 3 (25) 0 (0) 0 (0) 0 (0) 0 (0)

  Stage 1B n(%) 6 (60) 5 (50) 12 (71) 9 (75) 0 (0) 0 (0) 0 (0) 0 (0)

  Stage 2A n(%) 0 (0) 0 (0) 0 (0) 0 (0) 2 (40) 2 (40) 1 (16) 3 (60)

  Stage 2B n(%) 0 (0) 0 (0) 0 (0) 0 (0) 3 (60) 3 (60) 6 (84) 2 (40)

 N0 n(%) 10 (100) 10 (100) 17 (100) 12 (100) 2 (40) 3 (60) 4 (57) 2 (40)

 N1 n(%) 0 (0) 0 (0) 0 (0) 0 (0) 3 (60) 2 (40) 3 (43) 3 (60)

Tobacco pack-
years         

 None n(%) 0 (0) 0 (0) 3 (17.6) 1 (8.3) 4 (80) 1 (20) 1 (15) 2 (40)

 <30 n(%) 1 (10) 2 (20) 5 (29.5) 3 (25) 0 (0) 2 (40) 4 (55) 1 (20)

 31-49 n(%) 3 (30) 5 (50) 3 (17.6) 0 (0) 0 (0) 2 (40) 1 (15) 1 (20)

 >50 n(%) 6 (60) 3 (30) 6 (35.3) 8 (66.6) 1 (20) 0 (0) 1 (15) 1 (20)

EGFR status         

  Mutated 
EGFR 
mutated/tested 
(% mutated)

0/5 (0) 0/2 (0) 2/8 (25) 0/10 (0) 1/4 (25) 0/2 (0) 0/3 (0) 0/3 (0)

  Amplified 
EGFR 
amplified/
tested (% 
amplified)

1/5(20) 0/2 (0) 2/8 (25) 3/9 (33) 3/4 (75) 1/2 (50) 0/2 (0) 1/3 (30)

(Continued )
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cohort included 6 short- and 1 long-term disease-specific 
survivors with a median DSS of 29.6 months (group G, 
range 23.3-98.2 months). To evaluate the class prediction 
model for TNM stage 2, we omitted 5 patients from the 
validation cohort that were still alive at the time of the 
analysis but with a follow up time shorter than the cut-off 
time set at 24 months of survival (group H, range 1.3-23.5 
months).

Kinomes of long- versus short-term TNM 
stage 1 LuAdCA survivors were maximally 
discriminated when gefitinib was present during 
ex vivo tyrosine phosphorylation assay

We detected specific peptide tyrosine 
phosphorylation in protein lysates obtained from the 
same-patient lung non-neoplastic versus adenocarcinoma 
tissues. We assayed adenocarcinoma tissues in either the 
presence or absence of gefitinib and inhibition profiles 
were obtained using the “inhS” values as described in the 
Material and Methods section. For the training cohort, a 
total of 95 out of the 144 peptides available were selected 
and were present in at least 70% of the LuAdCa resection 
specimens analysed (see Material and Methods). The 
“inhS” values of the 95 peptides were combined with the 

patient survivor status in the form of a heatmap (Figure 
1). This visualisation showed a clear trend for kinomes 
of long-term survivors to be more strongly impacted 
by gefitinib inhibition than that of short-term survivors. 
A significant difference between the long-term and 
short-term survivors was characterised for 46 peptides 
(Figure 1, two-sample two-tailed Student’s t-test O, p < 
0.05; FDR 10%). Supervised classification performance 
was examined using partial least squares discriminant 
analysis (PLS-DA) based on the 95 peptide inhibition 
profiles of the LuAdCa resection specimens. The 
prediction accuracy was estimated using leave-one-out 
cross-validation (LOOCV), and we obtained an accuracy 
of 14/20 (70%) correctly segregated patients as short- 
or long-term survivors (Supplementary Figure 1). In 
addition, we applied this supervised classification model 
to our validation cohort of patients. Of the 17 patients in 
the validation cohort, we obtained an accuracy of 10/17 
(58.8%) of patients correctly classified regarding their 
long- versus short-term survival status (Figure 2).

By applying gefitinib and the experimental approach 
described above to TNM stage 2 protein lysates, a similar 
analysis did not detect any differences between 5 long- 
and 5 short-term survivors (data not shown).

 

TNM 1 
short term 
survivors 
training

set Group 
A (n=10)

TNM 1 
long term 
survivors 
training

set Group 
B (n=10)

TNM 1

validating

set Group 
C (n=17)

TNM 1

short 
follow up

setGroup 
D (n=12)

TNM 2 
short term 
survivors 
training 

set Group 
E (n=5)

TNM 2 
long term 
survivors 
training 

set Group 
F (n=5)

TNM 2

validating

set Group 
G (n=7)

TNM 2 

short 
follow up

set Group 
H (n=5)

  Mutated or 
amplified 
EGFR 
positive/tested 
(% positive)

1/5 (20) 0/2 (0) 3/8 (37.5) 3/9 (33) 3/4 (75) 1/2 (50) 0/3 (0) 1/3 (30)

Disease status         

  Locally 
recurrent (yes/
no/unknown)

(8/1/1) (0/10/0) (7/10/0) (0/12/0) (4/1/0) (2/3/0) (0/7/0) (0/5/0)

  Metastatic 
(yes/no/
unknown)

(8/1/1) (0/10/0) (4/11/2) (0/12/0) (5/0/0) (2/3/0) (1/6/0) (0/5/0)

  Adjuvant 
therapy n(%) 0 (0) 0 (0) 2 (12) 2 (17) 2 (40) 1 (20) 4 (57) 3 (60)

Cause of death         

 Alive n(%) 0 (0) 10 (100) 11 (65) 12 (100) 0 (0) 5 (100)) 6 (85) 5 (100)

  Deceased of 
Lung cancer 
n(%)

10 (100) 0 (0) 6 (35) 0 (0) 5 (100) 0 (0) 1 (15) 0 (0)
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Figure 1: Tyrosine phosphorylation of 95 selected peptide substrates in the presence of gefitinib. The 95 PCA-selected 
peptides are represented as “inhS” values, a Log2-transformed ratio of tyrosine phosphorylation. TNM stage 1 LuAdCa patients are plotted 
in an inhibitory heatmap according to either long- or short-term survival status. Inhibition is scaled per peptide and red colour indicates 
greater inhibition of phosphorylation. The significance obtained in a per peptide t-test is indicated on the left side of the figure using the 
following coding scheme: OO, p < 0.01; O, p < 0.05; p ≥ 0.05 otherwise.

Figure 2: Application of the 95 peptides PLS-DA class prediction model for TNM stage 1 LuAdCa performed on a set 
of 17 new samples. Among the 17 samples, we obtained a proper classification accuracy of 10/17 (59%). In this prediction score chart, 
samples with a prediction score smaller than zero were allocated to the short-term survivors (red coded) or to the long-term survivors (blue 
coded) when the prediction performance values were larger than zero. A prediction score situated further away from the decision boundary 
set at 0 was less likely to really belong to the opposite group.
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A same-patient comparison of intrinsic kinase 
activities present in LuAdCa versus lung non-
neoplastic tissues did not predict survival

In all LuAdCa protein lysates tested, we noticed 
a conspicuous and TNM stage-independent tyrosine 
phosphorylation of substrates. Lower levels of kinase 
substrate phosphorylation were detected for protein 
lysates of non-neoplastic tissues. Nonetheless, despite 
large differences in substrate phosphotyrosine levels, 
the calculated “norS” value in both supervised and 
unsupervised clustering analysis produced no correlation 
of substrate phosphorylation patterns with known clinical 
parameters (TNM stage, tumour size, histomorphologic 
grade, anatomical location of the tumour, smoking status, 
age and gender) involved in lung cancer aetiology (data 
not shown). In particular, the patient survival status was 
not correlated with phosphorylation of the 95 selected 
peptides (Supplementary Figure 2). For the “norS” ratio, a 
paired two-tailed Student’s t-test only detected 6 peptides 
(ERBB4_1181_1193; B3AT_39_51; PGFRB_1014_1028; 
ERBB2_870_882; RBL2_99_111; EGFR_1165_1177) out 
of the 95 peptides with significant differences between 
long- and short-term survivors (p < 0.05, FDR = 80%). 
In addition, the supervised PLS-DA classification analysis 
did not discriminate between long- versus short-term 
survivors.

The same analysis of “norS” ratio for LuAdCa TNM 
stage 2 also did not yield any useful classification model. 
Other clinical parameters (TNM stage, tumour size, 
histomorphologic grade or anatomical location of tumour, 
smoking status, age and gender) were not correlated with 
any characteristic substrate tyrosine phosphorylation 
patterns (data not shown).

Estimate of a correction parameter for 
optimal cutting temperature medium-induced 
differences in the inhibition of peptide substrate 
phosphorylation

We noticed a reduced effect of added gefitinib 
during the phosphorylation inhibition assay in recently 
collected malignant and non-neoplastic protein lysates. 
Moreover, this observation seemed to appear in parallel 
with the presence of a whitish background on images 
obtained from the top surface of the ceramic microarrays. 
We searched for causes explaining such an effect and ruled 
out the implication of either short versus long storage 
time after protein sample extraction or of heterogeneous 
batch processing of protein lysates (data not shown). 
Instead, we documented that the clear reduction in overall 
phosphorylation levels coincided with the year 2007 and 
the introduction of optimal cutting temperature (OCT) 
medium for improved embedding of resection specimens 
(Supplementary Figure 3). To correct the data for the 
OCT medium confounding effect, a median centring was 

performed on the “inhS” values of each peptide, separately 
for with or without OCT samples. Supplementary Figure 
4 illustrates the OCT corrective estimate “inhScor” on 
the signals of the PLCG1 (764-778) peptides. All the 144 
peptides were similarly corrected.

Selected tyrosyl-phosphorylated substrates 
involved in FER/FES and JAK/STAT pathways 
predict the survival status of long- versus short-
term TNM stage 1 LuAdCa patients

With the corrective estimate “inhScor” applied to all 
our data, we pooled the TNM stage 1 patient training 
(Figure 1) and validation cohorts (Figure 2) and re-
analysed the data. In this pooled cohort, we selected 76 
peptides with a clear phase of exponential growth during 
the kinase assay in at least 70% of the analysed samples. 
The “inhScor” ratio was represented for each of the 76 
peptide phosphotyrosines over the survivor status of the 
patient in the form of a heatmap. In Figure 3, the peptides 
are sorted according to the correlation of “inhScor” with 
survival status. Most discriminative peptides were sorted 
at the bottom of the heatmap and exhibited a relatively 
higher inhibition level in the long- versus short-term 
survivors (Figure 3, two-sample two-tailed Student’s 
t-test OOO, p < 0.001; OO, p < 0.01). Table 2 also lists 
the 26 tyrosine kinase peptide substrates with significantly 
higher inhibition in protein lysates of long- versus short-
term survivors (two-sample two-tailed Student’s t-test p 
< 0.01, FDR < 3%). Among the 26 peptide substrates, 
members of the JAK/STAT- (EPOR, JAK1, JAK2, FES) 
the FER/FES- (FER, FES, CTNNB1), and PDGFR 
cytoskeleton remodelling (PDGFRB, PIK3RI, PAXI, 
PLCG1) but also EphrinA (EPHA1, EPHA2, EPHA7, 
LCK) (Supplementary Figure 5) signalling pathways 
were identified. The upstream kinase analysis putatively 
suggested changed in the activity of SRC family kinases, 
including SRC, HCK, LCK consistent with the signalling 
pathways associated with the 26 peptide substrates 
(upstream kinase analysis data not shown). Supervised 
classification analysis was performed using PLS-DA based 
on the 76 peptide inhibition profiles. Prediction accuracy 
was estimated using 10-fold cross-validation, and 73% of 
the patients were correctly classified as short- or long-term 
survivors (Figure 4).

No significant association between patient 
survival and the epidermal growth factor 
receptor (EGFR) mutation and/or amplification 
status were observed

From the pooled cohorts with 37 patients, we also 
randomly assessed 13 LuAdCa resection specimens to 
determine the EGFR status (EGFR wild type/mutant and/
or EGFR amplification), an important parameter that 
is used to help guide treatment decisions. As indicated 
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Figure 3: Colour map representation of gefitinib-induced tyrosine phophorylation inhibition in peptide profiles 
obtained with the combined 37 patients described in Figures 1 and 2. Patient samples are sorted in columns according to their 
survival status. Rows represent the peptides sorted according to their correlation with survival status. As depicted in the colour bar scale, 
a red colour indicates a relatively high “inhScor” value, a Log2-transformed ratio of tyrosine phosphorylation inhibition by gefitinib. The 
significance obtained in the t test per peptide is indicated on the left side of the figure using the following coding: OOO, p < 0.001; OO, p 
< 0.01; O, p < 0.05; p ≥ 0.05 otherwise.

in Figure 4, we obtained a total rate of 30% of patients 
with either mutated EGFR or with amplified EGFR, in 
comparison to 70% who had the wild type form. The 
LuAdCa resection specimens with EGFR mutation/
amplification were equally distributed between long- and 
short-term survivors.

DISCUSSION

Protein phosphorylation represents an important and 
ubiquitous post-translational modification in eukaryotic 
biological systems and has a prominent role in cancer 
initiation and progression. The main role of kinases is 

to turn cellular processes “on” and “off”, and thus the 
kinome has been the focus of large efforts to understand 
cancer-modified signalling pathways [18]. In this project, 
we screened tyrosine kinase activities in 71 freshly frozen 
primary stage 1 and 2 LuAdCa resection specimen lysates 
with and without the presence of the PTKI gefitinib. We 
present the feasibility of discriminating long- versus short-
term stage 1 LuAdCa survivors based on tyrosine kinase 
activities.

Using our approach, sets of activated versus 
inactivated (or gefitinib bound) protein tyrosine kinases 
present in the adenocarcinoma lysates were subjected 
to protein tyrosine kinase activity profiling on the 
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Table 2: List of 26 peptide substrates identified after gefitinib-induced tyrosine phophorylation inhibition which are 
significantly differentially affected in kinomes of long- versus short-term TNM stage I lung adenocarcinoma patient 
survivors

Position of peptide Sequence Tyr site Uniprot Common name P value

ART_004_
EAIYAAPFAKKKXC EAIYAAPFAKKK NA NA Artificial peptide substrate < 0.01

CDK2_8_20 EKIGEGTYGVVYK [15, 19] P24941 Cell division protein kinase 2 < 0.01

CTNB1_79_91 VADIDGQYAMTRA [86] P35222 Catenin beta-1 (Beta-catenin). < 0.01

EPHA1_774_786 LDDFDGTYETQGG [781] P21709 Ephrin type-A receptor 1 
precursor < 0.01

EPHA2_765_777 EDDPEATYTTSGG [772] P29317 Ephrin type-A receptor 2 
precursor < 0.01

EPHA7_607_619 TYIDPETYEDPNR [608, 614] Q15375 Ephrin type-A receptor 7 
precursor < 0.01

EPOR_361_373 SEHAQDTYLVLDK [368] P19235 Erythropoietin receptor 
precursor (EPO-R). < 0.01

EPOR_419_431 ASAASFEYTILDP [426] P19235 Erythropoietin receptor 
precursor (EPO-R). < 0.01

FER_707_719 RQEDGGVYSSSGL [714] P16591 Proto-oncogene tyrosine-protein 
kinase FER < 0.01

FES_706_718 REEADGVYAASGG [713] P07332 Proto-oncogene tyrosine-protein 
kinase Fes/Fps < 0.01

JAK1_1015_1027 AIETDKEYYTVKD [1022, 1023] P23458 Tyrosine-protein kinase JAK1 < 0.01

JAK2_563_577 VRREVGDYGQLHETE [570] O60674 Tyrosine-protein kinase JAK2 < 0.01

LCK_387_399 RLIEDNEYTAREG [394] P06239 Proto-oncogene tyrosine-protein 
kinase LCK < 0.01

P85A_600_612 NENTEDQYSLVED [607] P27986 Phosphatidylinositol 3-kinase 
regulatory subunit alpha < 0.01

PAXI_24_36 FLSEETPYSYPTG [31, 33] P49023 Paxillin. < 0.01

PDPK1_2_14 ARTTSQLYDAVPI [9] O15530 3-phosphoinositide-dependent 
protein kinase 1 < 0.01

PECA1_706_718 KKDTETVYSEVRK [713] P16284
Platelet endothelial cell 

adhesion molecule precursor 
(PECAM-1)

< 0.01

PGFRB_1002_10 LDTSSVLYTAVQP [1009] P09619 Beta-type platelet-derived 
growth factor receptor precursor < 0.01

PGFRB_572_584 VSSDGHEYIYVDP [579, 581] P09619 Beta-type platelet-derived 
growth factor receptor precursor < 0.01

PGFRB_709_721 RPPSAELYSNALP [716] P09619 Beta-type platelet-derived 
growth factor receptor precursor < 0.01

PLCG1_764_776 IGTAEPDYGALYE [771, 775] P19174
1-phosphatidylinositol-4, 

5-bisphosphate 
phosphodiesterase gamma-1

< 0.01

PRRX2_202_214 WTASSPYSTVPPY [208, 214] Q99811 Paired mesoderm homeobox 
protein 2 (PRX-2) < 0.01

(Continued )
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PamChip®4 microarrays. We obtained inhibition profiles 
that were analysed for representative tumour signatures. 
Here, gefitinib was used as a tool to increase the 
discriminative power of the measurements by comparing 
activities with and without added inhibitor during the 
assay. The advantages of using PTKI inhibition over 
direct comparison with a non-neoplastic profile are both 
technical and biological. From a technical standpoint, 
quantitation and processing of the same malignant protein 
lysate, with or without presence of added PTKI, and 
from the exact same LuAdCa resection specimen tissue 
provides an advantage. This malignant sample can be 
measured either with PTKI or without PTKI as a control, 
thereby reducing differences in baseline signal between 
patients. From a biological perspective, the advantage 

lies in the ability to use specific inhibitors that may be 
efficient against a known signalling pathway important 
for tumour progression or treatment response. Moreover, 
drug targeting of a specific signalling pathway may help 
to better discriminate between sample phenotypes. In our 
study, gefitinib was selected because it is already used 
clinically as a treatment for distinct LuAdCa phenotypes 
[25]. As appears to be the case in our study, gefitinib-
induced inhibition of EGFR activity in comparison 
to overall gefitinib-free tyrosine kinase activity better 
discriminated LuAdCa resection specimen lysates than 
direct comparison with non-neoplastic samples.

In TNM stage 1 LuAdCa, the tyrosine kinases 
responded more strongly to the inhibitory effect of 
gefitinib in long-term survivors compared with short-term 

Figure 4: PLS-DA class prediction for TNM stage 1 LuAdCa performed with the 76 selected peptides. Predictive 
performance was examined using PLS-DA and 10-fold cross-validation. Of the combined 37 patients described in Figures 1 and 2, we 
obtained an accuracy of 27/37 (73%) of proper classification. The predicted class is indicated by the prediction score (y-axis), where a 
prediction score > 0 indicates a long-term survivor, and prediction score < 0 indicates a short-term survivor. The known class is indicated 
by plain or dashed blue-coded bars for long-term and plain or dashed red-coded bars for the short term survivors. Prediction performance, 
which is situated further away from the decision boundary set at 0, is less likely to belong to the opposite group. We randomly tested 13 
patients (plain colour bars) for EGFR mutations, and 11 of them for EGFR amplification (patients #4 and #43 were not tested). We found 
that 30% (4/11) of the LuAdCa resection specimens had either mutated (triangle) and/or amplified EGFR (star).

Position of peptide Sequence Tyr site Uniprot Common name P value

RET_1022_1034 TPSDSLIYDDGLS [1029] P07949 Proto-oncogene tyrosine-protein 
kinase receptor ret precursor < 0.01

RON_1346_1358 SALLGDHYVQLPA [1353] Q04912 Macrophage-stimulating protein 
receptor precursor < 0.01

TEC_512_524 RYFLDDQYTSSSG [513, 519] P42680 Tyrosine-protein kinase Tec < 0.01

ZAP70_485_497 ALGADDSYYTARS [492, 493] P43403 Tyrosine-protein kinase ZAP-70 < 0.01
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survivors. Moreover, we used a set of 76 peptide inhibition 
profiles as input for PLS-DA supervised classification 
analysis, which resulted in correct prediction of survival 
status for 73% of the patients (based on a 10-fold cross-
validation). Interestingly, we detected 26 peptide substrates 
that were significantly more inhibited in the protein lysates 
of the long- versus short-term survivors. Pathway analysis 
may provide hypotheses for further research and follow-up 
work. Among the 26 peptide substrates that significantly 
discriminated short- versus long-term survivors, we listed 
members of the EphrinA-signalling pathway (EPHA1, 
EPHA2, EPHA7, LCK) [26] and the PDGFR cytoskeleton 
remodelling pathway (PDGFRB, PIK3RI, PAXI, PLCG1) 
[27]. Interestingly, expression of PDGFRB in carcinomas 
is generally restricted to stromal cells of mesenchymal 
origin and is generally absent in epithelial tumour cells 
[28]. However, epithelial-mesenchymal transition (EMT) 
almost universally upregulates PDGFRB expression, and 
mesenchymal-like NSCLC cells exhibit aberrant PDGFR 
and FGFR expression. This finding implicates EMT as 
a mechanism for kinase switching, thereby decreasing 
cellular sensitivity to EGFR inhibition [27]. We also listed 
members of the FER/FES (FER, FES, CTNNB1) [29] 
and the JAK/STAT (EPOR, JAK1, JAK2, FES) pathways 
[30]. JAK/STAT pathway activation contributes to the 
acquisition of properties required for tumour invasion 
and metastasis. STAT3 has a global role in the adaptation 
of tumour cells to a hypoxic microenvironment, and 
constitutively active STAT3 leads to increased VEGF 
expression and increased vasculogenesis [31]. Many of the 
identified peptide substrates, such as the FER/FES kinases, 
are involved in one specific task such as cell adhesion, 
an important process in cancer metastasis. We also report 
cross-activated kinases, such as JAK’s, that may not only 
be associated with the EPOR pathway but also be active 
in several pathways such as with the PDGFRB and EPHA 
receptor signalling pathways.

A random screen of the LuAdCa resection 
specimens revealed that 30% of the total specimens 
analysed had a mutant or amplified EGFR, which is 
similar to the prevalence observed in a randomly selected 
Caucasian population affected by LuAdCa [32]. To refine 
our LuAdCa signature, it would still be advantageous to 
perform a larger screen for the EGFR mutant or amplified 
status in all LuAdCa resection specimens and to analyse 
known frequent LuAdCa-specific mutations [33].

When we applied the training model to the 
validation set, we identified assay interferences due to 
the presence of OCT in the samples embedded after 2007 
(which were also overrepresented in the validation set), 
corresponding to the exact time we implemented our OCT-
based embedding procedure to enhance the protection of 
our resection specimens [34]. Nonetheless, we observed 
a clear discrimination of long- and short-term survivors 
in the OCT and non-OCT groups, but with lower overall 
kinase inhibitions in the LuAdCa resection specimens 

embedded in OCT. We assume that the “inhScor” correction 
is unnecessary for future studies if a homogeneous type 
of embedding procedure is used for all the analysed 
samples. Clearly, the method should also be tested using 
a large validation set to overcome the effect of any 
optimistic biases in the current analysis. We were unable 
to perform such a new blinded analysis due to both the 
re-analysis of known samples after the application of the 
OCT corrective estimate and the scarcity of new untested 
LuAdCa resection specimens. A possible refinement 
could be achieved with an international validation study 
encompassing different human ethnic groups. In silico 
human genome analysis has described more than 500 types 
of DNA signatures with a kinase domain [16]. Ninety are 
unique tyrosine kinase genes [17] and, as key regulators 
of cell functions, are directly involved in numerous 
signal transduction cascades [18]. The ability to use 144 
investigator-selected peptides as substrates to extrapolate 
the overall kinase selectivity of a complex disease such as 
LuAdCa is limited. In studies assessing kinase selectivity, 
a larger set of peptide substrates is still recommended [35].

Nevertheless, we observed interesting and 
potentially clinically applicable differences in the 
kinomes of long- versus short-term survivors. Currently, 
molecularly targeted therapies based on small molecules 
and monoclonal antibodies directed against tyrosine 
kinases are already approved for lung cancer treatment. 
Approximately 20% of lung cancer patients can actually 
be stratified for treatment with EGFR targeting therapies 
that successfully suppress cell growth and promote cell 
death. New strategies are further needed to elucidate 
novel target signalling pathways among the numerous 
DNA signatures with a kinase domain described in silico 
in the human genome and potentially involved in either 
lung cancer disease or the lung cancer drug-resistant state 
[33]. Kinase activities have been used to predict drug and 
radiation treatment responses for rectal cancer specimens 
[36]. Our results show that kinomic profiling data are a 
promising approach in lung cancer as well, that may 
potentially provide therapeutic drug response information 
prior to lung cancer patient therapy. Recently, Anderson 
et al [37] developed an interesting approach based on 
electromagnetic navigational bronchoscopy (ENB) [38] 
derived lung tumour specimens and kinomic data for 
“biologically-interrogated’’ ENB specimens using small 
molecule inhibitors.

Our classifier achieved a rather high positive 
predictive value since a large proportion of the patients 
predicted to be long-term survivors were actually long-
term survivors (approximately 88% of the long-term 
survivors, Figure 4). Among the short-term survivors 
approximately half were classified correctly (57%). With 
future refinement of our classifier, we would suggest that 
a patient LuAdCa resection specimen classified as short-
term survivors may receive either adjuvant radiotherapy 
and/or chemotherapy after surgery or an enhanced 
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monitoring by regular CT scan. A further biological and 
mechanistic interpretation of the observed differences in 
the 26 peptide substrates that were significantly inhibited 
in the protein lysates of the long-term survivors presented 
in this study is still of interest.

MATERIALS AND METHODS

Management of collected LuAdCa resection 
specimens and clinical data from patients

This study was performed in accordance with the 
Helsinki Declaration and was examined and approved by 
the Institutional Ethical Review Board of the University 
Hospital Zürich (UHZ). In January 2003, the UHZ 
Division of Thoracic Surgery started a collection of 
same-patient fresh frozen LuAdCa and non-neoplastic 
tissues. In this study, all the mandatory informed consent 
approval forms with all clinical interventions and follow-
up treatment decisions from every participating lung 
cancer patient were archived. All lung resection specimens 
collected until December 2006 were directly snap-frozen 
in liquid nitrogen and stored at -80°C. As of January 
2007, this procedure was updated, and up to the censoring 
day of January 1, 2013, our lung resection specimens 
were processed in the following way: i) specimens were 
embedded in OCT (Tissue-Tek, Miles Inc., Elkhart, IN, 
USA), and the European standard for tumour banking was 
applied [34] ii) all our specimens were cryopreserved in 
the gas phase of a liquid nitrogen tank at -196°C.

EGFR mutational analysis of LuAdCa resection 
specimens

A set of LuAdCa resection specimens were 
randomly tested for EGFR mutation and amplification 
status as previously described [39]. To assess EGFR 
overexpression and gene amplification, we performed 
CEP7/EGFR dual colour FISH (Vysis, Abbott AG, Baar, 
Switzerland) with the Spectrum Orange probe specific 
for the EGFR locus (7p12) and the Spectrum green probe 
specific for the chromosome 7 centromere (7p11.1 to 
q11.1). A total of 50-100 non-overlapping tumour cell 
nuclei were counted. For exon 18 to 21 EGFR mutations, 
tissue areas from FFPE tissue were excised with a puncher 
and DNA was extracted and amplified by PCR. Finally, 
the PCR product were analysed by 2% agarose gel 
electrophoresis and subsequently purified and sequenced.

Histopathological examination of the specimens 
and study design

We collected resection specimens with clinical 
characteristics of LuAdCa TNM stage 1 (1A and 1B) or 
2 (2A or 2B) up to 12/2010 (see Supplementary Table 1). 
Starting with 118 computed database entries we excluded 

from the study, 13 patients died in manner not attributable 
to lung cancer (group 1), 10 patients had undergone 
neoadjuvant chemotherapies (group 2), 5 patients had 
either lost or unusable specimens (group 3) and 2 patients 
remained unreachable for follow-up (group 4). At the 
time of surgical resection, we conducted histopathological 
examination and tumour staging according to the 6th 
TNM classification of malignant lung tumours [40] and 
estimated the grade of tumour differentiation [41]. All the 
LuAdCa resection specimens included in this study were 
mounted in OCT and cryosectioned in eight-micron thick 
sections with an HM 560 cryostat (Microm) set at −25°C 
and further stained with haematoxylin and eosin. We 
excluded 7 patient specimens with less than the estimated 
30% minimal area percentage of the LuAdCa resection 
specimen occupied by tumour cells (group 5) and 6 patient 
specimens with areas of desiccated, necrotic, or mixed 
NSCLC phenotypes (group 6). The collected resection 
specimens had a median tumour cell content of 100% with 
a range of 30%-100% and an average tumour cell content 
of 88.3%.

Finally, after thorough inspection of peptide tyrosine 
phosphorylation kinetics, the assay results for 4 patients 
were removed because two of our predefined inclusion 
criteria were unmet: 1) extensive image saturation as 
a result of either very low or highly saturated peptide 
tyrosine phosphorylation; 2) data points in the principal 
component analysis (PCA) that were clear outliers from 
the rest of the dataset (group 7).

The patient DSS time was computed either as the 
months elapsed from the day of surgery until death as 
a result of a relapse of their lung cancer or, for patients 
above our assigned cut-off values, as the total number of 
months elapsed until the last available follow-up. Briefly, 
we collected 83 TNM stage 1 (33 with 1A; 50 with 1B) 
and 35 TNM stage 2 (11 with 2A; 24 with 2B) LuAdCa 
resection specimens. We also had to allocate patients into 
training and validation cohorts, and we selected a 1 to 
0.85 ratio for the stage 1 and a 1 to 0.7 ratio for the stage 
2. We constructed both the TNM stage 1 and 2 training 
cohorts with the oldest resection specimens in our tumour 
collection. Data from the 6th edition textbook of the TNM 
classification stated a 5-year survival rate ranging from 
73% for stage 1A to 52% for stage 1B and of 48% for 
stage 2A to 30% for stage 2B [42].

To distinguish short- versus long-term survivors and 
because of the incomplete 5-year follow-up time in our 
study population, we assigned shorter cut-off values in 
this study. In summary, and taking into account the high 
proportion of TNM B versus TNM A stages, the balancing 
of the short- versus long-term survivors training cohorts, 
the allocation in training and validation cohorts and the 
actual survival value, we selected 62% of our stage 1 and 
45% of our stage 2 patient populations as cut-off values 
for survival. We then deduced the months cut-off value 
corresponding to the two above-mentioned survival 
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percentages. For the 118 selected patients, the long- versus 
short-term survivor cut-off values were set at 53 months 
for stage 1 and 23.5 months for stage 2.

Preparation of LuAdCa resection specimens for 
the ex vivo kinase assay

Two cryosections with a thickness of 30 microns and 
covering an area of approximately 5x5 mm (or 1-1.5 mm3 
of tissue) were collected from each of the LuAdCa and 
same-patient non-neoplastic resection specimens. Prior 
to protein extraction, the OCT-embedded cryosections 
were quickly thawed and briefly pelleted at 3000 rpm 
for 0.5 min in a microcentrifuge set at 4°C. The protein 
lysates were extracted and resuspended 30 times on ice 
using wide bore pipet tips in 100 μl of ice-cold Pierce 
mammalian extraction buffer (M-PER Thermo Fisher 
Pierce, Rockford, IL, USA) containing both Pierce 
Halt Phosphatase Inhibitor Cocktail and Pierce Halt 
Protease Inhibitor Cocktail EDTA free (Thermo Fisher 
Pierce, Rockford, IL, USA). All samples were pelleted 
at 3000 rpm for 0.5 min in a microcentrifuge set at 4°C, 
processed again 30 times using wide bore pipet tips and 
finally lysed for 15 mins on ice. After centrifugation 
at 10000 rpm for 15 mins and 4°C, each protein lysate 
supernatant was aliquoted into 10 tubes and quickly frozen 
before storage at –80°C. The protein concentration was 
estimated with the Pierce micro BCA kit (Thermo Fisher 
Pierce, Rockford, IL, USA) using bovine serum albumin 
(BSA) as a standard. Additionally, malignant samples 
were also analysed with a 10 μM final concentration of 
gefitinib (CAS 184475-35-2, Cayman Biochemicals, Ann 
Arbor, MI). The 40 μl final volume of kinase master mix 
containing the kinase assay buffer (50 mM Tris-HCl pH 
7.5, 10 mM MgCl2, 1mM EGTA, 2 mM dithiothreitol, 
0.01% Brij 35, 1 mg/ml BSA, and 12.5 μg/ml FITC-
labelled PY-20 antibody) was prepared according to the 
instructions provided by the manufacturer (PamGene, 
's-Hertogenbosch, The Netherlands) and assayed with the 
following modifications: i) we tested 5 μg of the extracted 
protein lysate in a 1 to 5 μl final volume of M-Per lysis 
buffer and, ii) we included either 2 μl of a 200 μM stock of 
gefitinib in DMSO or 2 μl DMSO. Finally, to synchronise 
the twelve kinase reactions, we added 4 μl of a 4 mM ATP 
stock solution to reach a 0.4 mM final ATP concentration.

Multiplex profiling of protein tyrosine kinase 
substrates

Multiplexed ex vivo profiling of protein tyrosine 
kinase substrates from human LuAdCa protein 
lysates was performed. As substrates, we used a PTK 
PamChip®4 microarrays (PamGene, 's-Hertogenbosch, 
The Netherlands) dotted with 13-15 amino acid consensus 
tyrosine phosphorylation peptide sequences that were 
identified in both the SwissProt and PhosphoBase 
databases [35]. The list of 144 different peptide 

substrates immobilised through 2 supplementary amino 
acid residues to the porous ceramic microarray is 
provided in Supplementary Table 2. Substrate tyrosine 
phosphorylation was detected using fluorescein-labelled 
anti-phosphotyrosine antibodies (clone PY-20-FITC). 
The kinase reactions were performed with up to 12 
arrays in parallel on a PamStation®12 (PamGene, 
's-Hertogenbosch, The Netherlands) at 30°C. The time 
course of phosphorylation was followed for one hour 
with 92 pumping cycles through the porous ceramic 
microarray by recording a fluorescence image of each 
array every fifth pump cycle with a CCD camera. A 
randomisation scheme for duplicate measurements of all 
samples was applied as follows: two distinct runs of the 
PamStation®12 were performed on two independent PTK 
PamChip®4 microarrays with two freshly thawed protein 
lysate aliquots.

Image filtering, data adaptation and statistical 
analysis

Duplicate multiplex kinomic profiles of same-
patient LuAdCa or non-neoplastic resection specimens 
were obtained. The software package BioNavigatoR 
(version 5.2 - 6.2; PamGene, 's-Hertogenbosch, The 
Netherlands) was used for inspection of the recorded 
images for quality control investigations and for 
quantitation of the tyrosine phosphorylation signals. This 
process included standard procedures for the automatic 
edge detection of microarrayed spots. For each spot, the 
tyrosine phosphorylation signal was used as the median 
spot pixel value minus the median local background 
pixel value. Measurements were carefully inspected and 
repeated for one or both replicates in the case of evident 
mechanical or technical problems during data acquisition, 
and for replicates with measurement inconsistencies. For 
further analysis, the signal obtained after a final washing 
step at the end of the incubation was used. This signal was 
recorded using 3 different CCD camera exposure times. A 
standard procedure was applied to combine these readings 
into a single signal value with a maximum dynamic 
range. Only peptides with clear growth of the tyrosine 
phosphorylation signal during the assay for at least 70% of 
non-neoplastic and malignant samples (without gefitinib) 
were selected for further analysis.

The ratio of peptide phosphorylation “norS” between 
same-patient non-neoplastic and malignant resection 
specimens was calculated as the Log2 ratio of the signal 
obtained for the malignant (Sm) or non-neoplastic (Snn) 
resection specimens: norS = Log2 (Sm/Snn)

The inhibition value “inhS” was calculated as the 
Log2 ratio of the peptide phosphorylation signal obtained 
with (Si) or without (Sm) addition of gefitinib in malignant 
resection specimen lysates: inhS = Log2 (Si/Sm)

First, a Log2 ratio per run was calculated, and 
duplicated ratios were subsequently averaged. We 
performed a comparative analysis of ratios from between 
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two groups of samples (e.g., long-term versus short-term 
survivors), which included heatmap visualisation of the 
data and per-peptide two-sample two-tailed Student’s 
t-tests to identify peptide that were significantly different 
between the groups.

Unsupervised multivariate clustering of samples 
was inspected in low-dimensional score plots of the 
measurements obtained by PCA (see Supplementary 
Figure 6). Classification analysis was performed using 
PLS-DA (see also Supplementary Text 1, Supplementary 
Figure 7 [43]), a method that has been previously found 
to perform well with PamChip kinomic data [36, 44]. This 
analytical approach results in a prediction score that can 
be used to predict the class of new samples. The predictive 
performance of the classification model was estimated 
with LOOCV or 10-fold cross-validation or by applying 
the classification model to an independent validation set.

During the course of the analysis, we realised that 
the OCT embedding medium used to store lung resection 
specimens had an effect on both the “norS” and “inhS” 
values. We designed and applied a correction in which 
median centring was performed on the “inhS” values of each 
peptide, separately for the samples with or without OCT. 
We obtained corrected values named “norScor” and “inhScor”. 
Statistical analyses were performed using BioNavigatoR 
(versions 5.2 -6.2, PamGene, 's-Hertogenbosch, The 
Netherlands) interfaced with R (versions 2.15.3 [45]) and 
MATLAB R2010b, (Mathworks Inc., Natick, MA, USA).
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