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ABSTRACT

We aimed to investigate the potential of radiomic features of magnetic resonance 
imaging (MRI) to predict progression in patients with advanced nasopharyngeal 
carcinoma (NPC). One hundred and thirteen consecutive patients (01/2007-07/2013) 
(training cohort: n = 80; validation cohort: n = 33) with advanced NPC were enrolled. 
A total of 970 initial features were extracted from T2-weighted (T2-w) (n = 485) and 
contrast-enhanced T1-weighted (CET1-w) MRI (n = 485) for each patient. We used 
least absolute shrinkage and selection operator (Lasso) method to select features 
that were most significantly associated with the progression. The selected features 
were used to construct radiomics-based models and the predictive performance of 
which were assessed with respect to the area under the curve (AUC). As a result, 
eight features significantly associated with the progression of advanced NPC were 
identified. In the training cohort, a radiomic model based on combined CET1-w and 
T2-w images (AUC: 0.886, 95%CI: 0.815-0.956) demonstrated better prognostic 
performance than models based on CET1-w (AUC: 0.793, 95%CI: 0.698-0.889) or 
T2-w images alone (AUC: 0.813, 95%CI: 0.721-0.904). These results were confirmed 
in the validation cohort. Accordingly, MRI-based radiomic biomarkers present high 
accuracy in the pre-treatment prediction of progression in advanced NPC.

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a rather 
common malignant tumor among Asians, especially the 
South China [1]. Radiotherapy (RT) is regarded as the 
standard treatment for patients with NPC. Up to now 
platin-based radiochemotherapy has been established in 
the treatment of NPC, survival rates have been improved 
[2]. For patients with advanced NPC (stage III-IVb), 
their prognosis are poorer due to treatment failure. 

The main causes of treatment failure are locoregional 
recurrences and distant metastasis [3]. Pretreatment 
prediction of recurrence and distant metastasis is crucial 
to make decisions regarding treatment. If poor survival 
can be predicted prior to treatment, then this will help to 
determine whether more aggressive treatments should be 
administered, such as, by increasing cycles, or by using of 
adjuvant and/or induction chemotherapy.

Tumor-node-metastasis (TNM) indicates tumor 
extent (T), lymph node metastsis and its extent (N), and 
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distant metastasis (M) [4]. Although the TNM staging 
system for NPC plays a crucial role in predicting 
prognosis and facilitate treatment stratification, it may 
not be sufficiently precise; indeed, patients with the same 
TNM stage often have different survival times. Thus, new 
tools are urgently needed to identify patients who are at 
risk of having a poor prognosis.

The emergence of radiomics has broaden the scope 
of routine medical imaging in clinical oncology [5]. 
By converting medical images into high-dimensional, 
mineable, and quantitative features via high-throughput 
extraction of data-characterization algorithms, 
radiomics provides an unprecedented opportunity to 
improve decision- support in oncology at low cost and 
noninvasively [6, 7]. It hypothesizes that medical imaging 
can reveal crucial information regarding tumor phenotype 
[8]. The imaging features are extracted from entire 
tumors, and hence are likely to characterize the intra-
tumor heterogeneity. It has been reported that intra-tumor 
heterogeneity could have profound significance in clinical 
practice, such as cancer diagnosis, staging, prognosis, 
prediction and response to treatment [9]. Therefore, 
it is regarded as a very important factor for precision 
oncology. Several studies have investigated the potential 
of radiomics in a range of cancer types and modalities 
(e.g. CT, MRI, and PET/CT). It have been proved that 
radiomic features are associated with tumor grades, stages, 
patient survival, and other clinical outcomes [10–13]. Fox 
example, patients with stage III-IV primary colorectal 
cancer had significantly higher CT-based Rad-score than 
those patients with stage I-II. Prognostic characteristics of 
radiomic features are cancer-specific and can be used for 
building prognostic models. Computer-extracted magnetic 
resonance (MR) image-based tumor phenotypes can be 
predictive of the molecular classification of invasive breast 
cancers. These previous studies indicated that radiomics 
could affect individualized treatment strategy and monitor 
the clinical process. Therefore, radiomics is a novel and 
promising step toward the realization of personalized 
cancer care.

To our knowledge, no recent studies have 
investigated whether the prognosis of NPC could be 
predicted by radiomics-based prognostic models. Thus, 
in this study, we developed and validated multiparametric 
MRI-based radiomic signature as a novel biomarker for 
providing individualized, pretreatment predictions of 
progression in patients with advanced NPC (TNM stage: 
III-IVb).

RESULTS

Clinical characteristics of the patients

The clinical characteristics of the training and 
validation cohorts are shown in Table 1. No differences 
were found between the training and validation cohorts 

in terms of age, gender, overall stage, T-stage, N-stage, 
histology, or follow-up time (p = 0.076-0.941). The 
median follow up time was 39 months (range, 3-89 
months).

Radiomic feature extraction/selection 
and radiomic model building

A total of 970 features were extracted from magnetic 
resonance images (485 features from T2-w images and 
the remaining 485 from CET1-w images). Of these, 
we selected five textural features (i.e. CET1-w_5_fos_
median, CET1-w _5_GLRLM_RP, CET1-w_5_GLCM_
correlation, CET1-w_5_GLRLM_ SRE CET1-w_4_ 
GLRLM_ LRHGLE) from CET1-w images and six 
features (i.e. T2-w_Max3D, T2-w_4_fos_ mean, T2-
w_7_fos_mean, T2-w_5_GLCM_sum_average, T2-
w_6_GLCM_IMC1, T2-w_1_GLRLM_SRLGLE) from 
T2-w images that were most strongly associated with the 
outcome progression of advanced NPC in the training 
cohort. To build the radiomics-based prognostic models, 
eight features were selected for inclusion in the Rad-score 
predictive model, including four features derived from 
CET1-w images and four features derived from T2-w 
images. Rad-score calculation formula was as follows:

Rad-score = 0.0330481732 CET1-w_5_fos_median
-6.4931353700 CET1-w_1_GLCM_correlation
-0.0008289514 CET1-w_4_GLRLM_LRHGLE
+ 9.7275394149 CET1-w_5_GLRLM_RP
+ 0.0106439280 T2-w_Max3D
-0.1787872430 T2-w_4_fos_mean
-0.4498668025 T2-w_7_fos_mean
+ 0.1613474592 T2_5_GLCM_sum_average
+ 65.1061061821

Prognostic performance of radiomic models

In the training cohort, the radiomics model based on 
CET1-w images yielded an AUC of 0.793 (95%CI: 0.698 
to 0.889). The radiomic model based on T2-w images 
yielded an AUC of 0.813 (95% CI: 0.721 to 0.904). The 
radiomic model from joint CET1-w and T2-w images 
yielded the highest AUC, which was 0.886 (95% CI: 0.815 
to 0.956) (Figure 1).

In the validation cohort, the radiomic model based 
on CET1-w images achieved an AUC of 0.799 (95% 
CI: 0.602 to 0.996). The radiomic model based on T2-w 
images achieved an AUC of 0.742 (95% CI: 0.548 to 
0.935). The radiomic model based on joint CET1-w and 
T2-w images achieved the highest AUC, which was 0.823 
(95% CI: 0.645 to 1.000) (Figure 2).

Group differences

The eightfeatures selected by Lasso model (i.e. 
CET1-w_5_fos_median, CET1-w_5_ GLCM_ correlation, 
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CET1-w_4_GLRLM_LRHGLE, CET1-w_5_GLRLM_
RP, T2-w _4_fos_mean, T2-w_Max3D, T2-w_7_fos_
mean, and T2-w_5_GLCM_sum_average) fromCET1-w 
and T2-w images showed significantly differentbetween 
progression group and non-progression group with 
p-values < 0.05, especially for the first four features (p < 
0.001, for all) (Figure 3).

DISCUSSION

In the present study, a novel 8-feature based Rad-
score was developed and validated to be an independent 

predictor of progression of advanced NPC. We found 
the radiomic model from joint CET1-w and T2-w 
images had better prognostic performance than that from 
either CET1-w or T2-w images alone. The AUC for the 
combined model was as high as 0.886 in the training 
cohort and 0.823 in the validation cohort. Therefore, we 
identified multi-parametric MRI-based radiomics as a new 
biomarker for prognostic prediction in advanced NPC.

Although the tumor-node-metastasis (TNM) 
staging system for NPC plays a crucial role in predicting 
prognosis and facilitate treatment stratification, it may 
not be sufficiently precise [14]. The traditional TNM 

Table 1: Patient and tumor characteristics in the training and validation cohorts

Training cohort
(N = 80)

Validation cohort
(N = 33)

p-value

Gender
 Male 62 (77.5%) 25 (75.8%) 0.841
 Female 18 (22.5%) 8 (24.2%)
Age (years)
 Median (IQR) 42.5 (37-51.00) 43.5 (35.3-51.3) 0.370
 < 40 33 (41.3%) 13 (39.4%)
 40-50 24 (30%) 11 (33.3%) 0.941
 >50 23 (28.8%) 9 (27.3%)
Overall stage
 III 50 (62.5%) 23 (69.70%) 0.467
 IV 30 (37.5%) 10 (30.3%)
T stage
 T1 3 (3.75%) 4 (12.1%) 0.153
 T2 20 (25.0%) 4 (12.1%)
 T3 38 (47.5%) 19 (57.6%)
 T4 19 (23.8%) 6 (18.2%)
N stage
 N0 7 (8.8%) 1 (3.0%) 0.384
 N1 17 (21.3%) 6 (18.2%)
 N2 43 (53.8%) 23 (69.7%)
 N3 13 (16.3%) 3 (9.1%)
Histology*
 WHO type I 0 0 ---
 WHO type II 1 (1.3%) 5 (15.2%)
 WHO type III 79 (98.8%) 28 (84.9%)
Follow-up time (mo)
 Median (IQR) 39 (25.3-69) 39.5 (28.5-50.3) 0.076

Data are n (%) unless otherwise indicated. *Histology was categorized according to the WHO Classification. IQR: inter-
quartile range; type I: keratinizing; type II: non-keratinizing differentiated; type III: non-keratinizing undifferentiated.
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Figure 1: Prognostic performance of radiomic models in the training cohort. (A) Radiomic model based on CET1-w images. 
(B) Radiomic model based on T2-w images. (C) Radiomic model based on joint CET1-w and T2-w images.

Figure 2: Prognostic performance of radiomic models in the validation cohort. (A) Radiomic model based on CET1-w 
images. (B) Radiomic model based on T2-w images. (C) Radiomic model based on joint CET1-w and T2-w images.

staging system is based merely on gross anatomy, it has 
an obvious limitation that intra-tumor heterogeneity is not 
concerned. Intra-tumor heterogeneity has been reported 
to have profound significance in clinical practice, such as 
diagnosis, staging, prognosis, and thus it is regarded as a 
very important factor for precision oncology. This view 
fits our current knowledge of cancer, in which malignant 
lesions consist of heterogeneous cell populations with 
distinct molecular and micro-environmental differences. 
Hence the current interest in using medical imaging 
to repetitively assess intra-tumor spatial and temporal 
heterogeneity. Radiomics is a new and promising area of 
research in the field of imaging with tremendous potential 
to unravel the hidden information in medical images [15]. 
The radiomic features are extracted from entire tumors 
on medical images, and hence are likely to characterize 

the intra-tumor heterogeneity. Radiomics is based on 
imaging, but beyonds imaging. It has been demonstrated 
to benefit the field of oncology by assessing the influence 
that pre-treatment tumor properities, and post-treatment 
effects on the texture and intensities of the affected tissues 
[16–18]. Yong et al. identified prognostic intratumor 
heterogeneity using pre- and post-RT 18F-FDG PET 
textures for pancreatic cancer patients. They found that 
most of the post-RT features were significant with the PET 
response, whereas clincal stage was not associated with 
the response [19]. Huang et al. found incorporating the 
radiomics signature into the radiomics-based nomogram 
resulted in better performance (p < 0.0001) for the 
estimation of disease-free survival (DFS) (C-index: 0.72) 
than with the clinical-pathologic nomogram (C-index: 
0.691) [20]. Yuan et al. reported the radiomic tumour-
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phenotypes biomarker exhibited better diagnostic accuracy 
than traditional volumetric analysis in discriminating 
lung adenocarcinoma with different disease- specific 
survival [21]. It is accepted that radiomics can act as a 
guide in the disease or cancer diagnosis, grading, staging, 
monitoring patients on therapy, predicting treatment 
response, and determine patient outcomes [13, 22–28]. 

Since the emergence of radiomics, a large amounts of 
quantitative features can now be extracted from routine 
medical images through high-throughput computing 
algorithms, and these can be converted into mineable data 
that contributing to associating imaging phenotypes with 
clinical data, genomics, proteomics, and other “omics” 
information [15, 29].

Figure 3: Boxplotsregarding statistical differences between progression group and non-progression group were shown. 
* Indicates statistically significant.
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MRI is routinely used to diagnose and monitor 
NPC. Unlike CT, MRI provides better tissue contrast, 
has multiplanar capacity, and exhibits fewer artifacts 
from radiation and bone beam hardening. Therefore, we 
extracted radiomic features from multiparametric MR 
images including T2-w and contrast-enhanced T1-w 
images. We found that the radiomic model derived from 
combined T2-w and contrast-enhanced T1-w images 
outperformed model derived from T2-w or contrast-
enhanced T1-w images alone in both the training cohort 
and validation cohort.

To develop the radiomics-based prognostic models, 
970 candidate features were reduced to a set of only eight 
potential prognostic factors by using a Lasso logistic 
regression model. Lasso is suitable for analyzing large 
sets of radiomic features with a relatively small sample 
size, and it is designed to avoid overfitting [30]. The 
radiomic features obtained from Lasso are generally 
accurate, and the regression coefficients of most features 
are shrunk towards zero during model fitting, making the 
model easier to interpret and allowing the identification 
of imaging features that are most strongly associated 
with tumor progression [31]. The eight most powerful 
radiomic features showed significantly different between 
progression group and non-progression group. We 
then used the eight radiomic features weighted by their 

coefficients to build the radiomic models. Using a 10-
fold cross-validated design, the top-performing logistic 
regression model yielded an AUC = 0.886.

The limitations to this study included the fact that 
our analysis did not account for two-way or higher-order 
interactions between features. If interactions between 
features had been identified, the interaction terms that were 
most strongly associated with the outcome interactions 
would have been selected when we constructed the 
radiomics score, and this could have improved predictive 
performance. We used a validation cohort that was drawn 
from the same institution as the training cohort, which 
prevented us from investigating the generalizability of the 
results to other institutions and settings.

In summary, the present study developed and 
validated multiparametric MRI- based radiomics as novel 
biomarkers to predict progression pre-treatment in patients 
with advanced NPC (TNM stage: III-IVb). Radiomics-
based prognostic models could potentially be useful for 
precision oncology and affect the treatment strategies that 
are used for patients with NPC. Larger studies are needed 
to prospectively explore the prognostic performance of 
textural and non-textural MRI-based radiomic features as 
noninvasive predictors of NPC progression. Associations 
between radiomic features and clinical data, genomics, 
proteomics are also warranted to investigate in the future.

Figure 4: The workflow of radiomics. (a) MRI imaging. (b) Image segmentation was performed on contrast-enhanced T1-w images 
and T2-w MRI images. Experienced radiologists contour the tumor areas on all MRI slices. (c) Features are extracted from within the 
defined tumor regions, quantifying tumor intensity, shape, texture, and wavelet filter. (d) Feature selection by Lasso. (e) Radiomic model 
building.
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PATIENTS AND METHODS

Patients

Our Institutional Review Board approved this 
retrospective study and waived the need to obtain informed 
consent from the patients. We reviewed the medical records 
from the January 2007 to July 2013 to identify patients who 
had histologically confirmed NPC (TNM stage: III-IVb). 
Tumor staging was performed according to the American 
Joint Committee on Cancer TNM Staging System Manual, 
7th Edition [13]. All patients underwent pre-treatment 3.0 
T MRI scans (Discovery MR 750 System; GE Healthcare, 
Milwaukee, WIS). The inclusion criteria were as follows: 
inclusion criteria included (a) Patients with histologically 
confirmed nNPC (without evidence of recurrence or 
distant metastases at diagnosis. (b) First MRI images 
(including CET1-w and T2-w images) before treatment 
were available. (c) All patients were followed up every 
1-3 months during the first 2 years, every 6 months in 
years 2-5, and annually thereafter. (d) All local recurrences 
were diagnosed by flexible nasopharyngoscopy and 
biopsy and/or MRI scans of the nasopharynx and skull 
base that showed progressive bone erosion and/or soft 
tissue swelling. Regional recurrences were diagnosed by 
clinical examination of the neck and, in doubtful cases, by 
fine-needle aspiration or MRI scans of the neck. Distant 
metastases were diagnosed based on clinical symptoms, 
physical examination, and imaging methods including 
chest X-ray, whole-body bone scan, MRI/CT, PET/CT, and 
abdominal sonography. (e) Clinical data were available, 
such as for age, gender, histology, overall stage.

A total of 113 consecutive patients met the criteria 
(87 men and 26 women; mean age, 43 years ± 11.1) were 
identified and divided into two cohorts (training cohort: n 
= 80; validation cohort: n = 33) using computer-generated 
random numbers. Eighty patients were allocated to the 
training cohort (62 men and 18 women; mean age, 43 
years ± 10.9), while 33 patients were allocated to the 
validation cohort (25 men and 8 women; mean age, 43 
years ± 11.8).

Clinical endpoint

We chose the progression as the clinical endpoint. 
Locoregional recurrences or distant metastases were 
regarded as disease progression. We dichotomized the 
censored continuous progression-free survival data using 
a cutoff time of 3 years. Patients who progressed within 
the cutoff time were labeled as 1, whereas the patients did 
not progress within the cutoff time were labeled as 0.

Overview

The proposed noninvasive NPC progression 
estimation method consists of MRI imaging, image 

segmentation, high-throughput feature extraction, feature 
selection and radiomic model building. The radiomics 
workflow was illustrated in Figure 4. Details of each 
procedure are described below.

MRI acquisition and segmentation

We used axial T2-weighted (T2-w) Digital Imaging 
and Communications in Medicine (DICOM) images 
and contrast-enhanced T1-weighted (CET1-w) DICOM 
images that had been archived in the Institutional 
Picture Archiving and Communication System (PACS, 
Carestream, Canada), without applying any preprocessing 
or normalization. The MRI acquisition parameters were 
as follows: axial T2-w images (TR/TE: 5000/ 85 msec, 
FOV = 23 × 23 cm, NEX = 2.0, Slice thickness = 4 mm, 
Spacing = 1.0 mm) and axial CET1-w images (TR/TE: 
410/min full msec, FOV = 23 × 23 cm, NEX = 2.0, Slice 
thickness = 4 mm, Spacing = 1.0 mm).

We used ITK-SNAP software for three-dimensional 
manual segmentation (open source software; http://www.
itk-snap.org). All manual segmentations of the tumor 
were performed by a radiologist who had 10 years of 
experience, and each segmentation was validated by a 
senior radiologist, who had 20 years of experience in NPC 
diagnosis. The region of interest covered the whole tumor 
and was delineated on both the axial T2-w images and 
CET1-w images on each slice.

Radiomic feature extraction/selection and 
radiomic signature building

Radiomic features were divided into four types, 
including first-order statistics features (n = 17), shape- 
and size-based features (n = 8), statistics-based textural 
features (n = 36), and wavelet features (n = 424). The 
feature extraction methodology has been described in the 
Supplementary Materials. All feature extraction methods 
were implemented using MatLab 2014a (MathWorks, 
Natick, MA, USA). The least absolute shrinkage and 
selection operator (Lasso) logistic regression was used 
to select the most powerful predictive features associated 
with the progression from the training cohort. Radiomics 
signature were built using radiomics score (Rad-score). 
The Rad-score was calculated for each patient as a linear 
combination of selected features that were weighted by 
their respective coefficients.

Validation of the performance of radiomic 
models

The predictive performance of the radiomic models 
were assessed in the training cohort and then tested in 
the validation cohort using the AUC, along with the 95% 
confidence interval (CI).
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Statistical analysis

The statistical analyses were performed with R 
software (R Core Team. R: A language and environment 
for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL: http://www.R-project.
org). The package ‘glmnet’ was used for Lasso logistic 
regression. Differences between progression group and 
non-progression group with respect to selected features 
were compared using t test. All statistical tests were two-
sided, and p-values of < 0.05 were considered significant.
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NPC: nasopharyngeal carcinoma; MRI: magnetic 
resonance imaging; Lasso: least absolute shrinkage 
and selection operator; AUC: area under the curve; CI: 
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excitations; TR: repetition time; TE: echo time; CET1WI: 
contrast-enhanced T1-weighted imaging; T2WI: T2-
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matrix; GLRLM: Gray-level run-length texture matrix.
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